Targeting the Post-Synaptic Proteome in Alzheimer Disease with Psychosis

Josh Krivinko
University of Pittsburgh

Michael DeChellis-Marks
University of Pittsburgh

Lang Zeng
University of Pittsburgh

Peihao Fan
University of Pittsburgh

Oscar Lopez
Departments of Neurology and Psychiatry, University of Pittsburgh

https://orcid.org/0000-0002-8546-8256

Ying Ding
University of Pittsburgh
https://orcid.org/0000-0003-1352-1000

Lirong Wang
University of Pittsburgh

Julia Kofler
University of Pittsburgh

Matthew MacDonald
University of Pittsburgh

Robert Sweet (sweetra@upmc.edu)
University of Pittsburgh
https://orcid.org/0000-0001-9154-9709

Article

Keywords: Alzheimer's Disease, Psychosis, Post-synaptic Density, Proteomics: Systems Pharmacology

Posted Date: April 4th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1514870/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Individuals with Alzheimer Disease with psychotic symptoms (AD + P) experience more rapid cognitive and functional decline, and have reduced indices of synaptic integrity, relative to those without psychosis (AD-P). We hypothesized the postsynaptic density (PSD) proteome is altered in AD + P relative to AD-P, and that this proteomic signature could be used to nominate novel pharmacotherapies. Liquid-Chromatography/Mass Spectrometry analysis of PSDs from dorsolateral prefrontal cortex of AD + P, AD-P and cognitively normal elderly subjects. The PSD proteome signature of AD + P was characterized by lower levels of proteins regulating Rho GTPases and the actin cytoskeleton. Potential novel therapies identified included the C-C Motif Chemokine Receptor 5 inhibitor, maraviroc. AD + P is characterized by broad changes in the PSD proteome in prefrontal cortex. Further testing of potential therapies for their ability to reverse these changes and protect against psychotic-like behaviors in model systems is warranted.

Introduction

Psychotic symptoms affect ~ 40–60% of individuals with Alzheimer Disease (AD) 1. AD subjects with psychosis (AD + P) experience more rapid cognitive decline compared to AD subjects without psychosis (AD-P) 1–4. Greater cognitive dysfunction in AD + P is present in the earliest disease stages, preceding psychosis onset 2,3. Current treatment for psychosis in AD with antipsychotics have limited efficacy, do not mitigate the more rapid cognitive decline, and confer excess mortality 5. As a result, AD + P is associated with worse outcomes than AD-P: aggression 6, caregiver distress 7, functional decline 8, institutionalization 9, and mortality 10. Thus, there is strong motivation to identify the biology underlying psychosis risk in AD in hopes of developing a targeted, more efficacious intervention.

The risk for psychosis in AD is to a large extent genetically determined, with an estimated heritability of 60%, indicative of a distinct biologic vulnerability 4,11,12. Because it has long been recognized that synapse loss is the strongest neuropathologic correlate of cognitive decline in AD,13,14 it has been hypothesized that the vulnerability to AD + P arises from greater synaptic impairment in AD + P than AD-P. Prior studies that compared AD + P to AD-P subjects on a number of indirect markers of synapse integrity, including gray matter volumes, cerebral glucose utilization or blood flow, or gray matter concentrations of the membrane breakdown products, glycerophosphoethanolamine and glycerophosphocholine, have found support for this hypothesis across neocortical, but not medial temporal regions (reviewed in 15). Most recently, we examined gray matter levels of a limited panel of 190 synaptic proteins in individuals with AD + P, finding reductions in canonical postsynaptic density (PSD) proteins relative to AD-P subjects 16. These differences exceeded that which could be accounted for by any differences in neuropathology burden between the groups 16, or by reduction in the corresponding mRNA transcripts due to greater excitatory neuron loss in AD + P 17.
None of these prior studies have directly examined the PSD in AD + P. We therefore conducted a proteomic analysis of PSD fractions from dorsolateral prefrontal cortex of a large group of individuals with AD + P and AD-P, and a comparison group of cognitively normal elderly subjects. We found profoundly reduced levels of PSD proteins in AD + P relative to both AD-P and comparison subjects. PSDs from AD + P subjects had lower levels, relative to AD-P, for regulators of Rho GTPases and other proteins which regulate the actin cytoskeleton. Unlike AD + P, AD-P showed no global reduction of PSD protein levels relative to comparison subjects. Although, PSD protein changes in AD + P and AD-P relative to comparison subjects were highly correlated, the PSD of AD-P subjects was enriched, relative to comparison PSDs, for increased levels of proteins involved in protein isomerization and protein quality control, suggesting novel mechanisms of synaptic resilience in the AD-P cohort. Finally, we used the PSD protein level differences between AD + P and AD-P to nominate novel potential candidates for the treatment of AD + P.

Results

PSD abundance in AD with and without psychosis

To explore whether psychosis status globally affected the PSD in AD, we first evaluated the association of AD + P with total gray matter yield of PSD protein (Figure S1). Mean µg PSD/mg of gray matter was significantly reduced in AD + P vs AD-P (t = -2.52 df = 119 p = 0.013). PSD yield in AD + P was lower, and in AD-P higher, than in the elderly cognitively normal subjects, although neither of these latter differences was statistically significant.

PSD protein levels in AD with and without psychosis

Adjusted PSD protein levels are shown in Fig. 1. There was a significant shift of almost all proteins to lower levels in AD + P in comparison to AD-P (t = -104, df = 1603, p < 2x10^{-322}). We undertook several additional analyses to evaluate the robustness of this association. Down-regulation of protein levels in AD + P persisted when examining either the subset of 51 individuals who were included in our prior report of reduced levels of a targeted panel of 190 synaptic proteins16, or the remaining 55 AD subjects who were newly evaluated (Figure S2A-C). Findings also persisted when evaluating the larger set of proteins resulting when using peptides quantified in at least 80% of samples (Figure S2D). We previously described excess reduction of excitatory neuron proportion in AD + P relative to AD-P in a cohort of 80 subjects, 76 of whom overlapped with the current analysis17. In those 76 subjects, including excitatory neuron proportion as a covariate did not eliminate the association of AD + P with lower PSD protein levels (Figure S2E-F).

Despite the overall shift in PSD protein abundance in AD + P relative to AD-P, no individual protein level was significantly reduced at a false discovery rate < 0.05 (Table S1). Functional annotation analysis of the 461 PSD proteins nominally significantly reduced in AD + P (p < 0.05) relative to a background of the 1604 proteins that were quantified revealed strong enrichment for regulators of the actin cytoskeleton, a
critical determinant of post-synaptic dendritic spine structure and function (Table 1). These included regulators of Rho GTPase signaling such as Pleckstrin homology domain containing Rho guanine nucleotide exchange factors (RhoGEFs) and Rho GTPase activating proteins (RhoGAPs). Additionally, a network of kinases that regulate these regulators and actin binding proteins were enriched in the set of proteins nominally significantly reduced in AD + P (Figure S3). Choice of a more liberal threshold for peptide inclusion (e.g. present call ≥ 80%) did not alter the functional annotation findings (Table S2).

The reduction in PSD protein abundance in AD + P relative to AD-P reflected a reduction of PSD protein levels in AD + P relative to elderly cognitively normal subjects, whereas there was no significant difference in PSD protein levels in AD-P relative to the elderly cognitively normal group (Fig. 2A-B). The protein whose abundance was most altered between the AD and comparison subjects was APP (Table S3), due solely to the increased levels of two peptides found within the Aβ sequence (RHDSGYEVHHQK and KLVFFAEDVGSNK). Overall, the protein alterations present in the two AD groups relative to elderly cognitively normal subjects were highly correlated (Fig. 2C). Nevertheless, functional annotation of the proteins that differentiated AD + P or AD-P from elderly cognitively normal subjects revealed differential patterns of enrichment. PSD proteins that differentiated AD + P from elderly cognitively normal subjects were primarily enriched for downregulated proteins involved in control of protein translation and synaptic proteins. PSD proteins that differentiated AD-P from elderly cognitively normal subjects were enriched for proteins involved in protein isomerization and protein quality control, with most of these having elevated levels in AD-P relative to comparison subjects (Table S4).

Relationship to genetic risk for AD with psychosis

We recently reported genome-wide gene-based tests of association with psychosis in AD. 446 of the 461 PSD proteins that were nominally significantly reduced in AD + P had available corresponding gene-based tests of association (Table S5). Of these 446 genes whose proteins were assayed, 25 genes which were nominally altered at the protein level in AD + P also exhibited at least nominal evidence of genetic association with AD + P relative to AD-P (Table 2). Notable among these is ENPP6, a gene containing one of the two loci that were genome-wide significantly associated with psychosis risk in AD. Also of interest were the actin binding protein genes SYNPO, SYNE1, ALDOA, and VPS16.

Predicted drug activity against the AD + P PSD protein network.

We identified 50 gene knockouts in which the resulting changes to the transcriptome were correlated with the PSD protein signature of AD + P (Table S6). For these genes, we further identified 32 drugs targeting them, 8 of which showed the desired effect (inhibitor/antagonist or positive regulator) at the targeted gene (Table 3). To further verify the potential post-treatment effect of the nominated drugs on PSD protein levels in AD + P, two additional analyses were performed. First the correlation of the regulator genes knockdown gene expression signature with just the 461 PSD proteins nominally significantly reduced in AD + P was assessed to ensure that the knockdown signature was not driven by the least dysregulated proteins. This analysis identified that MTOR had a correlation with the top 461 proteins that
was opposite (negative) to its overall correlation with the 1604 proteins, excluding it, and its positive regulator, pimecrolimus, from further consideration.

Second, we undertook to validate the gene signatures of the remaining candidate drugs. Of these, leronlimab, ibalizumab and epigallocatechin gallate were not found in the LINCS database for evaluation of their induced transcriptome expression signatures, and procaine was not tested in CNS cells. The remaining three medications, fostamatinib, odanacatib, and maraviroc all demonstrated transcriptome expression signatures that were negatively correlated with the AD + P PSD protein signature (Signed Jaccard Indexes of -0.0056, -0.0011, and -0.0071, respectively, Table S7). These results compare favorably to those of our previous study that screened ~ 4000 drug-disease pairs, in which the average Signed Jaccard Index for drugs tested in a model of the disease for which it is indicated was -0.0039. The current results for maraviroc and fostamatinib both showed scores with higher absolute values which are strong indicators for potential therapeutical effects.

Discussion

We hypothesized that AD + P is the result of a more severe synaptopathy than seen in AD-P, based on multiple studies that have compared indirect measures of synapse integrity both *in vivo* and in postmortem tissue, between AD + P and AD-P groups. In the current report we provide the first direct comparison of the PSD between AD + P and AD-P subjects, finding severe disruption in the PSD proteome in association with psychosis in AD. Relative to AD-P, PSDs from AD + P subjects had lower levels of regulators of Rho GTPases and other proteins regulating the actin cytoskeleton. The PSD protein alterations in AD + P relative to AD-P were present within different subsets of study subjects and were not accounted for by altered burden of neuropathologies or the greater reduction in excitatory neurons that we have previously reported in AD + P relative to AD-P. Examining the pattern of PSD protein changes in AD + P and AD-P relative to cognitively normal elderly comparison subjects revealed additional insights. While both groups showed highly correlated PSD protein alterations relative to comparison subjects, AD-P subjects, unlike AD + P subjects, did not demonstrate an overall reduction in PSD protein abundance. In fact, the PSD of AD-P subjects was enriched, relative to comparison PSDs, for increased levels of proteins involved in protein isomerization and protein quality control, suggesting novel mechanisms of synaptic resilience in AD-P.

Given the prominent role post-synaptic regulation of the actin cytoskeleton plays in the maintenance and plasticity of dendritic spines, it is not surprising that the PSD proteome of AD + P was selective depleted of proteins enriched for functions associated with actin regulation. The identification of impairments of this signaling network provides a novel opportunity for identifying compounds that might have novel, specific therapeutic benefits for individuals with AD + P. We used a novel computational strategy, examining the overlap of gene knockout signatures with our AD + P PSD proteome alterations to identify upstream genes that could be pharmacologically targeted by existing compounds to potentially reverse the PSD proteome alterations in AD + P. The predictions we generated using this approach are subject to several limitations inherent in the available data used to generate them. Most studies reporting
the effects of gene knockdown rely on an assessment of the transcriptome, rather than the proteome, to characterize the effects of manipulation of these targets. These knockdown studies are most commonly conducted in cells and tissues of non-neuronal origin, and without exception do not assess the PSD. Although we utilized drug candidate signatures from studies obtained in CNS cells, we again relied on transcriptome, not proteome changes, and did not assess PSDs. As a result, our candidates will require validation in the PSD proteome of an intact neural model system. Additionally, we identified reductions in levels of a broad network of kinases. It is likely that not just PSD protein levels, but their phosphorylation state, are altered in AD + P. Thus, both delineation of the phosphoproteome signature of the AD + P PSD, and the impact of drug candidates upon this signature, remains needed.

Nevertheless, our strategy identified several genes that could represent novel targets for addressing the synaptic impairments in AD + P. For example, Cathepsin K (CTSK), which has been primarily studied for its role in bone metabolism, is expressed in neurons. Germline knockout of CTSK leads to upregulation of some synaptic proteins, but is also associated with impaired learning and memory. How a more moderate pharmacologic inhibition in adulthood would impact the PSD and cognition remains unknown. Aurora Kinase B, AURKB, has recently been shown to play a role promoting neurite formation during early neuronal development and to promote axonal repair after injury in post-mitotic neurons. Actin rod formation in neurons, which is promoted by agonism of the C-C Motif Chemokine Receptor 5, CCR5, has been increasingly recognized as a component of Alzheimer's neuropathology that induces PSD loss. Although not specifically linked to inhibition of actin rod formation, the administration of CCR5 antagonists in a mouse model of AD reduced cognitive impairment. Likewise, treatment with the CCR5 inhibitor, maraviroc, improved cognition in a small study of individuals with HIV-associated neurocognitive disorder.

Additional considerations apply in conceptualizing to prioritize among drug candidates at these targets. Repurposing a drug developed for treating other conditions makes it likely that off-target effects will be present and these may be detrimental. Ultimately any medication used will be applied to frail elderly individuals with multiple comorbidities, so preferred agents would be documented to be well-tolerated in such a population. Some of the medications we identified, e.g., fostamatinib, which was developed for chronic use in populations with serious autoimmune disease, and maraviroc, which was developed for chronic treatment of HIV infection, may well meet the tolerability benchmark. For other identified agents in earlier stages of development, such as MV-711, further evidence is needed, but it should be noted that development of other CTSK inhibitors, including odanacatib, has been discontinued due to adverse events.

In our recent genome-wide association meta-analysis of over 12,000 AD subjects with or without psychosis, the most significant genetic locus associated with psychosis in AD was contained in a gene encoding ectonucleotide pyrophosphatase/phosphodiesterase 6 (ENPP6). We now report that ENPP6 is among the 461 PSD proteins with nominally reduced abundance in AD + P relative to AD-P. The expression of ENPP6 is selective for the oligodendrocyte lineage, peaking as oligodendrocyte precursor...
cells (OPCs) differentiate into mature oligodendrocytes. It has been established for some time that presynaptic terminals of excitatory neurons containing synaptic vesicles and release machinery align at electron-dense synaptic clefts abutting the processes of OPCs, and that the latter closely resemble the PSDs of dendritic spines, containing a postsynaptic membrane specialization and glutamate receptors (reviewed in). Though not established, it is likely that these OPC PSDs are co-isolated with neuronal PSDs in our enrichment procedure. Others have demonstrated that synaptic input from glutamatergic neurons onto AMPA and NMDA receptors within the "PSDs" of oligodendrocytes regulate OPC proliferation and differentiation of OPCs to mature oligodendrocytes, a process during which ENPP6 expression is at its peak, and which is required for learning complex tasks. Our finding of reduced ENPP6 abundance in the PSDs of AD + P would therefore suggest that activity dependent maturation of OPCs is impaired in AD + P relative to AD-P, and may contribute to the greater cognitive impairment in AD + P. Whether, and by what mechanism, this may relate to the genetic association of ENPP6 with AD + P risk remains an open question.

We additionally identified an enrichment of genes encoding actin binding proteins, SYNPO, SYNE1, ALDOA, and VPS16, when we examined the overlap of the AD + P PSD proteome signature with genes nominated by our GWAS of AD + P. Two of these, SYNPO and SYNE1, are implicated in processes serving dendritic spine plasticity and maintenance, providing a link between the genetics of AD + P and its biologic signature of post-synaptic deficits. SYNPO encodes the protein synaptopodin, a dendritic spine protein that contributes to maintaining the long-term stability of large dendritic spines. SYNE1 encodes multiple actin-binding proteins via extensive alternative splicing. One of these proteins, candidate plasticity gene 2 (CPG2), which is transcribed from the region of SYNE1 associated with risk for bipolar disorder, serves as a bridge between the dendritic spine endocytic machinery and the actin cytoskeleton necessary for activity dependent endocytosis of glutamate receptors. ALDOA encodes the glycolytic enzyme Aldolase, Fructose-Bisphosphate A protein. While shown to promote lung cancer metastasis by interacting with gamma-actin, its role in neuronal function remains obscure. Of interest, however, given our computational predictions, ALDOA protein is found in actin rods. VPS16 encodes the VPS16 Core Subunit of CORVET and HOPS Complexes protein, which contributes to autophagosome-lysosome fusion. Mutations in VPS16 cause dystonia syndromes, though the functions of VPS16 in neurons, and the functional consequences of the identified mutations for neuronal and postsynaptic function are not currently established.

Individuals with AD-P showed a relative resilience to PSD protein loss, congruent with the widely replicated clinical observations that individuals with AD-P have slower cognitive and functional decline that individuals with AD + P. Our examination of where the PSD proteins that differentiated AD-P individuals from elderly cognitively normal subjects diverged from those of AD + P provides some potential insight into the source of this resilience. PSDs of AD-P subjects were enriched for upregulation of protein isomerases. Knowledge of how peptidyl-prolyl isomerases and protein disulfide isomerases may contribute to prevent tau fibril formation and the generation of Aβ is rapidly increasing. Many of the upregulated isomerases we identified have evidence that they may confer such protection (e.g. PP1A, PP1B, and others).
PTPA, PDIA3) \(^{62,63}\). **FKBP4** provides a more nuanced picture, as it may enhance tau fibrillization while protecting against Aβ generation \(^{62}\). For other upregulated isomerases we identified (GPI, PGAM1, MMUT, PTPA, PDIA3, FKBP4), no role in these processes is clearly identified.

We report the first study to directly interrogate the PSD in AD + P. Levels of most PSD proteins were substantially reduced in AD + P relative to both AD-P and comparison subjects. Examination of the PSD proteome signature of AD + P, relative to AD-P, subjects revealed lower levels of regulators of Rho GTPases, of multiple kinases, and of other regulators of the actin cytoskeleton, and served to nominate several novel potential pharmacotherapies for the treatment of AD + P. Future studies are required to further assess the ability of these drugs to impact the PSD proteome signature in animal and/or cellular models of Alzheimer disease.

Online Methods

Subjects

We studied 106 AD subjects (Table 4) obtained through the brain bank of the Alzheimer Disease Research Center (ADRC) at the University of Pittsburgh, using protocols approved by the University of Pittsburgh Institutional Review Board and Committee for Oversight of Research and Clinical Training Involving Decedents.

Cases with a primary neuropathologic diagnosis of Alzheimer's disease and a Braak stage between 3–5 were included in the study. End-stage cases, as defined by a Braak stage of 6, were excluded. Subjects underwent comprehensive evaluations by experienced clinicians in the ADRC, including neurologic, neuropsychological, and psychiatric assessments as previously described \(^{16,17}\). Using this information, information obtained from clinical records, and structured interviews with surviving relatives, an independent committee of experienced clinicians made consensus DSM-IV diagnoses for each subject. Psychosis was defined as the presence of delusions or hallucinations at any visit. Subjects with a preexisting psychotic disorder (e.g. schizophrenia) were excluded from the study.

Fixed and frozen tissue samples from 19 elderly cognitively normal comparison subjects from the Religious Order Study (ROS) were obtained from the Rush Alzheimer's Disease Center, along with basic demographic and neuropathologic information \(^{18}\). Mild neurodegenerative pathologic changes were accepted, up to a Braak stage of 2 for tau pathology, presence of sparse neuritic plaques or early TDP-43 pathology.

Sample collection and neuropathologic assessment

For ADRC subjects, postmortem interval (PMI) was recorded at the time of brain removal. At autopsy, the brain was removed intact, examined grossly, and divided in the midsagittal plane. Gray matter samples from the right superior frontal gyrus of the DLPFC were dissected and frozen at ~ 80°C. The left hemibrain was immersion fixed in 10% buffered formalin for at least one week, sectioned into 1.0 cm coronal slabs,
and sampled according to Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) protocol for neuropathological diagnosis of AD or, since 2012, following National Institute of Aging – Alzheimer’s Association (NIA-AA) guidelines. AD pathology was evaluated using the modified Bielschowsky silver stain and immunohistochemical staining for tau and amyloid β. Neuritic plaque density was assessed according to CERAD criteria; distribution of tau pathology was classified according to Braak stages. Lewy body pathology was assessed by alpha-synuclein immunohistochemistry, and positive cases were classified into amygdala-predominant, limbic/neocortical-predominant, or other categories, a modified scheme based on consensus criteria.

For analysis in this study, all alpha-synuclein positive categories were combined into one Lewy body positive group. Immunohistochemical staining for phospho-TDP-43 was performed on sections of amygdala, hippocampus, mesial temporal cortex and middle frontal gyrus as previously described. Sections were evaluated for the absence or presence of TDP-43 positive neuronal cytoplasmic inclusions, neuronal intranuclear inclusions and dystrophic neurites. Based on the distribution of TDP-43 pathology, positive cases were classified into amygdala-predominant, mesial temporal, neocortical, or in cases when amygdala sections were not available, but all other sections were TDP-43 negative, indeterminate categories. For analysis in this study, all TDP-43 positive categories were combined into one TDP-43 positive group.

Assessment of vascular pathology included atherosclerosis of the circle of Willis, arteriolosclerosis in frontal white matter and cerebral amyloid angiopathy in DLPFC. Each was rated as none (0), mild (1), moderate (2) or severe (3), and a sum score was generated by adding the three individual scores. Microvascular lesions (MVL) were defined as remote microinfarcts/microhemorrhages not seen on gross examination and less than 1.0 cm in size. MVLs were enumerated in standardized sections of middle frontal gyrus (DLPFC), superior and middle temporal gyrus, inferior parietal lobule, occipital cortex (BA 17/18), basal ganglia at level of anterior commissure, and thalamus at the level of the subthalamic nucleus to create MVL counts.

Neuropathologic diagnoses of Alzheimer disease were made according to CERAD criteria, although all AD subjects also met NIA-Reagan criteria for intermediate to high probability that their dementia was due to AD lesions.

For the 19 elderly cognitively normal comparison subjects from the ROS, the same variables were provided to us, including Braak stage, CERAD neuritic plaque scores, presence/absence of TDP-43 and Lewy body pathologies, severity of vascular pathologies, and diagnostic classification based on modified CERAD and NIA-Reagan criteria (applying criteria in the absence of a diagnosis of dementia).

Quantitative Immunohistochemistry

Serial 5 µm thick formalin-fixed, paraffin-embedded tissue sections were immunostained on an automated stainer (Discovery Ultra, Ventana, Tucson, AZ) using the following primary antibodies: PHF-1 (1:1000, kindly provided by Peter Davies), beta-amyloid NAB228 (1:4000 (Cell Signaling Technology,
Danvers, MA), after 40 min pretreatment with 90% formic acid), and microglial markers Iba1 (1:500, Wako, Richmond, VA) and HLA-DR (1:100, Dako, Agilent Technologies, Santa Clara, CA). Except for beta-amyloid, slides for all other stains were pretreated with Discovery CC1 solution, a Tris based buffer with a slightly basic pH (Ventana Medical Systems, Tucson, AZ). All slides were developed using a multimeric HRP/DAB detection system (Ventana Medical Systems, Tucson, AZ). No counterstaining was performed to ease signal quantification.

Microscopy

Whole slide digital images of the immunostained sections were created using a Mirax MIDI slide scanner (Zeiss, Jena, Germany) or Aperio AT2 slide scanner (Leica, Deer Park, IL) at 40x resolution. A subset of cases was scanned on both scanners to confirm very high concordance of digital image analysis results. Digital image analysis was performed using NearCyte software (Andrew Lesniak, University of Pittsburgh). For each section, 4 rectangular regions of interest (ROI) of 4mm2 were created. These ROIs were defined to span the entire cortical thickness and were preferentially placed midway along the gyral axis to avoid tangentially cut cortical regions. Minor manual adjustments were made to adapt to curvatures and irregularities in the cortical ribbon. Once placed for the first analyzed stain (PHF-1), the same ROIs were re-used for all subsequent stains. If tissue folds or other artifacts prevented placement in the same location, the ROI was moved to an acceptable site as close as possible to the original location. For quantitative image analysis, thresholds for signal positivity were optimized manually for each stain and then maintained constant throughout the analysis of all slides. Signals from all four ROIs were integrated into two outcome variables: area ratio (= positive area/entire field area) and mean signal intensity. For HLA-DR and Iba1 stains, an additional variable, the HLA-DR/Iba1 ratio was derived to normalize microglial activation (HLA-DR) to microglial density (Iba1). All analyses were done blinded to psychosis status.

Biochemical Fractionation and LC-MS/MS

Prior to biochemical fractionation, subjects were stratified into blocks of 10–11 subjects, each block was balanced for diagnosis and sex. A post-hoc check also ensured that the distributions of PMI, age, age of AD onset, Braak stage and APOE*ε4 carrier status did not differ among all 12 blocks. PSD enrichments were generated using a variation on our previously describe approach. Briefly, grey matter was homogenized in Syn-PER reagent (Thermo Scientific, Waltham, MA); synaptosomes were prepared according to manufacture protocol and washed with 1ml 0.1mM CaCl$_2$. The washed pellet was resuspended in 500 µl of 20 mm Tris pH 8.0 with 1% Triton X-100, agitated on a rocker at 4°C for 30min, and centrifuged at 47,000 RPM for 30 minutes at 4°C in the outer rim of a Sorval S80-AT2. The resulting pellet was washed with 250 µl 0.1mM CaCl$_2$ and centrifuged at 47,000 RPM for 30 minutes at 4°C. The washed PSD pellet was taken up in 50 µl 1X S-Trap Buffer (100mM TEAB, 5% SDS), vortexed and bath sonicated. Total protein concentration was determined by Micro-BCA (Thermo Scientific).

10 µg total PSD protein from each sample were reduced, alkylated, and trypsin digestion on S-Trap™ micro spin columns (ProtiFi) per manufacture protocol. Subject blocks were randomly assigned to TMT
blocks and labeled with TMTPro channels 1–11 as described in28. A pooled control was created using aliquots from the homogenate and synaptosome preparation steps which precede PSD generation (so as to save tissue resources). The pooled control was digested separately with S-Trap™ mini spin columns (ProtiFi, Farmingdale NY), split in two, and labeled with TMTPro channels 12 and 13. TMT labeled subject preparations from the same block were pooled along with 10 µg of the labeled pooled controls. The TMT labeled peptide pools were separated into eight fractions with the Pierce™ High pH Reversed-Phase Peptide Fractionation Kit (Thermo Scientific) per manufacturer's protocol, evaporated, and reconstituted in 20 µl 97% H2O, 3% ACN, 0.1% formic acid.

~1 µg of TMT labeled peptides were loaded onto a heated PepMap RSLC C18 2 µm, 100 angstrom, 75 µm × 50 cm column (ThermoScientific) and eluted over 180 min gradients optimized for each high pH reverse-phase fraction as in29. Sample eluate was electrosprayed (2000 V) into a Thermo Scientific Orbitrap Eclipse mass spectrometer for analysis. MS1 spectra were acquired at a resolving power of 120,000. MS2 spectra were acquired in the Ion Trap with CID (35%) in centroid mode. Real-time search (RTS) (max search time = 34 s; max missed cleavages = 1; Xcorr = 1; dCn = 0.1; ppm = 5) was used to select ions for SPS for MS3. MS3 spectra were acquired in the Orbitrap with HCD (60%) with an isolation window = 0.7 m/z and a resolving power of 60,000, and a max injection time of 400 ms.

Raw MS files were processed in Proteome Discoverer version 2.5 (Thermo Scientific). MS spectra were searched against the \textit{Homo sapiens} SwissProt database. SEQUEST search engine was used (enzyme = trypsin, max. missed cleavage = 2, min. peptide length = 6, precursor tolerance = 10ppm). Static modifications include acetylation (N-term, +42.011 Da), Met-loss (N-term, -131.040 Da), Met-loss + Acetyl (N-term, -89.030 Da), and TMT labeling (N-term and K, +229.163 Da). Dynamic modification, oxidation (M, +15.995 Da). PSMs were filtered by the Percolator node (max Delta Cn = 0.05, target FDR (strict) = 0.01, and target FDR (relaxed) = 0.05). Reporter ion quantification was based on corrected S/N values with the following settings: integration tolerance = 20ppm, method = most confident centroid, co-isolation threshold = 100, and SPS mass matches = 65.

Statistical Analysis

We performed rigorous QC and normalization on all quantified peptides. First, we performed sample loading normalization to make the total abundance the same across all samples. Second, peptides that were missing in both pooled control samples in at least half of the plexes were removed. We also removed peptides that were mapped to multiple proteins or genes. Next, an internal reference scaling (IRS) normalization30 was performed for each peptide, where the scaling factor (for each plex) was calculated as the ratio of the overall mean of all pooled samples to the mean of the within-plex pooled samples. Finally, a median normalization was performed to make the median of each sample equal to the overall median of all samples.

To compare the PSD yield among three diagnosis groups, we performed linear regression adjusting for age, PMI, and sex. When comparing PSD yield among the two AD groups we additionally covaried for APOE*ε4 carrier status (which we have previously shown impacts the synaptic proteome in AD31) and for
Lewy body positivity and tau intensity (log2 transformed) as preliminary analyses revealed these two neuropathologies differed between the two AD groups. Then, for each sample, we multiplied the PSD yield to the normalized peptide abundance to account for the PSD yield variation in samples. Next, we performed PeCorA32 analysis to identify “uncorrelated” peptides within each protein. In the end, we rolled up yield-adjusted peptide data to protein level by averaging the z-score of each peptide (on the log2 scale) that is mapped to the same protein. The “uncorrelated” peptides were treated as separate proteins and were not rolled up. We use different present call thresholds (e.g., 100%, 80%) when selecting peptides in the roll-up step.

Then we performed Limma33,34 analysis for each yield-adjusted protein for our primary comparison of between AD + P and AD-P, adjusting age, PMI, sex, APOE*ε4 carrier status, Lewy body positivity, and tau intensity (log2 transformed). As a secondary analysis we compared AD + P, AD-P, and control, including age, PMI, and sex as covariates. APOE*ε4 carrier status and neuropathology variables were excluded from these comparisons as they are highly associated with diagnosis comparing AD and control. In all analyses two-group model-based log2 of fold change between any two groups was calculated for each protein.

Functional annotation analysis of differentially expressed proteins used DAVID35. In each analysis the differentially expressed proteins were tested for enrichment relative to a background of the 1604 proteins quantified in all samples.

Computational Systems Pharmacology

To identify medications with potential beneficial effects in treating AD + P, we conducted a series of systems pharmacology analyses. Since most significantly differentially expressed proteins were down-regulated in AD + P relative to AD-P, medications that directly target these proteins may have reduced efficacy due to the lower levels of the target. Therefore, we utilized a strategy designed to identify upstream targets that can regulate the activity of these differentially expressed proteins.

The data was analyzed with Illumina correlation engine (https://hsls.ce.basespace.illumina.com/c/nextbio.nb) and the knockdown atlas was used to identify genes which, when knocked down, altered expression of the mRNA corresponding to the 1604 proteins tested for differences between AD + P and AD-P. The identified genes (regulator-genes) were then extracted, as were the correlations of their knockdown transcriptome signature with the directions of alteration of the 1604 AD + P proteins.

We looked to identify medications that target the regulator-genes. Information about medications and their targets were extracted from DrugBank (https://www.drugbank.ca/)36 including medication names, targets of medications and their corresponding actions. The desired drug-target action should be aligned with the correlation between regulator-gene knockdown and our dataset. For example, if a regulator-gene was negatively correlated with our dataset, it means that its knockout recapitulated many of the alterations we observed in AD + P relative to AD-P. Therefore, drugs that antagonize or otherwise inhibit its
activity would be predicted to induce a signal that can reverse the expression profile we observed in AD + P, which may lead to beneficial effects.

To confirm whether our identified drug candidates themselves would result in reversing the AD + P PSD proteome signature, we extracted the gene expression profile for each drug from Level 5 LINCS L1000 data, a collection of gene expression profiles for thousands of perturbagens at a variety of time points, doses, and cell lines (GEO database accession numbers: GSE70138 and GSE92742). The gene expression profiles were included only if they are from drug treatments on a cell line derived from the central nervous system and the drug dose was $\geq 1\mu M$. To identify genes that are significantly differentially expressed, the $|Z|$ scores from multiple tests for a same gene were averaged. An average $|Z|>1$ was considered a significant effect.

The association between drug and PSD data was quantitatively evaluated with Signed Jaccard Index. The index ranges from $+1$ to -1, where $+1$ and -1 indicate the same, or inverse, pattern of two gene sets.

References

Declarations

Acknowledgements, Funding Sources, and Conflicts: This work was supported by NIH grants R01 MH116046 (RAS, JK, LW) P30 AG066468 (OLL, RAS, JK), AG027224 (RAS), MH107756 (MLM), R03MH108849 (YD). The University of Pittsburgh holds a Physician-Scientist Institutional Award from the Burroughs Wellcome Fund which provided support to JMK. The ROS is supported by NIA grants P30AG10161, P30AG72975, and R01AG15819. ROS resources can be requested at:

https://urldefense.com/v3/__https://www.radc.rush.edu__;!!NHLzug!dzl-i9T2P7Yq0o71Lfqwa-cSaud9OpjBvjTsDe6tzNHRiKL4OyI8PUqahO90pd4$

JMK, MRD, LZ, YD, MLM, OLL, LW, JK, and RAS have no biomedical financial interests or potential conflicts of interest to disclose. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health, the National Institutes of Health, or the United States Government.

Tables

Tables 1 and 2 are available in the supplementary files.

Table 3. Drugs with predicted beneficial effects.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Targets gene</th>
<th>Drug-target Action</th>
<th>Correlation Between Gene Knockdown Signature and AD+P PSD Protein Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odanacatib</td>
<td>Osteoporosis</td>
<td>CTSK</td>
<td>Inhibitor</td>
<td>Negative</td>
</tr>
<tr>
<td>Fostamatinib</td>
<td>Chronic immune thrombocytopenia</td>
<td>AURKB</td>
<td>Inhibitor</td>
<td>Negative</td>
</tr>
<tr>
<td>Maraviroc</td>
<td>CCR5-tropic HIV-1 infection</td>
<td>CCR5</td>
<td>Antagonist</td>
<td>Negative</td>
</tr>
<tr>
<td>Leronlimab</td>
<td>Investigated for the treatment of a number of cancers and HIV</td>
<td>CCR5</td>
<td>Antagonist</td>
<td>Negative</td>
</tr>
<tr>
<td>Ibalizumab</td>
<td>HIV-1</td>
<td>CCR5</td>
<td>Antagonist</td>
<td>Negative</td>
</tr>
<tr>
<td>Procaine</td>
<td>Local anesthetic primarily in oral surgery</td>
<td>DNMT1</td>
<td>Inhibitor</td>
<td>Negative</td>
</tr>
<tr>
<td>Epigallocatechin Gallate</td>
<td>Investigated for the treatment of Hypertension and Diabetic Nephropathy.</td>
<td>DNMT1</td>
<td>Inhibitor</td>
<td>Negative</td>
</tr>
<tr>
<td>Pimecrolimus</td>
<td>Mild to moderate atopic dermatitis</td>
<td>MTOR</td>
<td>Potentiator</td>
<td>Positive*</td>
</tr>
</tbody>
</table>

*MTOR positively correlated with the entire AD+P PSD proteome signature (N=1604 proteins), but unlike the other target genes demonstrated an opposing pattern of correlations with the top differentially expressed PSD proteins (N=461).

Table 4. Subject Characteristics. Results are reported as “mean (SD)” or as “n (% of group total)”. ANOVA was performed for continuous variables with post-hoc Tukey’s test. Chi-square (or as appropriate Fisher’s exact) tests were performed for all categorical variables, pairwise post-hoc tests used Benjamini-Hochberg correction to adjust for multiplicity. The overall p values for the 3-group comparisons are shown. For all variables that were significantly different, AD+P and AD-P groups were each significantly different from elderly cognitively normal comparison subjects. AD+P and AD-P did not significantly differ from each other on any variable. *For Age of Onset and Duration of Illness p-values were generated using a two-sample sample t-test.
<table>
<thead>
<tr>
<th></th>
<th>AD - P (n=47)</th>
<th>AD + P (n=59)</th>
<th>Normal Comparison (n=19)</th>
<th>Overall p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>84.4 (7.88)</td>
<td>83.7 (6.74)</td>
<td>84.5 (6.66)</td>
<td>0.826</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>19 (40.4%)</td>
<td>30 (50.8%)</td>
<td>6 (31.6%)</td>
<td>0.279</td>
</tr>
<tr>
<td>Female</td>
<td>28 (59.6%)</td>
<td>29 (49.2%)</td>
<td>13 (68.4%)</td>
<td></td>
</tr>
<tr>
<td>PMI, hours</td>
<td>6.18 (3.73)</td>
<td>6.49 (4.22)</td>
<td>10.5 (6.63)</td>
<td>0.00163</td>
</tr>
<tr>
<td>Age of Onset, years</td>
<td>76.1 (8.33)</td>
<td>74.7 (7.03)</td>
<td></td>
<td>0.359</td>
</tr>
<tr>
<td>Duration of Illness, years</td>
<td>8.36 (3.63)</td>
<td>9.00 (3.25)</td>
<td></td>
<td>0.349</td>
</tr>
<tr>
<td>Braak Stage:</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>0 - II</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>19 (100%)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>9 (19.1%)</td>
<td>5 (8.5%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>19 (40.4%)</td>
<td>22 (37.3%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>19 (40.4%)</td>
<td>32 (54.2%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>APOE-4</td>
<td></td>
<td></td>
<td></td>
<td>0.00383</td>
</tr>
<tr>
<td>Positive</td>
<td>25 (53.2%)</td>
<td>35 (59.3%)</td>
<td>3 (15.8%)</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>22 (46.8%)</td>
<td>24 (40.7%)</td>
<td>16 (84.2%)</td>
<td></td>
</tr>
<tr>
<td>Antipsychotic Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4 (8.5%)</td>
<td>11 (18.6%)</td>
<td>0 (0%)</td>
<td>0.0595</td>
</tr>
<tr>
<td>No</td>
<td>43 (91.5%)</td>
<td>48 (81.4%)</td>
<td>19 (100%)</td>
<td></td>
</tr>
</tbody>
</table>

Figures
Figure 1

Distribution of levels of 1604 PSD proteins quantified in DLPFC using peptides present in 100% of AD+P and AD-P subjects. Distributions of log$_2$ ratios are shown for all proteins, adjusted for covariates, Age, PMI, Sex, APOE*E4, Lewy Body presence, and phosphor-Tau area fraction. The dashed vertical line represents no difference in the ratio of protein levels between groups. Black points indicate the 461
proteins with nominally significant differences in levels in AD+P relative to AD-P (p<0.05). AD+P is characterized by a significant shift towards lower PSD protein levels compared to AD-P.

Figure 2

Distribution of levels of 1604 PSD proteins quantified in DLPFC using peptides present in 100% of AD+P and AD-P subjects relative to cognitively normal elderly comparison subjects. Distributions of log₂ ratios
are shown for all proteins, adjusted for covariates, Age, PMI, and Sex. The dashed vertical line represents no difference in the ratio of protein levels between groups. AD+P is characterized by a significant shift towards lower PSD protein levels compared to Comparisons, whereas AD-P does not differ from comparison subjects.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Table2.xlsx
- TableS7.xlsx
- FigureS1.jpg
- TableS4.xlsx
- FigureS2.jpg
- Table1.xlsx
- TableS2.xlsx
- TableS6.xlsx
- TableS5.xlsx
- TableS1.xlsx
- FigureS3.jpg
- TableS3.xlsx