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Abstract

In the era of Big Data, relational data is at risk of piracy and misuse
when distributed, shared and used. The use of digital watermarking tech-
nology is a reliable way to protect the copyright of relational data. In
order to protect the copyright of relational data and recover the origi-
nal data, many reversible watermarking schemes have been proposed in
recent years, but most of them cannot extract the watermark information
completely under severe attacks. To address this problem, a random-
ized reversible watermarking scheme is proposed.Watermark embedding
algorithm, watermark integrity checking algorithm, watermark detection
algorithm and data recovery algorithm were designed. The watermark
capacity is increased by embedding multiple watermarks in selected
tuples, and the randomness of the watermark information distribution is
increased by embedding unequal proportions of watermarks in different
tuples. In extracting the watermark, the attacked bits are discarded to
improve the accuracy of watermark detection. In addition, only a par-
tition with complete watermark information is selected for watermark
extraction. This not only improves the speed of watermark extraction,
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but also avoids the risk of key leakage from other partitions. The exper-
imental results show that the complete watermark information can be
extracted even when more than 90% of the tuples are under attack.

Keywords: relational data, reversible watermark, copyright, multiple
verification

1 Introduction

At present, due to the widespread use of big data and cloud computing, there
is an increasing amount of data available on the Internet[1]. These data are
circulated and used in various forms on the Internet, such as audio, video,
images, text and relational data. This data is constantly creating new value
in the process of circulation and use. Data can be easily copied, modified and
distributed through public channels, which makes it more easily available for
misuse. In the Internet age, information misuse has become a more frequent
data security matter than information corruption or leakage[2]. How to protect
data security and prove data ownership in an open and shared environment
has become an urgent issue.

Digital watermarking is a technique used for copyright protection and pre-
vention of data tampering in multimedia data, such as images, audio, video,
natural languages, and relational databases[3–7]. Database watermarking is a
technique that has been proposed recently for database copyright protection.
A data owner embeds a specific message into separate and discrete relational
data, embeds his unique identification into the data by a watermark embed-
ding algorithm before distributing the data, and then distributes the data
through a public channel. After obtaining the data, a malicious attacker will
use various attacks to destroy the original watermark in the data in order to
interfere with the proof of copyright. Common attacks include tuple addition,
tuple alteration and tuple deletion attacks. The data owner extracts a unique
copyright mark from the stolen data for the purpose of copyright proofing.

The criteria for evaluating database watermarking schemes usually include
robustness, embedding capacity and imperceptibility. The robustness of a
scheme refers to the ability of the data owner to extract watermark informa-
tion from the data even after the watermark has been subjected to multiple
attacks; the embedding capacity refers to the number of bits of watermark that
can be embedded in a given amount of data; and imperceptibility usually refers
to the fact that the added watermark information does not cause significant
distortion to the data, i.e. the user does not experience any change before or
after the watermark. These three metrics influence and constrain each other.
For example, the fewer the number of watermark bits embedded in the data,
the greater the imperceptibility of the watermark; and the fewer the number
of watermark bits, the greater the likelihood that an attacker will corrupt the
watermark through an attack, and the less robust the watermarking scheme.
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The robustness of watermarking can be enhanced by simply increasing
the watermarking capacity, but this will result in a severe degradation of the
imperceptibility of the watermark. For this purpose, we propose a dynamic,
randomly distributed watermarking scheme for relational data, building on
existing schemes. Without changing the watermarking capacity, we embed
the watermarked bits into the relational data in a more randomly distributed
manner, embedding multiple watermarks in selected tuples, and embedding
an unequal number of watermarks in each tuple. This approach improves
the watermark capacity and watermark robustness. The scheme includes
watermark embedding, watermark detection, watermark integrity detection
algorithm and data recovery algorithm.

The main contributions of this paper are: (1) Improving the randomness
of watermark embedding and increasing the attack resistance of watermark
by embedding an unequal number of watermark information in different
tuples. (2) By randomly selecting different proportions of multiple attributes
on different tuples to embed the watermark, we increase the randomness of
the watermark distribution. In addition, we improve the accuracy of water-
mark detection, which is achieved by discarding the attacked bits during
the watermark extraction process. Moreover, we select partitions with com-
plete watermark information for watermark extraction, which enhances the
performance of the detection algorithms.

2 Relation work

In the past, researchers have used watermarking techniques to protect the
copyright of various multimedia data, e.g. images, video and audio. Based
on the digital watermarking of multimedia data, researchers have proposed
digital watermarking schemes for relational data, taking into account the
characteristics of relational data.

In 2002, Agrawal and Kiernan proposed the first watermarking scheme
for relational data[7]. The authors used a key to select special bits of certain
attributes and embed some special values into them, which together form the
watermark. After that, Sion et al. proposed a different watermarking scheme[8].
This scheme uses a key to rearrange and repartition the tuples to embed the
watermark information by changing the distribution characteristics of the data.
However, this scheme has poor resistance to tuple deletion attacks. In 2003,
Prof. Niu et al. proposed a scheme to embed meaningful strings into data[9].
This scheme embeds a matching relation in the selected attribute value of the
selected tuple, and the value of the watermarked bits is confirmed by verifying
the existence of the matching relation when detecting the watermark. In 2008,
Shehab et al. reduced digital watermarking to an optimization problem with
constraints and proposed a digital watermarking scheme using genetic algo-
rithms to reduce data distortion[10]. In 2009, Xiang et al. designed a relational
database watermarking scheme which can resist primary key attacks. The
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authors used Hemming codes and majority voting to eliminate the interference
caused by the attack and enhance the robustness of the scheme.

These intentionally introduced special values will inevitably cause a cer-
tain degree of distortion to the data and in some cases will not meet the
usability requirements. In 2006, Zhang et al. proposed the first reversible
relational database watermarking scheme(HSW), which constructs histograms
by exploiting the differences between attribute values and extends the his-
togram technique to achieve reversibility of database watermarking[11]. In the
same year,Zhang et al. designed a reversible watermarking scheme for rela-
tional data by exploiting the reversible nature of exclusive or operations[12].
However, this technique cannot be used against attacks which target large
numbers of tuples. In 2008, Gupta and Pieprzyk used the differential extended
watermarking technique DEW to achieve reversible watermarking of relational
data[13], but the robustness of this scheme is poor. In 2010, Farfoura and Horng
proposed a prediction error extended watermarking technique (PEEW)[14],
where the authors used a predictor to select the watermarked bits and fea-
tures in the embedded data. In 2013, K. Jawad et al. first used genetic
algorithms in database watermarking and designed a reversible watermark-
ing schemebased on genetic algorithms and differential extended watermarking
techniques (GADEW)[15]. The scheme uses genetic algorithm to select the
optimal attributes to reduce data distortion and increase the watermarking
capacity, which improves the robustness of the scheme. In 2015, Iftikhar et al.
used genetic algorithms and a data analysis method from information theory
to deal with the watermarking problem (RRW)[16]. They used genetic algo-
rithms to generate optimal watermarks to reduce data distortion. However,
the generation of the optimal watermark requires a large amount of compu-
tation time, and therefore the efficiency of the algorithm is too low when
dealing with large amounts of data. In the same year, Franco-Contreras J et
al. proposed a robust watermarking algorithm based on circular histograms by
using circular histograms to modify data in plain text domains[17]. In 2017,
Imamoglu M B et al. proposed a new reversible watermarking scheme for rela-
tional data (FFADEW) by combining differential extension techniques and
the Firefly algorithm (FFA)[18]. The Firefly algorithm is another evolutionary
algorithm that the authors use to select the optimal attribute value pairs to
achieve minimal distortion. In 2018, Hu et al. proposed a genetic algorithm
based histogram shift watermarking scheme (GAHSW)[19]. The authors used
a genetic algorithm to partition the tuples and then used a histogram shift
method to embed the watermark. This method improves the robustness of
watermarking while reducing data distortion. In 2019, Li et al. proposed a
low-distortion reversible database watermarking method based on histogram
gaps (HGW)[20]. The method reduces data distortion without weakening
the robustness of watermarking. Compared to GAHSW, this method reduces
data distortion without weakening watermarking robustness. In 2020, Li et
al. improved the histogram shifting scheme by proposing a non-redundancy
shifting-based method. It changed the histogram shifting method to reduce
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the distortion caused by watermarking and slightly improve the usability of
the data[21].In 2022, Xiang et al. proposed a robust watermarking algorithm
based on order-preserving encryption and circular histograms[22]. Based on the
circular histogram watermarking technique, the authors used order-preserving
encryption (OPES) to encrypt the data, avoiding the risk of privacy leakage
without affecting the database in normal access.

The above digital watermarking schemes for relational data show that
researchers in relational data are striving to find a balance between the three
evaluation criteria of watermarking, improving the robustness and embedding
capacity of watermarking, and reducing the impact of watermarking on data,
i.e., improving the imperceptibility of watermarking. In this paper, we propose
a dynamic, randomly distributed watermarking scheme for relational data that
improves the robustness of watermarking without changing the watermarking
capacity, to address the problem that the robustness of existing watermarking
schemes and the watermarking capacity cannot be combined.

3 Preliminaries

3.1 XOR Encryption

The Exclusive Or(xor) operation is a common tool in cryptography and his
mathematical notation is ⊕. It is often used in encryption algorithms because
this operation is reversible, i that is:

A⊕B = M,M ⊕B = A (1)

In Equation 1, A is the plaintext, B is the key, and M is the ciphertext. Based
on this feature, the owner of the data can combine the watermark informa-
tion with the original data for the purpose of embedding and extracting the
watermark in the database. Furthermore, as the operation is reversible, the
original data can be recovered by simply repeating the watermark embedding
operation.

3.2 One-way hash function

The one-way hash function H() is a tool in cryptography for processing a
message M of any length into a value h of fixed length, i.e. h = H(M). It has
the following characteristics: i) given M , it is easy to compute h, ii) given h,
it is hard to compute M such that H(M ′) = h, and iii) given M, it is hard
to find another message M ′ such that H(M) = H(M ′). SHA is currently a
dominant one-way hash function.

The Message Authentication Code (MAC) is a one-way hash function that
depends on a key. Let H(K,PK) be a MAC, a box In our scheme, we use the
primary key r.key of the tuple and the key as input to the MAC function, and
the resulting result is used to determine the location of the watermark. The
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Fig. 1: System architecture

specific function used is:

H(K,PK) = H(PK|H(K|PK)) (2)

where ’|’ represents concatenation.

4 SCHEME

This section describes a reversible watermarking scheme that can be used on
relational databases. The main structure of the scheme is shown in Figure 1.

The scheme mainly includes the following five main stages: (1) preprocess-
ing stage; (2) watermark embedding stage; (3) watermark integrity detection
stage; (4) watermark extraction stage; (5) data recovery stage. The watermark
preprocessing stage is mainly to do some preparation work before embedding.
The first step is to encode the copyright identifier of the data owner into a
watermark string that can be embedded in the database.The second step is to
filter the attribute columns that are suitable for embedding the watermark.
The last step is to generate a random function that will be used to deter-
mine the proportion of watermarks embedded in each tuple. The main task of
the watermark embedding phase is to embed the watermark information into
the data according to the key, to obtain the database with the watermark,
and to return the auxiliary data. The watermark integrity check phase is to
check the water-mark integrity of each partition. The watermark extraction
phase extracts the watermark information from the stolen watermarked data
to achieve the problem of copyright proof. The data recovery phase removes
the watermark from the data and recovers the original data.

Definition 1. Watermark Integrity,WI(Watermark Integrity), is an indi-
cation of the degree of integrity of the watermark for each partition, and to a
certain extent reflects the degree to which the data has been compromised.to
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a certain extent, reflects the degree to which the data has been compromised.
WI = [f1, f2, f3, , fN ](fi ∈ 0, 1).

We will select only one of the partitions with a full watermark for detection
during watermark extraction. The use of watermark completeness improves
the efficiency of watermark detection and ensures that the data owner can still
extract the complete watermark from the data in the case of a serious attack
on the database.

4.1 Preprocessing

Before embedding the watermark, the data needs to be preprocessed. The main
tasks in the preprocessing phase are: (1) selecting the appropriate attributes
for watermark embedding; (2) creating watermark information for embedding;
and (3) determining a random function that determines the proportion of
attributes to be watermarked for each tuple.

4.1.1 Attribute selection

Not all attributes are suitable for embedding attributes, and for some
attributes, small changes can have a significant impact on data quality. We
first select multiple attribute columns from the database as candidate attribute
columns that can be used as identifiable features, and embedding a watermark
in an attribute has less of an impact on data quality. The candidate attributes
are then reordered and numbered in ascending order, and the reordering
enhances robustness against attribute attacks.

4.1.2 Watermark Creation

Watermark information is not only a carrier of the data owner’s copyright
information, but also evidence of the owner’s copyright claim. The unique
identification information is converted into a binary sequence and embedded
as a watermark in the data. We choose to embed the same watermark in
different partitions, so that only the partition with the most complete water-
mark is selected for copyright declaration when the watermark is detected.
The watermark generation formula is as follows:

W = Info xor Rand (3)

Info is the identifier of the data owner and Rand is the random number
generated. By encrypting Info with an alias, the data owner’s information
can be effectively prevented from being leaked.

4.1.3 Determine random function

we embed an unequal number of watermarks in each tuple, the number of
watermarks embedded in each tuple is chosen by the F function. The input to
the F function is the tuple’s primary key and key, and the output is a random
integer of [0,Max] to ensure that the number of watermarks embedded is
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random. The data owner can choose any generation function, in this case the
following function is chosen:

F (x, y, z) = H(x|H(x|y))%z (4)

Table 1 The meaning of the symbols in the scheme.

Symbol Description Symbol Description

DO Original database DW Databases with embedded water-
marks

DR Restored database DAW Databases under attack

1/ω Proportion of attribute embedding λ Number of data partitions

σ Random number greater than the
length of the watermark

1/η Proportion of tuples with water-
marks embedded

ξ Length of watermarked informa-
tion

ν Number of bits in the lowest signif-
icant bit

KP Data partition key KS [i] Watermark embedding key for par-
tition i

r Example tuple of data Aj The jth attribute of the data

bit[k] The kth bit of the LSB W [l] kth bit of watermark information

bitw[k] Extraction of the kth bit of the
LSB

WD[l] The lth bit of the detected water-
mark

Max Proportional limit for embedding
watermark attributes

LSB The low significant bit of the data

mp Auxiliary data mpw Auxiliary data for the data to be
tested

mp[i] Auxiliary data for partition i Aj jth attribute of the data

r.key Primary key for tuple r count[l]Array of majority vote marks

WI Marker array bits Bits to be embedded

fi Markers for partition i bitsl Information about the water-
marked bits stored

4.2 Watermark embedding phase

The main task of the watermark embedding phase is to embed the watermark
in the database in an invisible way, while ensuring data availability. After
embedding the watermark, the data owner stores the auxiliary data bitsl and
uses them during the watermark integrity check, watermark extraction and
data recovery phases. The information stored in the auxiliary array mp con-
sists of the original data bit value bit[k] and the subscript position l of the
watermark. bit[k] is selected as shown in Figure 2, and bits are generated by
selecting one of the LSB and dissociating bit[k] with W [l]. bitls are generated
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by processing the bits, and the final stored value bitls is calculated according
to the following equation5.

bitsl = l + σ ∗ bits (5)

l is the embedded watermark is the subscript position of W . σ is any random
number greater than the watermark length ξ. When extracting the stored
information, if the value of bitsl is greater than ξ , the value of bits is 1,
otherwise it is 0. When the value of bitsl is less than ξ, the value of l is bitsl,
otherwise l is calculated by Equation 2.

l = bits− σ ∗ bits (6)

The specific watermarking process is shown in algorithm 1: Here we take an

Algorithm 1 Watermark embedding algorithm

Input: D,KP ,KS ,W
Output: DW ,mp
1: for each tuple r ∈ D do
2: i = H(r.key,KP ,MSB) mod λ
3: if H(r.key,KS [i]) mod η =0 then
4: for each Aj in r do
5: ω=F(r.key,KS [i],Max)
6: if H(r.key,KS [i],MSB) mod dωe = 0 then
7: Windex l = H(r.key,KS [i]) mod ξ
8: bitindex k = H(r.key,KS [i]) mod υ
9: bits = bit[k] xor W [l]

10: bitsl = l + σ ∗ bits
11: Stroe(mp[i], bitsl)
12: Update(bit[k], bits)
13: end if
14: end for
15: end if
16: end for
17: return DW ,mp

arbitrary tuple r as an example. Line 2 determines the partition of r. The
primary key of the tuple and the key KP are hashed and then modulo the
partition of r. Line 3 determines whether the tuple is watermarked or not, and
1/η is the parameter that controls the tuple embedding ratio. Line 4 deter-
mines for each attribute whether the attribute is embedded in a watermark
or not. Lines 5 and 6 generate a random number, and attributes in the tuple
with a ratio of 1/ω will be watermarked, with the value of ω determined by
the key, the primary key of the tuple, and Max. This approach increases the
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watermarking capacity and the randomness of the watermark embedding. If
you do not increase the watermark capacity, simply adjust the size of the Max
parameter. Line 7 selects one bit from the watermark string as the embed-
ded bit, ν being the length of the watermark. Line 8 selects the bit position
for embedding, ξ is the number of least significant bits. Line 9 combines the
watermarked bits with the original information by means of an exception or
operation to generate a new bit. Line 10 combines the embedded watermark
bits with the subscript of the watermark where it is located to generate the
auxiliary data bitsl with the embedded watermark and watermark position
information via Equation 1. store(mp[i], bitsl) means to store the bitls into the
auxiliary array element mp[i], mp[i] represents the auxiliary data for partition
i. Update(bit[k], bits) in line 10 updates the kth bit of the least significant bit
to bits. Finally, the algorithm returns the embedded watermarked data DW

and the auxiliary data mp.

4.3 Watermark integrity detection Phase

To ensure that the owner of the data can detect its watermark in case of a
serious attack, we check the watermark integrity of all partitions. The water-
mark completeness check uses the Check(mpW [i],mp[i]) function to check the
watermark completeness of partition i. This function checks ξ watermark posi-
tions in the ith partition. If the function detects at least one occurrence of
watermark information in ξ watermark positions, the watermark information
of the partition is considered to be complete and returns 1; otherwise it returns
0. We have discarded the attacked watermark bits in the watermark extraction
stage, so when each watermark bit is detected at least once in partition i, the
correct result can be obtained by majority voting mechanism. When extract-
ing the watermark, the watermark is extracted for the partition with complete
watermark information. The watermark integrity checking algorithm is shown
in Algorithm 2.

Lines 1 to 8 of Algorithm 2 are similar to the water-mark embedding algo-
rithm. Only line 3 has an additional line to determine the partition i to which
tuple r belongs. If the watermark integrity token WI[i] of partition i is already
1, the partition is no longer checked. Line 9 calculates the value of bitwsl using
equation 1. Lines 10-12 determine if bitwsl is stored in mp[i], and if so, store
it in mpw[i]. Lines 13-15 determine the length of mpw[i], and if the length
is an integer multiple of ξ, perform a Check(mpw[i],mp[i]). This can greatly
improve the detection efficiency by periodically checking whether the water-
mark is complete. When the token array WI[i] of partition i is set to 1, no
subsequent tuples of that partition are checked. The algorithm only detects
all tuples when the data does not contain watermark information. When all
partitions have a marker array of 0, the data does not contain any copyright
information.
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Algorithm 2 Watermark integrity checking algorithm

Input: DW ,KP ,KS ,mp
Output: WI
1: for each tuple r ∈ DW do
2: i = H(r.key,KP ) mod λ
3: if H(r.key,KS [i]) mod η =0 then
4: for each Aj in r do
5: ω = F(r.key,KS [i],Max)
6: if H(r.key,KS [i],MSB) mod dωe = 0 then
7: Windex l = H(r.key,KS [i]) mod ξ
8: bitindex k = H(r.key,KS [i]) mod υ
9: bitwsl = l + σ ∗ bit[k]

10: if bitwsl in mp[i] then
11: Store(mpw[i], bitwsl)
12: end if
13: if mpw[i].length%ξ = 0 then
14: WI[i] = Check(mpw[i],mp[i])
15: end if
16: end if
17: end for
18: end if
19: end for
20: return WI

4.4 Watermark extraction stage

The owner of the data extracts the watermarked information from the stolen
data for the purpose of copyright proof. This requires a higher degree of robust-
ness in watermarking. Even in the case of a serious attack on the data, the data
owner is still able to extract the complete watermark information from the
data. We use majority voting in the watermark extraction process to reduce
the impact of the attack and improve the robustness of the watermark extrac-
tion, the results of which are shown in Table 2. The watermark extraction
algorithm is shown in Algorithm 3.

Table 1: Majority Voting.

Voting result 0 0 1 1

Result1 0 0 0 1

Result2 0 0 1 1

Result3 0 1 1 1
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Algorithm 3 Watermark extraction algorithm

Input: DW ,KP ,KS ,mp,WI
Output: WD

1: get fi = 1, fi ∈WI
2: Initialize count = 0
3: for each tuple r ∈ D do
4: i = H(r.key,KP ) mod λ
5: if i == fi then
6: if H(r.key,KS [i]) mod η =0 then
7: for each Aj in r do
8: ω = F(r.key,KS [i],Max)
9: if H(r.key,KS [i],MSB) mod ω = 0 then

10: Windex l = H(r.key,KS [i]) mod ξ
11: bitindex k = H(r.key,KS [i]) mod υ
12: Get(mp[i], bitsl)
13: bits = (bitsl − l)/σ
14: bitws = bits xor W [l]
15: WD[l] = bitW [k] xor bitws
16: if WD[l] = 1 then
17: count[l] + +
18: else
19: count[l]−−
20: end if
21: end if
22: end for
23: end if
24: end if
25: end for
26: for n=0 to ξ − 1 do
27: if count[n] > 0 then
28: WD[n] = 1
29: else
30: WD[n] = 0
31: end if
32: end for
33: return WD

In line 1, a partition with complete watermark information is selected,
and only the tuples of this partition are watermarked next. Line 2 initializes
the count variable. Lines 3 and 4 determine the partition to which the tuple
belongs. Line 6 determines whether the tuple is a tuple with a watermark.
Lines 6 to 11 search for the location of the watermark embedding. Line 12
Get(bits,mp[i]) extracts the bitls from the auxiliary data of partition i, mp[i].
Line 13 calculates the value of the bits stored in the bitsl. Line 14 calculates the
embedded watermark information. If WD[l] is 1, the count value is added to 1,
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if WD[l] is 0, the count value is subtracted from 1. Lines 25 to 31 calculate the
final vote result and finally return the detected watermark information WD.
WD is encrypted and is decrypted using key to get Info. Info is the copyright
information of the owner of the decrypted data.

4.5 Data recovery phase

When the data after watermarking does not meet the demand, the data owner
licenses the key and supporting files to the data user and the original data
is recovered using the key and data recovery algorithm. The data recovery
algorithm is shown in Algorithm 4.

Algorithm 4 Data recovery algorithms

Input: DW DAW ,KP ,KS ,mp,W
Output: DR

1: for each tuple r ∈ D do
2: i = H(r.key,KP ) mod λ
3: if H(r.key,KS [i]) mod η =0 then
4: for each Aj in r do
5: ω = F(r.key,KS [i],Max)
6: if H(r.key,KS [i],MSB) mod dωe = 0 then
7: Windex l = H(r.key,KS [i]) mod ξ
8: bitindex k = H(r.key,KS [i]) mod υ
9: Get(bitsl,mp[i])

10: bits = (bitsl − l)/σ
11: bitwsl = l + bit[k]
12: if bits in mp[i]] then
13: bitws = bits xor W [l]
14: Update(bitW [k], bitws)
15: end if
16: end if
17: end for
18: end if
19: end for
20: return DR

Lines 1 to 8 are the same as the watermark embedding algorithm. Line 9
gets the value of the stored bitsl from the auxiliary array. Lines 11 and 12
compute the values of bits and bitwsl. If the bitwsl is in the auxiliary data
mp[i], line 13 is an alias to the bits to get the original bitws. Line 14 uses
Update(bitW [s], bitws) to update the value of bitW [k] to bitws, removing the
watermark information. Finally, the recovered data is returned to DR.
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5 Experimental analysis

This section evaluates various aspects of the scheme. The aim of the
experiments is to verify the accuracy and robustness of the scheme. The
experiments include: (1) watermark capacity and data availability exper-
iments (2) robustness experiments, and (3) algorithm performance exper-
iments. The experimental environment is: 2.0 GHz Intel Core CPU, 16
GB RAM, Ubuntu 20.04LTS operating system, IDEA2021.1.3 development
environment, and MariaDB 10.3.29 database. The experimental data were
obtained using the ”Forest Cover” dataset provided by the University of
California(kdd.ics.uci.edu/databases/covertype/covertype.html). The dataset
contains a total of 581012 tuples and 54 attributes. We selected 100000 data
items and 10 attributes from this data set and transformed them to be the
experimental data. Experimental parameters: number of data tuples n =
100000, number of data partitions µ= 10, watermark tuple embedding ratio
1/η= 1/5, F-function parameter Max = 5. The experimental results are the
average of 5 experiments.

5.1 Watermark capacity and data availability experiment

Watermarking capacity is a measure of a water-mark’s resistance to attack.
The more watermarked bits of information in a given amount of data, the more
resistant the watermark will be to malicious attacks. At the same time,the
larger the watermarking capacity, the greater the distortion of the data.

5.1.1 Data availability experiments

Watermarking inevitably causes distortions in the data, and the larger the
watermark, the more severe the distortion. Therefore, we compared the statisti-
cal information (mean and variance) of the data before and after watermarking.
As shown in Table 3, the effect of water-marking on the mean value of the data
is on the order of 1 in 1000. Only the A3 attribute showed the largest change,
with an increase in mean value of 0.0055. The effect on variance was also on
the order of 0.01, with the largest effect on the A6 attribute reaching 0.012.

5.1.2 Watermark capacity experiment

If only one bit of watermark information is embedded in each tuple, then
the number of watermarked tuples is the capacity of the watermark, i.e. the
watermark capacity is N/ν. Using the control variable method, Figure 2 shows
the change in the number of watermarks embedded when the number of tuples
is changed at 1/η = 1/5. Figure 2 shows the change in the number of embedded
watermark bits by varying the value of 1/η when the number of tuples is
100000. Since our scheme embeds watermarks in the attributes of the selected
tuple 1/η ratio, and the value of is randoml generated by the F function.
Mathematical reasoning shows that there are about N * (lnν + C)/(η*Max)
number of bits of information embedded in the data, (C is the Euler constant).
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Table 2: Effect on Various Statistical Measure.
(Mean µD, Variance σD, Mean µDW , Variance σDW )

Features D DW D DW

A1 28.6204 28.6205 5.3535 5.3550

A2 1.3816 1.3823 1.0770 1.0782

A3 0.1180 0.1235 0.0042 0.0069

A4 2.6058 2.6063 4.1118 4.1122

A5 2.3524 2.3542 0.1817 0.1828

A6 33.4425 33.4427 315.7284 315.7401

A7 2.1823 2.1848 0.0438 0.0464

A8 2.2545 2.2567 0.0277 0.0296

A9 1.3930 1.3933 0.0972 0.0985

A10 35.8962 35.8962 317.3522 317.3572

Figure 4 shows the experimental results for the specific number of watermarks
for different tuples. The experimental results are consistent with the inference
results within the error tolerance.
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Fig. 2: Watermark capacity analysis1
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Fig. 3: Watermark capacity analysis2

5.2 Robustness experiments

In this section, a number of different types of attacks are performed on the
watermarked data. These attacks include (1) tuple addition attacks, (2) tuple
modification attacks, and (3) tuple deletion attacks. We also compare our
scheme with several recent reversible database watermarking schemes, such as
DEW, GADEW, PEEW, RRW. Since the watermark detection rate criteria
of GAHSW and HGW schemes are not the same as the previous ones, this
scheme cannot be compared with them.

5.2.1 Tuple adding attacks

In this type of attack, the attacker adds a number of new tuples to the water-
marked data set in an attempt to interfere with the watermark detection.
The attacker may insert a number of randomly generated tuples into the
watermarked data.

Watermark detection: As shown in Figure 4, when the number of tuples is
increased by the same amount as the original data, the detection accuracy of
our scheme still remains 100%. At this point, the detection accuracy of DEW
is already less than 88% and the accuracy of PEEW is only 98%.

Data recovery: As shown in Figure 5, after inserting 100% of the tuples,
100% of the watermarked data can be recovered accurately. This is because
the tuple addition attack does not destroy any original data or watermark, and
the hash function and auxiliary data can pinpoint the location of the added
watermark.
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Fig. 4: Watermark detection accuracy after
tuples alteration attack
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Fig. 5: Watermark detection accuracy after
tuples alteration attack
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5.2.2 Tuple alteration attacks

In this type of attack, the attacker changes some tuples at random. Here we
perform a bit-inversion attack on all attributes of a randomly selected tuple
to interfere with the watermark detection.

Watermark detection: As shown in Figure 6, when 90% of the tuples are
alterated, our scheme still maintains 100% accuracy in watermark detection,
while only RRW maintains 100% accuracy in the other schemes.

Data recovery: As shown in Figure 7, it is almost impossible to perform a
complete data recovery on data knowing that it has been subjected to a tuple
alteration attack. The experimental results are generally consistent with the
results of the tuple deletion attack, and the scheme is still able to fully recover
data that has not been attacked.
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Fig. 6: Watermark detection accuracy after
tuples alteration attack
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Fig. 7: Data recovery accuracy after
tuples alteration attack

5.2.3 Tuple deletion attacks

In this type of attack, the attacker removes a certain number of tuples at
random, trying to interfere with watermark detection by removing tuples
containing watermark information.

Watermark detection: As shown in Figure 8, when 90% of the tuples are
deleted, our scheme is still able to maintain 100% watermark detection accu-
racy. When a large number of tuples are deleted, the detection accuracy
of GADEW, PEEW, GAHSW and other schemes, except RRW, decreases
significantly.

Data recovery: As can be seen from Figure 9, the watermarked data can
be recovered accurately. This is because the tuple deletion does not destroy
the remaining part of the original data, and the remaining data can still be
watermarked and restored to its original state.
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Fig. 8: Watermark detection accuracy after
tuples deletion attack
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Fig. 9: Data recovery accuracy after
tuples deletion attack
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5.3 Performance experiments

In this section, we only compare the watermark embedding operation with
the database read/write time. Since the watermark integrity checking and
watermark extraction algorithms are too short, the time complexity of the data
recovery algorithm is identical to that of the watermark embedding algorithm
and will not be compared here. We compare the operation of reading n tuples
and then updating n/5 with the watermark embedding operation. As shown in
Figures 10 and 11, for tuple n = 10,000, the watermarking operation results in
an additional 26% execution time compared to database reads and writes. This
additional execution time is due to the JVM virtual machine initialization,
data partitioning, selecting attributes, embedding the watermark and storing
auxiliary data. However, this percentage of time decreases as the number of
tuples increases, dropping to 14% at tuple n = 20,000. As the number of tuples
continues to increase, the extra time share decreases further.
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6 Experimental analysis

Aiming at the problem that the watermark information extracted under seri-
ous attack is incomplete, a randomized reversible watermarking scheme based
on LSB modification is proposed Watermark embedding algorithm, watermark
integrity checking algorithm, watermark detection algorithm and data recov-
ery algorithm are designed The watermark capacity is improved by embedding
multiple watermarks in the selected tuples, and the randomness of water-
mark information distribution is increased by controlling different tuples to
embed unequal proportion of watermarks When extracting the watermark, the
accuracy of water-mark detection is improved by discarding the attacked bits
Finally, through the experimental analysis of the algorithm performance, it
can be seen that our scheme can resist serious tuple attack and the watermark
capacity Compared with dew, gadew, RRW, peew and RRW, it is proved that
this scheme has stronger anti attack ability and can meet the requirements of
most application scenarios.
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