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Abstract
Background

Legacy data are unique occasions for estimating soil organic carbon (SOC) concentration changes and spatial variability,
but their use can pose limitations due to the sampling schemes adopted and improvements may be needed in the analysis
methodologies. When SOC changes is estimated with legacy data, the use of soil samples collected in different plots (i.e.,
non-aligned data) may lead to biased results. In the present work, N=302 georeferenced soil samples were selected from a
regional (Sicily, south of Italy) soil database. An operational sampling approach was developed to spot SOC concentration
changes from 1994 to 2017 in the same plots at the 0-30 cm soil depth and tested.

Results

The measurements were conducted after computing the minimum number of samples needed to have a reliable estimate
of SOC variation after 23 years. By applying an effect size based methodology, 30 out of 302 sites were resampled in 2017
to achieve a power of 80%, and an a=0.05.

A Wilcoxon test applied to the variation of SOC from 1994 to 2017 suggested that there was not a statistical difference in
SOC concentration after 23 years (Z = -0.556; 2-tailed asymptotic signi�cance = 0.578). In particular, only 40% of
resampled sites showed a higher SOC concentration than in 2017.

Conclusions

This �nding contrasts with a previous SOC concentration increase that was found in 2008 (75.8% increase when
estimated as differences of 2 models built with non-aligned data), when compared to 1994 observed data (Z = -9.119; 2-
tailed asymptotic signi�cance < 0.001).

Such a result implies that the use of legacy data to estimate SOC concentration dynamics requires soil resampling in the
same locations to overcome the stochastic model errors. Further experiment is needed to identify the percentage of the
sites to resample in order to align two legacy datasets in the same area. 

1 Introduction
Soil organic carbon (SOC) is a main contributor to fertility in agricultural soils, which also guarantee water accumulation
and biodiversity (Lal, 2008). Baseline SOC estimates and maps are generally built on legacy data (Odeh et al., 2012),
whereas any new collection of soil samples in the same legacy locations are often scarce. Up to date SOC data and
assessments are on the global agenda (Vermeulen et al., 2019) and are necessary to evaluate many ecosystem
characteristics such as resilience, productivity, ability of soil to provide a wide range of ecosystem services (Williams et al.,
2020), and to gain precious insight into policy measures for soil preservation (Chenu et al., 2019).

Prior to a SOC assessment, a sampling campaign would be needed, and the number of samples would affect obtained
results. Many sampling size determination strategies have been proposed in the last decades to spot SOC changes
(Biswas and Zhang, 2018; Köhl et al., 2011; Lark, 2009; Parras-Alcántara et al., 2015; Wadoux and Brus, 2020). Most of
these have been suggested for new data acquisition and to overcome the problems of di�cult terrain. There is now a
strong and growing need to utilize legacy soil data sources for monitoring SOC changes (Boubehziz et al., 2020; Chen et
al., 2019; Francaviglia et al., 2012). Regions that have soil monitoring networks need periodic recollection of soil samples
to evaluate changes over time. Such resampling could be minimized to contain costs, but should be large enough to
produce reliable estimates.
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The need for long-term temporal paired sites is essential when aiming to depict SOC changes (Bellamy et al., 2005; Zhang
and McGrath, 2004). Few countries have such monitoring schemes. The European Union (EU) started around 10 years ago
with a Pan-European monitoring network to improve sustainable farming solutions and monitor soil pollution (Ballabio et
al., 2014; Lugato et al., 2014).

Soil and SOC conservation is critically important in semi-arid areas, where deserti�cation risk is increasing (Plaza et al.,
2018). For these areas, a recent increase in the output of literature regarding SOC accounting and spatial modelling (Smith
et al., 2005), legacy databases (Schillaci et al. 2018), and digital soil mapping (Minasny and McBratney, 2016) has been
noted.

Legacy soil data and soil maps could be integrated into a uni�ed database. This would provide special insight into hard-
to-sample areas, past and present trends, and insight into the application of proper modelling procedures.

Recently, the development of digital soil mapping, or pedometrics, and the presence of an ample archive of historical soil
data has allowed for the assessment of country scale SOC patterns with relatively high accuracy (Krol, 2008; McBratney et
al., 2014). However, models can amplify uncertainty when the assessment is based on multiple predictors (Grunwald et al.,
2018; Shi et al., 2018).

In some areas of the world, a lack of recent SOC measurements is prompting a rediscovery of legacy data which is in the
process of being fully integrated into mapping methods at an operational level (Arrouays et al., 2017).

SOC distribution is determined by multiple factors (Lacoste et al., 2014), the importance of which vary mainly with
bioclimatic conditions. It is therefore hard to delineate general functions that explain the world SOC distribution using only
geographical position, although a general inverse correlation was found with average annual air temperature on a regional
scale between 52° N and 40° S and a direct correlation beyond this region (Huang et al., 2018).

Land use and land use change is also a main driver of SOC stocks, although mechanisms of SOC dynamics seem to be
independent of the ecosystem type or land use (Giannetta et al., 2018). Guo and Gifford (2002) showed that around 50%
of SOC is gained in the transition from cropland to secondary vegetation communities with a meta-analytic approach, and
recent papers con�rmed such a trend (Wei et al., 2014; Zhou et al., 2015).

Sommer and Bossio (2014) hypothesized that SOC sequestration in arable land can show a 0.012–0.027% annual
increase in the �rst two decades after the establishment of SOC preservation practices, after which a saturation occurs
and the increase ceases. Following the same hypotheses, Zomer et al. (2017) presented a global assessment of cropland
SOC under the aforementioned scenarios and found that the potential SOC sequestration in cropland is below 53% of the
4p1000 target (Minasny et al., 2017).

High spatial variability and temporal trends induced spatial modellers to design reliable sampling strategies (Biswas and
Zhang, 2018; Schmidt et al., 2008; Shiwen et al., 2017) and develop e�cient methods to compare intra-�eld and inter-�eld
variations (Pezzuolo et al., 2017) with similar agro-ecological conditions over the course of two decades (Kühnel et al.,
2019). Application of this technique was carried out to determine the effects of sampling density on interpolation
accuracy (Long et al., 2018) and uncertainty assessment (Szatmári et al., 2018; Veronesi and Schillaci, 2019).

Cropland covers 12.6% of the world’s surface (FAOSTAT data, accessed 2019). Cropland SOC has been mapped on a
global scale using the WoSiS database (Batjes et al., 2017; Hengl et al., 2014; Zomer et al., 2017) and SOC maps were
obtained by applying Generalized Additive Models (GAM) and machine learning methods.

At the European level, cropland plays an important role. Due to the large area covered, cropland acts as a potential carbon
(C) sink. If considering a biomass return of up to 45 Mg C per year in raw materials, the biological potential of cropland for
C storage is on the order of 90–120 Mg C per year (Freibauer et al., 2004; Smith, 2004). In particular, Smith (2004)
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demonstrated that models of SOC changes should be used with statistical power analyses for planning sample design to
determine density and time of sampling during experiments.

Little is known about long-term SOC changes in Mediterranean semi-arid arable lands, which are frequently dominated by
winter-growing species (mostly cereals and legumes) in rotation with fallow periods characterized by various crop residue
management practices. Field crop production in these areas can cause SOC depletion (Rodríguez Martín et al., 2019) and
soil loss by erosion, especially when conventional tillage (e.g., ploughing) is continuously applied. Conversely, no-till has
been shown to be strongly bene�cial compared to conventional tillage in semi-arid climates with an aridity index lower
than 0.52 ± 0.03 (Gristina et al., 2018). Land management practices such as reduction of tillage intensity (Sperow, 2020),
addition of manure and sowing cover crops could help to increase SOC contents and keep signi�cant amounts of
nutrients (Álvaro-Fuentes et al., 2012b; Barbera et al., 2012).

In addition, in Mediterranean areas, frequent �re events can burn tons of biomass; this lowers the yearly C input derived
from crop residues utilization while increasing SOC permanence, and affect the cycle of several nutrients including
nitrogen (Knicker, 2007). In these areas, short-term SOC changes due to management practices (and especially land use)
can temporarily override background changes (Lou et al., 2011) since length of cultivation is a main driver of SOC
variation (Wang et al., 2019). In particular, time-space expected variation in soil traits can be differentially modelled if a
priori information is available. Such information can allow for the determination of a minimum sample size to test a
hypothesis effectively. De�ning the sample size and location is required to enhance the power analysis while reducing
laboratory costs and maximizing the accuracy of the representation (Confalonieri et al., 2009).

This experiment aimed at verifying whether or not a legacy estimation of SOC changes (1994–2008 model results) from
non-paired data (Schillaci et al., 2017) matches the SOC variation measured in paired soil samples after 23 years (1994–
2017). Thirty temporal paired sites from Sicily (South of Italy) and under continuous crop cover were resampled (Schillaci
et al., 2019) and included in the present study. The analysis focused on arable land as it represents the main land use in
the study area. The land cover of these sites was veri�ed using historical remote sensing imagery to con�rm that each site
was continuously cultivated during the intervening period. Minimum sample size was determined and locations were
randomly selected. Topsoil SOC contents were determined using the same laboratory method as in 1994 and 2008
(Walkley and Black, 1934).

2 Materials And Methods

2.1 Study area
Sicily (25,286 km2) is a semi-arid to arid region of Italy. Sicily is characterised by prolonged droughts from mid or late
spring to early or mid-fall, with the addition of high energy storms in fall and winter. Rainfed arable land selected using the
CORINE code 211 is the most common land cover class in the area under study with roughly 300,000 ha yearly under
cultivation with durum wheat (Istat, 2013).

Rainfed arable lands represented the target land cover in the study area as they represent 60% of the surface in this region.
Thus, it is a primary candidate for C sequestration and mitigation of the anthropogenic impact on the landscape. The land
is predominantly under private ownership and the average farm size is around 6 ha, in general family-run businesses (all
farm types), with approximately 10% of foreign labour (Istat, 2013).

2.2 Sampling campaign
In the rainfed arable lands of Sicily, the seedbed is generally prepared by soil ploughing during late summer and one or two
harrowing in early fall. The amount of nitrogen (N) applied in non-legume �eld crops is usually between 80–100 kg N ha− 1

year− 1 and durum wheat yield is between 2–4 Mg ha− 1 (with a harvest index ranging from 45 to 55%, and therefore with a
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similar straw yield). Land cover data was derived from the Geographic information system of Sicily (SITR;
http://www.sitr.regione.sicilia.it/). Availability of a legacy databases and determination of the minimum number of
samples and their locations for SOC determination.

In this work, data obtained from a sampling campaign carried out in 1993-94 (SMSLD) were used. In particular, data about
the rainfed arable land (CORINE code 211) were identi�ed using the optimization procedure shown in Schillaci et al.
(2019). Brie�y, the whole SMSLD consists of 6674 checked samples. Samples from the CORINE Land use 2 (agricultural
lands) were 5471 from 2886 locations, with 2, 2, and 3 layers sampled at the 1st, 2nd, and 3rd quartile, respectively. Within
these 2886 locations, samples from the sole CORINE Land use 2.1 (arable land) were 2162 from 880 locations, with 2, 2,
and 3 layers sampled at the 1st, 2nd, and 3rd quartile, respectively.

A power analysis (Lakens, 2013) was used to �nd the minimum number of samples needed to determine the SOC change
with time (from 1994 to 2017). The expected change with time was derived from a modelled SOC variation (1994 to 2008)
at the regional level, as observed in Schillaci et al. (2019). In particular, samples from the same soil layer, land use and
sub-area were used (Fig. 1).

To de�ne the effect size, means and standard deviation of the oldest SOC survey (1993) and the hypothesized change
after 15 years were used. The effect size was computed at different degree of con�dence (0.1, 0.05, 0.01) using the G-
Power software (Faul et al., 2007). The estimated change comes from the difference between the average topsoil SOC
concentration (0–30 cm) measured in 1994 and the estimated values at the same location in 2008 (predicted) at a 1-km
spatial scale (Schillaci et al., 2017). This allows for six sets of data (Table 1) used as raw or log10 transformed data, none
of which was normally distributed after a Shapiro-Wilk test of normality (Table 2).

Table 1
Datasets use in the present experiment. Log10 of each of these databases were also computed.

Abbreviation Number
of sites

description

LEG-SOC94 302 Data of measured topsoil SOC collected in the 1994 in land use CORINE 2.1 also used in
(Schillaci et al., 2017) after a normalization procedure for depth. See further for explanation
of the normalization process.

EST-SOC08 302 Data of estimated topsoil SOC in land use CORINE 2.1 extracted in the coinciding location
of the LEG-SOC94 after the BRT modelling built with samples taken in 2008 and provided
in (Schillaci et al., 2017)

SOC94 30 Random samples from the LEG-SOC94 in land use CORINE 2.1 after control for stability of
land use until the 2017. See further for explanation of the strategy to establish the number
of samples and location

SOC17 30 Samples taken in April 2017 in coinciding locations of the C94

EST-SOC08-
LEG-SOC94

302 Differences between data estimated in 2008 in the same locations of data collected in
1994.

SOC17-
SOC94

30 Differences between data measured in 2017 in the same locations of data selected in 1994

The expected difference in fourteen years from 1994 (measured data in LEG-SOC94) to 2008 (estimated data in EST-
SOC08) was subjected to the effect size computation (i.e., Cohen’s d) by means of the Wilcoxon signed-rank test
(Wilcoxon, 1945) in IBM SPSS software. Standard deviation of legacy data was computed. Cohen’s d provided the
minimum number of sites to be sampled in the 2017 survey on the original locations of the 1994 (LEG-SOC94) to
ascertain if a change in SOC content occurred. When this number was achieved, the sampling consisted in the collection
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of topsoil (0–30 cm) in 30 randomly selected sites for which coordinates were reported with up to six digit precision (thus
with an error < 30 m; Schillaci et al., 2019).

A two-tailed paired Wilcoxon-test was performed because, despite previous �ndings (Schillaci et al., 2017), there was
uncertainty regarding the pattern of differences between SOC2017 and SOC94. Such uncertainty derived from the internal
variability of the model used in Schillaci et al. (2017) suffered by the lack of paired locations. Indeed, dynamics of the
difference from the data in 1994 (measured in LEG-SOC94) to 2008 (estimated in EST-SOC08) was on average positive for
each land use, but with a high variation. Determination of sampling sites was carried out via random selection. This
random selection was performed within the set of locations determined in 1994 (SOC94).

2.3 Calculations of the legacy topsoil SOC
Original legacy SOC data were collected at various depths. To compare SOC data sampled in the 2017 at a uniform depth
to the ones sampled in 1993, the Hobley and Wilson (2016) method was used to uniform the SOC concentration of the
former sampling campaign. Such a method is based on an exponential generalized function, as follows:

SOC(d) = SOC0 × e−k×d (Eq. 1)

where d is the depth (expressed in meters), SOC0 is the concentration of SOC at the soil surface (%), and k is the depletion

constant (m− 1). The Hobley and Wilson (2016) method �rst �ts this model and �nds an optimal k and SOC0 for each
location, then computes SOC at any depth (d). Note that in the original work (Hobley and Wilson, 2016), Eq. (1) also
contains an additional term (i.e., SOC∞) modelling the concentration of residual SOC to a soil depth tending to in�nity. In
this study, SOC ∞ was assumed to be null.

In this work, the Hobley and Wilson (2016) method was applied as follows: in location (10 locations) where more than 2
layers were sampled, the model was directly �tted applying a SOC(0.30 m) depth threshold. For those locations where the
number of layers sampled was less than or equal to 2 (292 locations) the function could not be �t. In this case, the above
model was �rst �t on all locations in order to �nd an expected SOC0 and k values. This resulted in k = 0.4815 and SOC0 = 
1.4396. Then, using only the k found, SOC0 was computed for each location using Eq. (1) as follows:

SOC 0 = SOC(d’) × [e−0.4815×d’] −1 (Eq. 2),

where d’ is the depth of one data point of the locations for which SOC concentrations are known. The accuracy of the
�tted depth functions was expressed with the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE).

2.4 Historical land use and soil type in resampled sites
Web Mapping Services (WMS) from the regional geodata service (http://www.sitr.regione.sicilia.it/), consisting of aerial
photograph surveys, were used to check the historical land cover. Sites were checked to ascertain that these sites
maintained the same land use during the intervening period. To ensure this, aerial photographs of at least 3 surveys
carried out from 1994 to 2017 (Fig. 2.) were consulted. To avoid sites being temporarily converted to short-term grassland
or bare soil or abandoned, local farmers were also interviewed.

Soil samples from the selected sites, rainfed arable land (N = 302) derived from the 1994 sampling campaign, and the
resampled soils (N = 30) had a consistent distribution among the main soil systems according with the Soil map of Italy
(Costantini et al., 2014) (Supplemental materials Fig. 1). Around 80% of sites were Vertic soils or Cambisols or Regosols.
All of these soils frequently showed calcic or calcaric subgroups.

2.5 Soil organic carbon determination
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SOC17 measurements were carried out using the Walkley-Black method (Walkley and Black, 1934). The SOC values so
obtained were within the range of LEG-SOC94. In LEG-SOC94, soil data were georeferenced, and this has allowed for the
resampling at exact (�eld site) location.

2.6 Computation of SOC differences between 1994 and 2017 by
means of ad hoc sampling
Since the residues from the means of the logarithm10 of SOC94 and SOC17 were normally distributed (Table 2), the Log10-
SOC variation from 1994 to 2017 was tested for difference from zero by means of a paired t–test. This does not assume
that observations within each group are normal, but only that their residuals are normal (Hsu and Lachenbruch, 2014; Zar,
1999) (Table 2). Such assumptions were only partly met, since the Log distribution were normal, whereas the differences
between log were not normal but its skewness was comprised between − 1.96 and + 1.96. To overcome such problems, a
bootstrap ANOVA was performed (Krishnamoorthy et al., 2007). Changes in cropland SOC content have previously been
accounted for with the same statistical approach (Wang et al., 2018) where no subsampling was done to assess the SOC
change.

3 Results

3.1 Power analysis
Farmer interviews con�rmed that the land use of the sampling sites have been continuously cultivated during the
intervening period. The crop rotation was generally made with durum wheat (Triticum durum Desf.) followed by broad
beans (Vicia faba L.), or other pulses alternated with fallow. The sampling campaign LEG-SOC94 involved 302 sites, with a
SOC concentration in the CORINE land use 2.1 (arable) of 1.01 ± 0.59% (mean ± s.d.; Table 3) after normalization to 0.3 m
depth. This value was signi�cantly lower than the mean SOC in the 30 sites selected in 1994 (i.e., the SOC94, 1.31%;
Table 3), but very close to its median (1.05%). Mean (predicted) SOC of the EST-SOC08 database was 1.38 ± 0.39% (mean 
± s.d., with a median of 1.25%). SOC was expected to vary in the cropland between the 1994 and the 2008 values when
using original data or Log10 data (Table 4). Such variation was due to an increase in SOC in 75.8% of the sites (2008). The
calculated effect size of the SOC was 0.54 for the original data and 0.69 for the Log10 data (Table 5). According to Cohen
(1988), such effect sizes correspond to ‘medium to high’ effect, which needed a minimum sample size ranging from 15 to
45 samples to be able to detect a SOC variation. Given this effect size and the power chosen for the Wilcoxon test, which
is by default set to 80%, and a signi�cance level of 5%, the calculated sample size required would be 30 samples. These
were identi�ed in LEG-SOC94 and collected in their respective paired locations SOC17. In 2017, only 12 sites showing a
SOC concentration higher than 1994 were found, so SOC variation from 1994 to 2017 depended more on the SOC
difference within each pair of samples than on the % of samples in 2017 having a SOC higher than in 1994.



Page 8/25

Table 3
Results of the Shapiro-Wilk for the raw and log- transformed data of the

1994, 2008, and 2017. Please see Table 1 for a description of each
dataset.

Shapiro-Wilk

  Stat Sign.

Raw - LEG-SOC94* 0.903 < 0.001

Raw - EST-SOC08* 0.798 < 0.001

Log-LEG-SOC94* 0.980 < 0.001

Log-EST-SOC08* 0.883 < 0.001

Differences of raw data (EST-SOC08-LEG-SOC94)* 0.961 < 0.001

Differences of log data (EST-SOC08-LEG-SOC94)* 0.960 < 0.001

Raw - SOC94** 0.833 < 0.001

Raw - SOC17** 0.809 < 0.001

Log - SOC94** 0.951 0.183

Log - SOC17** 0.965 0.404

Differences of raw data (SOC17-SOC94)** 0.886 0.004

Differences of log data (SOC17-SOC94)** 0.824 < 0.001

* degrees of freedom = 302; ** degrees of freedom = 30
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Table 3
Descriptive statistics and main quantiles of each of the dataset used in the present study

  SOC94 SOC17 LOG of
SOC94

LOG of
SOC17

LEG-SOC94
(measured)

EST-SOC08
(estimated)**

LOG of LEG-
SOC94
(measured)

LOG of EST-
SOC08
(estimated)**

Mean* 1.31 1.23 0.00550 0.03800 1.01 1.38 -0.06983 0.12939

Standard
deviation

0.96 0.67 0.33708 0.20808 0.59 0.39 0.26742 0.10394

Variance 0.93 0.45 0.11362 0.04330 0.35 0.15 0.07151 0.01080

Kurtosis 3.55 3.28 1.22 0.52 4.40 3.10 0.57 0.96

Skewness 1.76 1.78 -0.69 0.36 1.53 1.79 -0.55 1.23

n 30 30 30 30 302 302 302 302

quantiles                

Min 0.120 0.400 -0.9208 -0.3979 0.100 0.953 -1.000 -0.021

0.010 0.149 0.429 -0.8445 -0.3698 0.150 1.001 -0.824 0.000

0.025 0.193 0.473 -0.7300 -0.3277 0.215 1.012 -0.667 0.005

0.050 0.270 0.545 -0.5783 -0.2654 0.300 1.027 -0.523 0.012

0.250 0.780 0.803 -0.1079 -0.0956 0.560 1.142 -0.252 0.058

0.500 1.050 1.100 0.0205 0.0414 0.945 1.253 -0.025 0.098

0.750 1.633 1.353 0.2128 0.1310 1.328 1.487 0.123 0.172

0.950 3.343 2.830 0.5240 0.4493 2.099 2.219 0.322 0.346

0.975 3.699 3.128 0.5648 0.4952 2.260 2.477 0.354 0.394

0.990 4.156 3.171 0.6155 0.5012 2.820 2.773 0.450 0.443

Max 4.460 3.200 0.6493 0.5051 4.330 2.969 0.636 0.473

*for logs, mean of log represent the arithmetic mean of the logarithms10 of the SOC values expressed in %; ** such an
estimation is from the 302 sites in which a measure was available 1994 and applying the 1-km resolution estimation
process used in the 2008 described in (Schillaci et al., 2017).
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Table 4
Wilcoxon test for the difference between the soil organic carbon (SOC) of the arable lands (CORINE 2.1) in the 0–30 cm
layer in 1994 (LEG-SOC94) and estimated SOC in 2008 (EST-SOC08) in the coinciding locations of the samples taken in

1994.

  Raw   Logs

Ranks N   Mean
ranks

Sum of
ranks

  Mean
ranks

Sum of
ranks

Negative ranks (EST-SOC08 < LEG-SOC94
)

73   123.6 9026   100.3 7320

Positive ranks (EST-SOC08 > LEG-SOC94
)

229   160.4 36727   167.8 38433

Ties (EST-SOC08 = LEG-SOC94 ) 0            

Test statistics based on positive ranks (Wilcoxon)

Z based on negative ranks     −9.119   −10.243

Asymptotic signi�cance (2-tailed)     < 0.001   < 0.001

Table 5
Output parameters of the a priori power analysis computation process at varying

the α (0.10; 0.05; or 0.01). The process was carried out through the G-Power
software with the Wilcoxon test for non-normal distributed datasets (Faul et al.,

2007). Input data were from 302 measured samples of SOC in 1994 and modelled
SOC in 2008, each of which expressed as either raw or log10 data. Minimum power

was set to 0.80.
α   0.10 0.05 0.01

    Raw data

Noncentrality parameter δ   2.6008000 2.9077828 3.5612921

Critical t   1.7174255 2.0495831 2.6981518

Degrees of freedom   21.9183118 27.6478898 41.9718346

Minimum sample size needed   24 30 45

Actual power   0.8090485 0.8010923 0.8005742

    Log10 data

Noncentrality parameter δ   2.6384055 3.0465682 3.6685540

Critical t   1.7676466 2.1001020 2.7730806

Degrees of freedom   13.3239449 18.0985932 26.6929601

Minimum sample size needed   15 20 29

Actual power   0.8040250 0.8216418 0.8056966

3.2 Descriptive statistics of SOC and SOC variation from 1994 to
2017
SOC distribution in the datasets used in the present experiment had different means and standard deviations, but similar
skewness and kurtosis (Table 3). SOC94 had a mean of 1.31 ± 0.96% (mean ± s.d.), whereas in the LEG-SOC94 sites, mean
was 1.01 ± 0.59% (Fig. 3). The SOC17 mean was on average signi�cantly lower than EST-SOC08, but with similar
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distribution properties to both the SOC94 and LEG-SOC94. Also, the SOC17 mean was slightly lower (−6.1% relative
change, − 0.08% absolute change) than the mean of SOC94, but not than the EST-SOC08. The accuracy of the �tted depth
functions was expressed with the RMSE and MAE resulting in 0.36 and 0.23 respectively. Transformation to logarithms
improved the distribution properties in term of skewness and kurtosis, especially for SOC17 (Fig. 4). According to the
Wilcoxon test, the change in SOC between SOC94 and SOC17 did not appear different from zero (Table 6 and Fig. 5). The
t-test applied to the Log10 of SOC17 and SOC94, in which residues were normally distributed, provided similar results
compared to the Wilcoxon test carried out on the same data (SOC difference = + 0.03300 ± 0.27659, mean ± s.d.; C.I95%:
−0.07028 to + 0.13628; t = + 0.653; 2-tails signi�cance = 0.52). The bootstrap ANOVA also provided consistent results
compared to the Wilcoxon test (Table 7), but notably, the difference in the log-SOC between the sampling campaigns had
95% con�dence intervals marginally overlapping zero.

Table 6
Results of the Wilcoxon tests of the mean difference of 30 samples of soil organic carbon measured in the 2017 (SOC17)
and 1994 (SOC94) as difference of the raw data or log-transformed. Positive mean indicates a mean increase in SOC with

time.

    Raw   Logs

Ranks   N Mean ranks Sum of ranks   N Mean ranks Sum of ranks

Negative ranks (SOC17 < SOC94 )   18 14.42 259.5   16 12.75 204

Positive ranks (SOC17 > SOC94 )   12 17.13 205.5   12 16.83 202

Ties (SOC17 = SOC94 )   0       2    

Test statistics based on positive ranks (Wilcoxon)

Z based on negative ranks   −0.556   −0.023

Asymptotic signi�cance (2-tailed)   0.578   0.982

Table 7
Results of the bootstrap ANOVA on the differences between each pair of dataset. N = 30. Bootstrap samples were 10000.

  Bias Std. Error Sig. (2-tailed) Lower 95% C.I.* Upper 95% C.I.

Differences of raw data (SOC17-SOC94) 0.0013 0.1049 0.4780 -0.2923 0.1167

Differences of log data (SOC17-SOC94) 0.0007 0.0505 0.5400 -0.0583 0.1394

* C.I., con�dence interval

4 Discussion
This work was aimed at assessing the reliability of estimations of topsoil SOC changes with non-paired data using time-
paired sampling. Compared to a previous work on temporal variation in the same area (Schillaci et al., 2017), various
improvements in methodology were applied. These improvements consisted of the use of temporal paired sites instead of
estimates based on different locations. Locations were further checked for land use continuity. The previous analyses
based on modelled data over a 15-year span (from 1994 to 2008) predicted a mean relative increase of around the 21% of
SOC content in arable lands, but such an increase was affected by a strong variability when survey data was reviewed. By
using a monitoring network spanning 30 years, Gubler et al. (2019) found that SOC dynamic is more determined by a
change in land use than other predictors in a colder climate (Switzerland).
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According to a hypothetical linear growth, the increase expected from 1994 to 2017, which was the target period of the
present study, was predicted to be a relative SOC increase of around 30%. In this study, no evidence of this magnitude of
increase was found, and no such difference was seen in neither the original data nor in the log transformed data. When
using a similar amount of data from meadows, Gubler et al. (2019) found that the minimum detectable change in 10 to
100 years (at a power of the 80%, such as in the present study) spanned from approximately 2 to 6%, respectively. Bellamy
et al. (2005) showed that variation in time strongly depended on the initial SOC content, e.g., sites with low SOC had more
opportunity to increase their SOC than sites with high SOC. However, both these latter studies were conducted in wetter
climates than that of the present study. Using data from 20 regions in the world, Minasny et al. (2017) showed a tendency
of a higher C sequestration potential on croplands with low initial SOC stock (≤ 30 t C / ha at 0–30 cm) compared to
grasslands, which already have a high initial SOC stock, although a general decrease of the stock rate with time was also
reported.

In addition, most of the samples in the present study were derived from the thermo-Mediterranean bioclimatic area (Rivas-
Martínez et al., 2011), so these results can also re�ect the latency of SOC variation in these areas, which even under soil
abandonment showed limited increases in SOC when compared to other bioclimates in the same region (Novara et al.,
2017).

The lack of an increase found from 1994 to 2017 when compared to the estimated increase from 1994 to 2008 was partly
expected given that a SOC mean of the SOC94 extracted from the LEG-SOC94 was higher than that of the complete LEG-
SOC94 dataset. In few exceptions (3 samples) there was an increase in SOC concentration that can also be due to soil
deposition following erosion from the sites at higher altitudes (Lizaga et al., 2019; Navas et al., 2017; Panagos et al.,
2015), changes in tillage depth or soil compaction (Álvaro-Fuentes et al., 2012a). In addition, in this area soil respiration
due to increasing temperatures (Viola et al., 2014) may have offset any potential increase in SOC, and the 23-year time
span may have not been su�cient to detect a SOC change, as pointed by Saby et al. (2008). Soil management with
ploughing and the increasing mean temperature (Viola et al., 2014) are not conducive to SOC accumulation (Goidts and
van Wesemael, 2007; Kämpf et al., 2016). In particular, Goidts and van Wesemael (2007) showed that ploughing may
override the increase in SOC over time. Also, an increase in SOC in ploughed soils is hard to achieve unless high quantities
of organic residues and N are provided (Mazzoncini et al., 2011). These two latter conditions are very limited in Sicily due
to the low crop yield, the low amount of residues returned to the soil and scarce fertilization. Other authors showed that
slight increases in temperature and water availability ratio may contribute in reducing SOC (Davidson and Janssens,
2006). In the present work, this may have occurred and may be what can be seen when comparing the expected change
from 1994 to 2008 to the measured change from 1994 to 2017. In addition, the ratio between water availability and
temperature may be increasing in the area under study, despite the fact that no direct report is available (Viola et al., 2014).

The lack of increase in SOC concentration found here (from 1994 to 2017), compared to those estimated in the period
from 1994 to 2008, could also be due to a SOC reduction from 2008 to 2017 which cannot be excluded using the present
data. Such a reduction from 2008 to 2017 might possibly be connected with the decoupling of EU Common Agricultural
Policy (CAP) payments regarding agriculture in 2005 (Regulation EEC 1782/2003). Before this year, wheat was the
continuous primary crop for arable lands and after this point crop rotation with legumes or fallow land was encouraged by
new regulations. Notably, continuous wheat has been shown to favour SOC accumulation when compared to a high
percentage of wheat-legume rotations or wheat-fallow rotations, in the same or similar environments (Barbera et al., 2012;
López-Bellido et al., 2010; West and Post, 2002). Lastly, differences between the previous estimation (1994 to 2008) and
the present measurements (1994 to 2017) can also depend on the differences between direct and indirect measurement
(Smith et al., 2019), or transient changes in cultivation history that may have in�uenced the previous estimates (Wang et
al., 2019), the latter of which was discarded here by an ad-hoc sampling in continuously ploughed soils with �eld crops.

Variability and con�dence intervals regarding SOC suggest that the estimated change in the previous work (Schillaci et al.,
2017) could have been affected by outliers or errors in the measurements related to analytical methods used (Gessesse
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and Khamzina, 2018), especially when used for highly alkaline soils with scarce SOC (Bisutti et al., 2004; Walkley, 1935),
such as in the present study. These issues may have produced an apparent pattern of SOC accumulation from 1994 to
2008 that was not detected between 1994 and 2017. Problems in the estimate due to the sampling strategy (Brus, 2019;
Wadoux and Brus, 2020) were excluded, since the selection method used here provided a dataset with similar statistical
properties to the original SOC distribution, and thus allowed for a maximum reduction in sampling sites.

Mitigation strategies and international projects have contributed to a debate regarding SOC sequestration. These traits are
increasingly being taken into account in EU subsidies to the agricultural sector (Ciliberti and Frascarelli, 2015; European
Comission, 2017).

There were different ongoing discussions following the paper by Sommer and Bossio (2014) and more recently after the
Soil 4x1000 initiative (Minasny et al., 2017), all of which are above all pivotal to a reliable estimation of SOC dynamics.
Zomer et al. (2017) modelled the estimated increase in SOC concentration and stocks at a global scale in croplands and
found that an average increase of approximately + 26%, which is similar to the estimated value found from 1994 to 2008.
However, the Zomer et al. (2017) estimation may not be suitable for small scale assessment and mapping and the use of
legacy information can be crucial to con�rm these trends.

5 Conclusion
The estimated SOC change in arable lands occurred from 1994 to 2008 in the studied area was not con�rmed by a direct
measurement using paired sites in the 1994–2017 timespan. This result has a direct implication for the SOC monitoring
network in the mid-term (e.g., 15–25 years). Results also suggest that measurements of soil properties based on legacy
data need to be supported by reliable information on the land use, land use changes and soil management practices. Both
these aspects were indirectly taken into account here by choosing sites with no change in the land use or soil
management. These variables could be used to correct the effect of other predictors (e.g., rainfall, slope). Only when many
limitations are found, there would be the need for large scale sampling campaigns.

The debate regarding the structuring of subsidies should take into account the current information to assure on the one
hand, their competitiveness, and on the other hand, their environmental sustainability and ability to provide ecosystem
services. Further works should aim at: i) increasing the number of sites to be resampled which would be derived from both
the collection in 1994 and 2008, ii) gathering information regarding land use dynamics in paired sites, and iii) quantifying
the effect of soil erosion in the �ow of SOC within and among catchments. Lastly, direct information regarding the
variation in SOC concentration and stock in topsoil and subsoil in the target areas are urgently needed to drive policy
making. The discrepancies between the present data compared to the previously published results may depend on various
factors, including: I) possible errors in 1994 measurements and 2008 estimates, II) changes in land use and, III) soil
erosion, IV) bias in the comparisons when using soil samples collected at different depth and showing different bulk
density. However, SOC concentration reduction from 2008 to 2017 cannot be excluded. A further study is needed to
evaluate a) possible errors in the determination of SOC concentrations in soil from semiarid to arid conditions, b) possible
changes in bulk density with time and depth, c) SOC changes during the intermediate periods and to the present, and d)
the in�uence of wild�re and arson.
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Figure 1

Study area and main soil systems from the Italian soil information system http://www.soilmaps.it/. The samples collected
only in 1994 (black dots) and both in 1994 and 2017 (red triangles) were projected on the map.



Page 22/25

Figure 2

Example of checking of the actual land use along the course from the 1994 to the 2017 in each sampling location n=30)
by means of a visual interpretation of the Orthophoto taken from a Web Mapping Services (WMS).
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Figure 3

Study area, original soil data (dots) and original compared to new soil samples (histograms, background mask the Arable
land cover from CORINE 2000, code 211 (yellow). Blue bars for SOC94, red bars for SOC17.



Page 24/25

Figure 4

Distribution of the 30 samples of SOC 94 (blue bars) and SOC17 (red bars) and relative probability distribution function.
Upper panels are for raw data, lower panels for Logs

Figure 5
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Distribution of the difference between pairs of the 30 samples of SOC17-SOC94 (expressed as raw data, green bars; or
their logs, purple bars) and relative probability distribution function. Differences between the 302 original data (LEG-
SOC94) and the 302 estimated data of 2008 (EST-SOC08) is also shown (grey bars). Positive values indicate an increase
in SOC with time.


