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Introduction12

Extreme oceanic events, such as marine heatwaves, can have dis-13

astrous impacts on ecosystems and marine industries. Given their14

potential consequences, it is important to understand how broad-15

scale climate variability influence the probability of local extreme16

marine events. Here, for the first time, we employ an advanced data-17

mining methodology, archetype analysis, to identify large scale cli-18

mate drivers and teleconnections that lead to marine extremes in19

certain regions. This methodology is applied to the Australasian re-20

gion, where it identifies instances of anomalous sea-surface temper-21

atures, frequently associated with marine heatwaves, as well as the22

broadscale oceanic and atmospheric conditions associated with those23

extreme events. Additionally, we use archetype analysis to assess24

the ability of a low-resolution climate model to accurately represent25

the teleconnection patterns associated with extreme oceanic temper-26

atures, and discuss the implications for the predictability of these27

impactful events.28

29

In recent years a number of high-profile and devastating marine heatwaves30

have brought increased public awareness and scientific focus on these events.1,231

The growing recognition of their impacts has resulted in an intense effort to32

understand the physical drivers of these phenomena, with the ultimate goal of33

improving their prediction and providing information to enable adaptation and34
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mitigation measures.3–735

36

A key tenet of modern climatology is that conditions at a particular loca-37

tion may be influenced by remote drivers, often many thousands of kilometers38

away, through so-called teleconnections8 and there is a strong desire to under-39

stand the role played by teleconnections in driving impactful regional events,40

such as marine heatwaves.1,2, 9–11 This desire is motivated by the fact that41

large-scale variability typically has longer timescales, is better representated in42

coarse-resolution climate models, and is hence more predictable than smaller-43

scale local processes.12–1444

45

To date, the vast majority of studies that investigate marine heatwaves and46

cold-spells focus on detailed case-studies of events at a particular geographic47

region,10,15–19 although there are a number of studies investigating the connec-48

tion between larger regions regions and remote drivers.9,11,20,21 To link the49

local extremes with remote drivers, the general approach taken to-date is to50

begin by defining extreme events at one or more distinct locations, then explore51

statistical or dynamical connections between those events and large-scale cli-52

mate modes such as an El-Niño.9–11,18,19 As the analysis proceeds from local53

to global scales, we will call this approach the ‘inside-out’.54

55

While this ‘inside-out’ approach has dramatically advanced the understand-56

ing of the characteristics and physical drivers of marine extremes, unambigu-57

ously separating local and remote influences is difficult due to the complex58

interconnection between components within the climate system. As stated in a59

recent review:60

However, fixed-region budget approaches are limited to analysing the61

drivers of marine heatwaves locally, while remote forcing and atmo-62

spheric and oceanic teleconnections can also be important contrib-63

utors to the development and decline of marine heatwaves. Hence,64

there is merit in considering large-scale dynamical frameworks that65

connect remote drivers to marine heatwaves events . . . 166

In this study, we present a new ‘outside-in’ methodology that directly identi-67

fies large-scale patterns associated with extreme sea-surface temperatures.22–2468

To do so, we employ a powerful data-mining methodology –Archetype Analysis69

(herein AA)– that seeks to represent a high dimensional spatiotemporal dataset70

as a mixture of a finite number of ‘archetypal’ spatial patterns along with a71

probabilistic time-series. The archetypal patterns are themselves constructed72

as a weighted average of a small number of snapshots of the original dataset73

that correspond to ‘extreme’ states.22 Thus, an approximation of the orginal74

dataset, x, written as x̃, is given by:75

76

x(space, time) ≈ x̃(space, time) =
P∑

i

si(time)zi(space) (1)77
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where zi is the ith archetypal pattern, P is the number of archetypes, and78

si(time) is the affiliation time-series of the ith archetype, which can take values79

between 0 and 1 and describes. The archetypal patterns can be interpreted as80

extreme modes of variability, and the affiliation probability is the likilhood that81

one of these mode is expressed at any given time.24 AA has been employed82

previously to identify the characteristics of extreme rainfall events25 and long-83

lived atmospheric regimes.26 To the best of our knowledge, this work is the first84

application of AA to extreme marine events.85

86

We apply AA to satellite derived sea-surface temperature (SST) over the87

Australasian region to identify large-scale patterns that correspond to temper-88

ature extremes (i.e. marine heatwaves and marine cold spells) and show that89

AA unambiguously identifies teleconnection patterns associated with extreme90

events. What is more, AA is able to reveal subtleties - for example distinguish-91

ing between the influence of ‘classical’ El Niños and central Pacific (Modoki) El92

Niños. Once the large-scale archetypal patterns have been obtained, we then in-93

vestigate their impact on specific regions - hence ‘outside-in’. Finally, we present94

a new application of AA by assessing the capacity of a modern climate model95

to represent the teleconnections associated with marine temperature extremes.96

97

Broad-Scale Drivers and Teleconnections Leading to Ma-98

rine Temperature Extremes99

Archetypal Patterns Associated with SST extremes100

To begin our analysis, we apply AA to 39 years of SST anomalies over the south-101

western Pacific and southeastern Indian Ocean basins (Fig. 1)(see Methods).102

In our analysis we chose (after experimentation) a total of eight archetypes, of103

which four associated with marine heatwave conditions in Australasia are shown104

in Fig. 1. Although the AA methodology is applied only to the Australasian105

domain (black box in Fig. 1) we plot the resulting archetypes by compositing106

over the southern Indo-Pacific to show the broad-scale SST patterns. The la-107

belling of the archetypes is arbitrary.108

109

In Fig. 1, we immediately recognise familiar spatial patterns associated with110

well known climate modes, such as the classical and central Pacific (Modoki) La111

Niña (archetypes #1 and #2) and El Niño patterns (archetypes #3 and #4).112

These inferences are supported by considering the affiliation time-series (solid113

black line in the right-hand column of Fig. 1) and the temporal distribution of114

the weights that are used to construct the archetypal patterns (orange bars).115

For example, the weights used to construct the archetype #4 cluster around116

the years 1998 and 2016, years known to correspond to years with powerful El117

Niños.27 In addition to the ENSO-like patterns in the equatorial Pacific, addi-118

tional features are evident. For example, elevated SST anomalies are evident119

along the west coast of Australia (archetype #1, Fig. 1a), around New Zealand120
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Figure 1: Archetypal Patterns and Affiliation Time-Series: (left) De-
trended SST anomalies for four of the archetypal patterns computed over the
Australasian region (indicated by the black box), and (right) associated affilia-
tion time-series (black solid line) and the weights applied applied to each time
snapshot to form the archetypes (known as C-matrix weights, orange bars, see
methods). The four archetypes plotted here are selected based on their associ-
ated with well-known marine heatwaves (locations indicted in the text).
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(archetype #2, Fig. 1c), and through Great Barrier Reef region (archetypes #3121

and #4, Fig. 1e,g). These patterns show the large-scale conditions that are122

likely during periods with the affiliation time-series are close to 1, and their ex-123

pression may bias the oceanic system in favour of extreme marine temperatures124

in particular regions.125

126

Investigation of the affiliation time-series in Fig. 1 reveals periods of per-127

sistence and recurrence. We show this in further detail in Fig. 2a, where each128

coloured block corresponds to periods where a particular archetype is both dom-129

inant, and persists for at least 20 days. A number of persistent regimes can be130

identified, such as 16 month period from November 2010 until June 2012 period,131

when archetype #1 dominated, which manifested as an exceptionally strong La-132

Niña,28 or the 6-8 months in 1998 and 2016 of archetype #4 that corresponded133

to powerful El-Niños. The inter-annual variability determined by summation134

of the number of event days for each dominant archetype in each year, shown135

in Fig. 2b, revealing substantial year-to-year variability, with certain regimes136

dominating in certain years while being completely absent in others. Hints of137

seasonality are indicated in Fig. 2c, which shows the total event days for each138

month. In particular, the archetypes that most clearly resemble El-Niño are139

(archetypes #3 and #4) show a clear expression in summer months.140

141

The key result from the previous analysis is that AA reveals broad-scale, oc-142

casionally persistent modes of variability, and that these modes are associated143

with areas of warm and cold anomalies around Australia and New Zealand.144

We now follow the ‘outside-in’ methodology and investigate the links between145

regional extreme ocean temperatures and these broad-scale patterns through a146

series of case-studies.147

148

South-Eastern Indian Ocean Marine Heatwaves149

The southeastern Indian Ocean basin is a recognised global warming hot-spot,150

warming faster than the global average29 was the location of one of the most151

intense and devastating known marine heatwaves, with temperatures of more152

that 3◦C higher than the climatological average occuring in the summer of153

2010-2011.16,30–32 We now investigate the relationship of broad-scale extreme154

patterns identified by AA to the occurrence of marine heatwaves in this region.155

156

In Fig. 3a, we show the SST anomalies for the day of peak intensity of the157

2010-2011 extreme marine heatwave event (1st of March 2011) at a representa-158

tive location (30◦S,112.5◦E, indicated by the grey circle) as well as the composite159

average of SST anomalies for the day of peak intensity of all marine heatwaves160

at that location. The SST anomalies for both the single event snapshot (Fig.161

3a) and the composite average (Fig. 3b) shows warm SSTs over a broad geo-162

graphical range, from latitudes 20◦S to 35◦S, and longitude of 105◦E and the163

western coastline of Australia, with the highest temperatures generally found164
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closer to the continent. We identify a best matching archetype by comparing the165

spatial patterns shown in Fig. 3a,b with the archetypal patterns plotted in Fig.166

1, in this case archetype #1 (Fig 4c). The archetype has an almost identical167

distribution of warm SSTs over the region to that of the SST composite average168

north of 35◦S, and a strong similarity to the SSTs associated with the 2011 event.169

170

The temporal relationship between the regional marine heatwaves and the171

archetypal extreme mode can be revealed by examining the anomalous SST172

time-series at our chosen representative location (Fig. 3d) and the affiliation173

time-series for the best matching archetype (Fig. 3e). The SST anomaly time-174

series shows low-frequency variation, with periods of above or below average175

temperatures that can persist for several months to several years. Marine heat-176

waves also show low-frequency behaviour, with periods of several occasionally177

high intensity events that occur clustered together, separated by longer periods178

with few, moderate intensity events.33 Unsurprisingly, the periods of more fre-179

quent marine heatwaves are correlated with periods of higher than average SST.180

181

Recall that the affiliation time-series, shown in Fig. 3e, can be interpreted182

as the probability that a particular archetype is expressed at a given time. In183

this case, the affiliation time-series is highly correlated with periods of above184

average temperatures at our representative location. For example, the affiliation185

time-series on the 1st of March 2011, the date of peak intensity of the extreme186

marine heatwave, is a maximum and approaches 1, indicating that the best-187

matching archetype is the dominant regime during this period. The affiliation188

probability is generally high during periods of high SST and frequent marine189

heatwaves and low during periods with few marine heatwaves (e.g. 1990–1996190

and 2001–2008). The reconstruction of the representative SST anomaly using191

a single archetype (shown as the orange curve in Fig. 3d) also deviates from 0192

only during periods with frequent marine heatwaves.193

194

Having established the utility of a single archetype in capturing the broad-195

scale spatiotemporal variability associated with marine heatwaves in the south-196

east Indian Ocean, we now employ AA to identify the teleconnection patterns197

the accompany the extreme events in this region. The mean spatial-patterns for198

the satellite derived SST anomalies associated with archetype #1 are shown for199

the Pacific and Indian ocean basins in Fig. 4a, while the surface air temperature200

and the mid-tropospheric atmospheric circulation (represented by the 500hPa201

geopotential height anomaly and the 500hPa wind anomalies) are shown in Fig.202

4b. In addition to the area of anomalously high temperatures along the western203

Australian coastline, we note anomalously cool SSTs in the equatorial Pacific,204

with a temperature minimum found at approximately 170◦W, characteristic of205

the central Pacific La Niña (also known as La Niña Modoki).34,35 Investigation206

of the sub-surface temperature anomalies obtained from Argo floats along the207

equator associated with this archetype confirm this interpretation (Fig. 4c): a208

cool subsurface in the eastern Pacific down to around 300m depth, with a surface209

expression in the central Pacific, which co-occurs with a warm anomaly in the210
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Figure 3: The relationship between Marine Heat Waves and Archetype
#1 in the Southeastern Indian Ocean: a snapshot of SST anomalies for the
peak of the 2010-2011 extreme marine heatwave event, which occurred on the 1st
of March, 2011; and b SST composite average for all marine heatwave detected.
Statistics are calculated at the representative location 30◦S,112.5◦E, indicated
by the grey circle. c the SST anomalies for best matching archetypal pattern
(archetype #1); d time-series of SST anomalies (black) and the reconstruction
from archetype #1 (orange) at the representative location shown in panels a–c ;
e time-series of archetype affiliation probability for archetype 3. Colored bands
in panels d,e indicate marine heatwaves occurrences, coded by the severity
category described in Hobday et al. 2018 32

8



20.0 E 60.0 E 100.0 E 140.0 E 180.0 140.0 W 100.0 W 60.0 W

60.0 S

40.0 S

20.0 S

0.0 N

20.0 N

a
1m. s 1

20.0 E 60.0 E 100.0 E 140.0 E 180.0 140.0 W 100.0 W 60.0 W

60.0 S

40.0 S

20.0 S

0.0 N

20.0 N

b

20.0 E 60.0 E 100.0 E 140.0 E 180.0 140.0 W 100.0 W 60.0 W
300

200

100

0

D
ep

th
 (

m
)

c Africa  Maritime
 Continent

South
 America

3

2

1

0

1

2

3

M
E

I/S
A

M
 in

de
x

MEI
SAM

19
84

19
88

19
92

19
96

20
00

20
04

20
08

20
12

20
16

20
20

0

0.2

0.4

0.6

0.8

1

A
ffi

lia
tio

n 
P

ro
b.

d

1 0.75 0.5 0.25 0 0.25 0.5 0.75 1
Surf. Air Temp Anomaly ( C)

1 0.75 0.5 0.25 0 0.25 0.5 0.75 1
Surf. Air Temp Anomaly ( C)

1.5 1 0.5 0 0.5 1 1.5
Ocean Temperature Anomaly ( C)

1.5 1 0.5 0 0.5 1 1.5
Ocean Temperature Anomaly ( C)

Affiliation
Moderate
Strong
Severe
Extreme

30 20 10 0 10 20 30
Lag (months)

1
0.5

0
0.5

1

C
ro

ss
-C

or
r

e
Cross-corr MEI
Cross-corr SAM

Figure 4: Teleconnections Associated with Marine Heat Waves in
the Southeastern Indian Ocean: a SST anomaly; b surface temperature
(colours) with anomalous mid-tropospheric (500hPa) geopotential height (con-
tour lines, contour interval 5m) and winds (vectors); and c equatorial subsurface
temperatures, associated with archetype #1, the best-matching archetype for
marine heatwaves in the southeast Indian Ocean. d The affiliation time-series
(solid black) together with the multivariate ENSO index (MEI, grey) and the
Marshall SAM index (blue). Periods of marine heatwaves are indicated by red
shading. e the lagged cross-correlation between the affiliation time-series and
the MEI (gray) and the Marshall SAM index (blue). Negative lags correspond
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western Pacific. The thermocline anomalies in the western Pacific are known211

to propagate via oceanic teleconnection to instigate the southeast Indian Ocean212

marine heatwave.36 We note that there is much weaker sub-surface temperature213

expression in the equatorial Indian Ocean.214

215

The anomalous mid-tropospheric atmospheric circulation associated with216

this archetype (Fig. 3b) shows warm surface air temperatures over the south-217

east Indian Ocean region, along with wind anomalies from the east, which are218

likely to contribute to the above average temperatures by bringing warmer air219

from the Australian continent over the ocean. Note that cyclonic wind anoma-220

lies in the southeast Indian Ocean are often associated with locally amplified221

marine heatwave events37 which is more evident in near-surface wind field (not222

shown). Equatorial Pacific the surface air temperatures are suppressed and the223

mid-tropospheric winds show the characteristic divergence pattern associated224

with the central Pacific La Niñas.34 A ridge of high pressure extends across the225

Southern Ocean and anomalously strong eastward winds associated with the226

polar jet stream are found south of 55◦S, which is a feature characteristic of the227

positive phase of the Southern Annual Mode (SAM).38228

229

To further illustrate the relationship between the archetype and the climate230

modes, we plot the affiliation time-series in Fig 4d together with the Multi-231

variate ENSO Index39 (MEI) and the SAM index.40 Significant anti-correlation232

between the affiliation time-series and the MEI can be seen in Fig. 4d. The233

apparent anti-correlation between these metrics is confirmed by a lagged cross-234

correlation analysis (Fig. 4e), which shows negative cross-correlation coefficient235

of ∼0.5 with the MEI index leading the affiliation by ∼6 months. We perform236

a similar lagged cross-correlation analysis between the the Marshall SAM index237

and the affiliation, finding only a weak correlation near zero lag, a maximum238

cross-correlation coefficient of 0.15.239

240

We have clearly identified two different teleconnection patterns that con-241

tribute to the development of marine heatwaves in the southeast Indian ocean.242

The dominant driver is found to be central Pacific La Niña, with the SAM a243

potential secondary driver. We note that there could be other regional drivers244

of the marine heatwaves in the region, such as the Indian Ocean Dipole and245

regional air-sea coupling, which are not assessed in this study.246

247

South Pacific and Tasman Sea Marine Heatwaves Near New248

Zealand249

Our next case study concerns the South Pacific and Tasman Sea regions near250

New Zealand. This region was the site of a severe category marine heatwave in251

the Austral summer of 2017-2018, that co-occurred with extreme land tempera-252

tures.41,42 The impacts of this event were widespread, with the largest recorded253

10



annual loss of glacier ice mass in New Zealand’s recorded history.41254

255

We plot SST anomaly for the peak of the 2017-2018 marine heatwave event256

at a representative location (here 45.9◦S,171◦E, 5th December 2017) and the257

composite average of all events at this location in Fig 5a,b. The spatial pat-258

terns in the single day snapshot and the composite average are very similar,259

albeit with different magnitudes, with warm SST centered near New Zealand’s260

south island (approximate longitude 170◦E, latitude 45◦S), extending west into261

the Tasman Sea.262

263

The pattern of the best-matching archetype (archetype #2 of Fig. 1g-h),264

which we plot in Fig. 5c shows a remarkable visual similarity between the265

spatial patterns in Figs to both the showing the same anomalously warm SST266

localised around New Zealand. The temporal evolution of the SST anomalies267

and the affiliation time series, shown in Figs 5d,e, showing that the extreme268

events are efficiently captured by a single archetype. As in the previous case269

study, marine heatwaves cluster, with a number of events occurring in a rel-270

atively short period of time, punctuated by longer periods with only a small271

number of isolated, weaker events. With only a single exception (between 1989272

and 1991), the marine heatwave clusters occur during periods where the affil-273

iation time series is persistently greater than 0.5. Examples of these periods274

are 1984–1987, 1999–2004, 2005, 2013–2015; and 2018-2020. We note also that275

the peak of the 2019-2020 severe marine heatwave (Fig. 5a) co-occurs with the276

absolute maximum of the affiliation time-series.277

278

As before, we examine the broad-scale SST (Fig. 6a); mid-tropospheric at-279

mospheric circulation Fig. 6b; and equatorial sub-surface temperatures (Fig.280

6c) associated with the best-matching archetype. Concurrently with anoma-281

lously high SST centered on New Zealand (longitude ∼170◦E, latitude ∼45◦,282

indicated by the box in Figs. 6a–c), cooler SSTs are seen in the equatorial283

Pacific, extending from a longitude of 180◦ to South America, reminiscent of La284

Niña. In contrast to the previous case-study, both the anomalous atmospheric285

circulation, surface air temperatures (Fig. 6b) and the sub-surface ocean tem-286

peratures (Fig. 6c) are weak in the equatorial region. However, a strong blocking287

high pressure system can be seen in the atmospheric field to the east of New288

Zealand. The anomalous atmospheric circulation directs warm air from the289

north and reduces cloud cover over the region, consistent with previous work290

that attributes the severe 2017-2018 event to a similar persistent blocking sys-291

tem.41,42292

293

The spatial patterns shown in Figs. 6a,b suggest that marine heatwaves294

around New Zealand are associated with classical La Niña type patterns, as295

well persistent atmospheric blocking high pressure systems. However, a lagged296

cross-correlation shows only weak correlation of the affiliation time-series with297

the multivariate ENSO index (Fig. 6d and inset panel), with a peak correlation298

coeffcient of -0.25 at a lag of zero, and we note that the magnitude of the ocean299
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temperature anomalies in Figs 6a,c are weak, which suggests that forcing from300

La Niña conditions in the equatorial Pacific plays a only a secondary role to301

that of the intense atmospheric blocking.302

303

Previous studies have also attributed marine heatwaves in the region to304

forcing associated with the Southern Annular Mode.41,42 However, the lagged305

cross-correlation shows no strong correlation between the affiliation time-series306

and the SAM index, with peak correlation coefficient of less than 0.1, which307

does not exceed the threshold for statistical significance. Additionally, the spa-308

tial patterns of anomalous atmospheric circulation are not strongly reminiscent309

of the SAM.38 The spatial patterns are, however, similar to the anomalous at-310

mospheric circulation associated with a mode of climate variability known as311

the Pacific South-America (PSA) pattern. The monthly PSA index,43 is plot-312

ted together with the affiliation time-series in Fig. 6d. Despite the presence313

of high-frequency fluctuations, there is evidence of anti-correlation of the PSA314

index with the affiliation time-series. However, we note that the relationship is315

weak, with a peak correlation coefficient of ∼0.15.316

317

The analysis conducted here suggests that although both classical La-Niña318

and PSA climate modes play a role on driving marine heatwaves around New319

Zealand, individually each of these climate drivers has only a weak influence,320

with the dominant role being played by localised atmospheric blocking high-321

pressure systems. However, blocking highs have long been associated with ex-322

treme weather events, including marine heatwaves,17,44 there is currently no323

generally accepted theory that completely explains their dynamics.45 Further324

investigation using the techniques developed in this study could provide further325

insight into the dynamical origins of these phenomena and their interaction with326

broad-scale climate states.327

Coral Sea and Great Barrier Reef Marine Heatwaves328

For our final case studys, we turn our attention to marine heatwaves in the329

Coral Sea and Great Barrier Reef (GBR) to the north-east of Australia. Sum-330

mertime marine heatwaves are known to induce mass coral bleaching events,331

as high ocean temperatures are a necessary (but not sufficient) condition for332

coral bleaching.46,47 The GBR suffered heat-induced mass bleaching events in333

in 1998, 2002, 2006, followed by 3 events during the period 2016, 2017 and334

2020.48335

336

In Fig. 7a, we show the composite average of anomalous SST for all summer-337

time (December, January and February) marine heatwave events at a location338

representative of the “central” and “northern” regions of the GBR, as well as339

daily snapshots of anomalous SST for two marine heatwave events: March 2016340

(Fig. 7b) and February 2020 (Fig. 7d), that were implicated in instances of341

mass coral bleaching. The composite average SST anomaly for all marine heat-342

wave events shows the anomalies close to the Australian coastline, tending cooler343
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further offshore. A similar SST pattern can be seen in the daily snapshot of344

SST anomalies for the 2020 marine heatwave event (Fig. 7b). The 2016 event,345

in contrast, shows elevated SSTs extending further north and more broadly over346

the Coral Sea.347

348

Unlike in the previous case studies, we find that at least 2 archetypes,349

archetypes #3 (Fig 7c) and #4 (Fig. 7e) are required to capture summer-350

time marine heatwaves in the GBR region. These archetypal patterns show a351

similar spatial structure to the daily snap-shots corresponding to the peaks of352

the two events shown in Figs. 7b,d, and are more strongly expressed during the353

summer months (see Fig. 2c) The utility of using two archetypes becomes clear354

when we investigate the relationship between the affiliation time-series and the355

SST anomalies at the representative location (Figs. 7f,g), shows that marine356

heatwaves associated with major coral bleaching periods are well captured by357

one or the other archetype, with the only major exception being the 2017 coral358

bleaching event. Additionally, we note that marine heatwaves at this location359

always occur when the affiliation of one of our two best-matching archetypes360

exceeds 0.5.361

362

We now investigate large-scale patterns associated with summertime marine363

heatwaves in the GBR region. The anomalous SSTs (Fig. 8a), and surface air-364

temperatures (Fig. 8b, colors) for archetype #4, which was strongly expressed365

during the severe 2016 coral bleaching event. The large-scale SST patterns366

shows strong positive anomalies (of 1–1.5◦C) in the equatorial Pacific, charac-367

teristic of the mature phase of classical El-Niño conditions. Concurrent warm368

surface temperatures through the majority of the Coral sea, northern Australia369

and the maritime continent. Anomalous mid-troposphere circulation (Fig. 8b)370

shows further El-Niño like conditions, with weak westward trade-winds over the371

Coral Sea, reinforced by a blocking high pressure system over New Zealand. The372

presence of El-Niño conditions can also be seen clearly in the sub-surface ocean373

temperatures (Fig. 8c), with anomalously warm temperatures in the eastern374

basin, and corresponding cooler sub-surface temperatures in the western basin.375

376

The affiliation time-series associated with archetype #4, shown in Fig. 10d,377

shows a clear positive correlation with the MEI, with the later tending to have378

a reach a maximum 2 month prior to a maximum in the affiliation probability.379

The lead-lag relationship with the MEI suggest that marine heatwaves in the380

GBR region may occur two to three months after the peak of El Niño events,381

which is consistent with the published literature.47,49382

383

We have performed a similar ‘zoomed out’ analysis of archetype #3, shown384

in Fig. 9. However, unlike with previous case-studies, the broad-scale spa-385

tial patterns associated with archetype #3 show no strong signatures in either386

oceanic or atmospheric fields near GBR region, with the exception of warm but387

relatively weak temperature anomalies in the central Pacific, which resemble388

the decaying phase of a central Pacific (Modoki) El-Niño. We note a weak pos-389
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itive correlation (Fig. 8b, maximum value of ∼0.25 at zero lag) with the ENSO390

Modoki index and no significant correlation with the MEI.391

392

While archetype #4 can be easily interpreted as an El-Niño like pattern, the393

interpretation of archetype #3 is more ambiguous, suggesting a role for local394

dynamics not identified by the large-scale patterns extracted by AA.50395

396

Additional Case Studies397

In this study, we have focused on marine heatwaves that are efficiently de-398

scribed by AA. However, AA is capable of representing cold extremes as well.399

To illustrate this, two case studies of marine cold spells are included in the sup-400

plementary material. Additionally, it is important to note that the power of AA401

lies in its ability to recognise extreme states over large spatial scale and hence402

that extremes at a regional scale that are driven by local processes may not be403

well captured by AA. An additional case study is provided to demonstrate a404

case that is not well captured by AA.405

Evaluation of Teleconnections associated with ex-406

tremes in a Climate Model407

Numerical ocean and climate models are a vital tool employed both to predict408

distinct extreme events on timescales of days to weeks,3,4, 7 for projections of409

their statistics, such as frequency, intensity and duration, years and decades410

into the future as the climate warms20,51 or for climate change attribution of411

particular events.19 However, as is well known, climate models are imperfect412

representations of reality, and the representation of extreme events in numerical413

models is sensitive to the model resolution and biases.20,52 Climate models,414

particularly at the coarse resolution used for climate projections, typically do415

not capture the tail of the temperature probability distribution, and produce416

‘extremes’ that are simply not as intense or frequent as in reality52,53 (see also417

supplementary material).418

However, if climate models are able to capture the broad-scale fields and419

teleconnections associated with local extreme events, it may be less important420

that the model is incapable of representing the subtleties of those events at the421

local scale. For example, a model may well approximate the ENSO teleconnec-422

tion patterns that are associated with increased probability of extreme events in423

certain regions, even if the model does not capture the localised extreme events424

themselves. Down-scaling may improve the representation of the local extremes,425

but only in the case that the teleconnections are captured by the low-resolution426

model.427

Here, AA is employed to assess the capability of a coupled climate model to428

represent the extreme broad-scale patterns. We apply the technique to a long429

run of a climate model (the Australian Community Earth Systems Simulator430
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Decadal - ACCESS-D) with steady radiative forcing set at perpetual 1990 lev-431

els54 (see methods). Eight archetypes are obtained from the final 39 years of432

detrended model SST anomalies (ie. the same length as satellite SST observa-433

tions), over a domain identical to the observational case-studies.434

435

We show the four climate model archetypal most similar to those utilised in436

the previous case studies in Fig. 10. For each archetypal pattern we show the437

large-scale SST anomaly (left column), the surface air-temperature anomaly and438

anomalous mid-tropospheric circulation (center) and the affiliation time-series439

along with the C-matrix weights used to construct the archetypes (right).440

441

In the case of south-east Indian ocean (Fig. 10a–c) and Tasman Sea marine442

heatwaves, we note a strong similarity between the climate model archetypal443

patterns and those obtained from the observations (shown in Figs 4 and 6). In444

the case of the Southeast Indian region, the model archetypal patterns show445

similar anomalous SSTs along the west Australian coastline and cool equato-446

rial Pacific SSTs, reflective of La-Niña like conditions. The model places the447

coolest SST anomalies further to the west than in the observations. The climate448

model also accurately reproduces the broad atmospheric circulation anomalies449

and surface air temperatures over the Australian continent (Fig. 10b). The450

archetypal patterns also reveal that the model captures conditions similar to451

those identified in the New Zealand case study (Fig. 10d–f). In particular, a452

large atmospheric blocking high pressure system that closey corresponds to the453

region of highest SST anomalies near New Zealand , although we note that the454

center of action is shifted significantly to the south and east when compared455

with observations.456

457

However, when we consider teleconnentions associated with extreme the458

model’s El-Niño like modes, shown in Figs. 10g–i and 10j–l, which are sim-459

ilar to those studied in the GBR case study, we find that the teleconnections460

are less reflective of observed patterns. In particular, we note that, in the equa-461

torial Pacific, the high SST is significantly to the west of the observed position,462

which results in anomalously cool SSTs in the GBR and Coral Seas, insteade.463

AA reveals clearly how biases in the representation of the equatorial Pacific464

impact the model’s ability to simulate important teleconnections.465

466

To summarize, we apply AA to assess the ability of a climate model to467

accurately represent the extreme climate modes previously identified in our468

observational case-studies. Remarkably, the model produces modes that are469

similar to those obtained from the satellite observations. However, subtle model470

biases, such as the position of warm equatorial SST in the model’s simulation471

of El-Niño, can strongly influence the model’s teleconnections. The results of472

this analysis have implications for prediction of marine heatwaves at timescales473

longer than a few weeks, or projection of marine heatwaves in future climate474

states, as only those models capable of simulating the extreme climate states475

will be capable of predicting local extreme events related to the broad-scale476
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Figure 10: Broad-scale patterns associated with marine extremes in a
climate model: anomalous SST (left), surface air temperature (colours) and
mid-tropospheric (500hPa) atmospheric circulation patterns (center), and affil-
iation time-series (right) that correspond the archetypes that marine heatwaves
in the a–c southeast Indian ocean, d–f southwestern Pacific near New Zealand;
and g–i Great Barrier reef/Coral Sea region.
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patterns, and there an ’outside-in’ approach to assessing extremes in a climate477

model is of obvious utility.478

Perspectives and Conclusions479

In this work, we demonstrate that our novel ‘outside-in’ approach to charac-480

terizing extreme SST patterns using archetypal analysis (AA) is able to clearly481

identify the relationships between large-scale oceanic and atmospheric condi-482

tions and certain regional marine heatwaves. AA provides a minimal description483

of these extreme regional events, reducing the complex multi-faceted system to484

only one or two variables. The power of this approach is shown through several485

case studies, that identify not just the climate mode most likely to be associated486

with regional extreme SSTs (e.g. El Niño or La Niña), but also the atmospheric487

and oceanic teleconnection patterns, and the temporal relationships between the488

those climate modes and the expression of the archetype, as well as the impor-489

tance of the flavour or phase of ENSO (i.e. classical or central Pacific/Modoki).490

491

Of the events studied here, both El-Niño and La-Niña conditions, in their492

various forms, are identified as the dominant influence on marine heatwave493

occurrence in two of the three case studies (the southeast Indian Ocean and494

GBR/Coral Sea), and perhaps a secondary influence in the 3rd (Southwest Pa-495

cific/New Zealand events). However, our analysis has revealed that the flavour496

and phase of ENSO plays an exceedingly important role as well. For example,497

our investigation of the southeast Indian ocean region has shown that marine498

heatwaves are frequent and intense in this region only during the central Pa-499

cific/Modoki phase of La Niña. Application of our method to numerical model500

output has presented an alternative methods for the assessment of the repre-501

sentation of extremes in short term climate forecasts and climate projection.502

Extremes503

504

It is important to note that while AA efficiently describes the large-scale505

patterns associated with extremes, it will not capture all individual events, par-506

ticularly those driven by local processes. This should not be seen as a drawback,507

as this fact provides a mechanism for distinguishing between events driven by508

large-scale climate modes and those dominated by local processes. We have also509

not attempted to use AA to diagnose the distinct physical drivers of the events510

under study, and further work will prioritise blending process-based understand-511

ing with data-driven approaches. Although applied to marine heatwaves in this512

study, the approach can, in principle, by applied to a wide range of other phys-513

ical phenomena, such as sea-level extremes or terrestrial heatwaves.514

515

The novel approach presented in this study provides a viable and robust man-516

ner for linking large-scale variability and regional extreme events that, in-turn,517

provides an improved understanding of the links between large-scale drivers and518

the local impacts.519
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Materials and Methods520

Data521

Sea Surface Temperature522

In this study, we use a satellite derived sea-surface temperature product as our523

primary dataset: version 2.1 of the National Oceanic and Atmospheric Adminis-524

tration’s Optimum Interpolation SST Advanced Very High Resolution Radiome-525

ter only product (NOAA OISST-AVHRR only) which has data for the period526

1st January 1982 to 31st December 2020 (hence 39 years)55,56 and anomalies are527

computed relative to this period. Data are provided at daily output frequency528

on a regular 0.25◦× 0.25◦ regular latitude/longitude grid.529

530

Atmospheric Reanalysis531

The atmospheric reanalysis used in this study is the Japanese 55-Year Reanal-532

ysis (JRA55)57,58 provided on a 1.25◦×1.25◦ latitude/longitude grid. In our533

analysis, we use daily means of the original 6 hourly output, and restrict our at-534

tention to the period 1st January 1982 to 31st December 2020 (i.e. an identical535

periods to that of SST data).536

Subsurface temperature537

The subsurface temperature data employed is the optimally interpolated prod-538

uct developed at the Scripps Institute of Oceanography,59 which is based on539

profiles obtained by the international Argo program.60 This product provides540

estimates of ocean temperatures from the surface to 2000db of depth, on a reg-541

ular 1◦×1◦ latitude/longitude grid. These data are only available from the year542

2004 onward. The Argo temperature profiles were collected and made freely543

available by the International Argo Program and the national programs that544

contribute to it. (http://www.argo.ucsd.edu, http://argo.jcommops.org). The545

Argo Program is part of the Global Ocean Observing System.60546

Climate mode indices547

In our regional case studies, we correlated affiliation time-series for the best-548

matching archetype with the various climate indices to illustrate the connection549

between the extreme modes identified by the AA and more familiar climate550

modes. The source of these indices are:551

• Multivariate ENSO (MEI) Index (MEI): A measure of the variability552

in the equatorial Pacific (30◦S-30◦N and 100◦E-70◦W) that uses principal553

component analysis to combine 5 oceanic and atmosphere variables (sea554

level pressure, sea surface temperature, zonal and meridional components555

of the surface wind, and outgoing long-wave radiation) into a single in-556

dex.39,61 Large, positive values correspond to El-Niño conditions, while557
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large negative values correspond to La-Niña conditions. Values are pro-558

vided at monthly frequency from the December-January 1979 to present.559

These data were sourced from the National Oceanic and Atmospheric Ad-560

ministration’s Physical Science Laboratory (https://psl.noaa.gov/enso/mei/);561

• Marshall Southern Annular Mode (SAM) Index: The strength of562

the SAM reflects the position and strength of the westerly winds that blow563

over the Southern Ocean between latitudes of 40◦S and 65◦. The Marshall564

SAM index is constructed from sea-level atmospheric pressure observations565

taken at 12 weather stations on the Antarctic continent and some sub-566

Antarctic islands. Values are available at monthly intervals. These data567

were sourced from the British Antarctic Survey (https://legacy.bas.ac.uk/met/gjma/sam.html);568

• Pacific South America Pattern Index: A measure of the strength569

of a large, quasi-stationary wave train extending from Australia to Ar-570

gentina. It is defined in this study as the 2nd (PSA1) and 3rd (PSA2)571

principal component time-series of the geopotential height anomalies at572

500hPa from the JRA55 reanalysis in the southern hemisphere. We note573

that the interpretation of the PSA is complicated by its definition using574

statistical properties (ie. the principle components) and as opposed to a575

definition based on dynamics. In reality, the PSA may be composed of a576

superposition of travelling and stationary disturbances that can interact577

with each other,43 as the PSA1 and PSA2 modes, while being in approx-578

imate phase quadrature, have a relatively low coherence in the relevant579

frequency bands.26 In this study, we use the generally accepted definition580

by convention, but the reader should bear in mind that the exact nature581

of the PSA is still a matter of some debate.582

Climate Model583

we use a 2500 year long run variant of the GFDL Climate Model 2.1 (CM2.1),62584

used in older versions of the Australian Community Climate and Earth System585

Simulator (ACCESS). The model uses the same atmospheric, land, and sea ice586

components as CM2.1 (AM2, LM2 and SIS respectively) but uses the Modu-587

lar Ocean Model (MOM4p1). The ocean model grid is the tripolar ACCESS-588

o grid63 with a nominal grid spacing of 1◦ but with a finer latitudinal grid589

spacing in the tropics and the southern hemisphere high latitudes. There are590

50 vertical levels, with 10m grid spacing in the upper ocean, increasing to a591

maximum of 300 m. Subgrid processes for the ocean model are adopted from592

CM2.1, including neutral physics (Redi diffusivity and Gent-McWilliams skew593

diffusion), Brian-Lewis vertical mixing profile, Laplacian friction scheme and594

a K-profile parametrisation for the mixed layer calculation. The atmospheric595

model (AM2) has a grid spacing of 2◦ in latitude and 2.5◦ longitude, and 24596

hybrid (sigma-pressure or terrain following pressure) vertical levels. Concentra-597

tions of atmospheric aerosols and radiative gases, and land cover are based on598

1990 conditions. The model’s ocean temperature and salinity fields are restored599

to World Ocean Atlas 2013 (WOA13) climatology at depths below 2000m, with600
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a restoring time-scale of 1 year which improves the model’s representation of the601

upper ocean stratification, at the expense of suppressing variability with multi-602

decadal time-scales, which is not the focus of this work. The model achieves603

approximate statistical equilibrium after around 1500 years, with minimal drift604

in either temperature or salinity.605

606

Although CM2.1 is an older climate model, used within the Coupled Model607

Inter-comparison Project phase 3 (CMIP3), we have opted to use it in this608

project due to its low numerical cost and relatively good performance in repli-609

cating the broad-scale variability over the Australian region.610

Methods611

Archetype Analysis612

Mathematical Formulation613

The analysis undertaken in this study employs Archetypal Analysis – an ad-614

vanced data mining methodology that has been applied in fields ranging from615

marketing to astronomy. However, AA has only recently been applied to geo-616

physics problems. Here we give a brief description of the AA problem and its617

implementation.618

619

AA falls into a broad class of mathematical methods known as matrix fac-620

torisation. The goal of such methods is to represent a complex, high dimensional621

dataset as the product of several, simpler and lower dimensional datasets. In622

AA, for a given spatiotemporal dataset, x(r, t) represented as a data matrix623

X ∈ R
M×T , where T is the number of time observations and M is the number624

of variables considered (i.e., number of grid-points in the SST dataset), we seek625

to find P << M ‘archetypal’ states, z, that best represent the data:626

xr,t ≈ x̃r,t =
P∑

i

zr,isi,t i ∈ [1, P ] (2)627

where the subscript t refers to the time index, and the subscript m to the spatial628

index. si,t is the affiliation probability of the ith archetype, which is subject the629

constraints:630

si,t ∈ [0, 1] and
P∑

i

si,t = 1. (3)631

The first of these constraints indicates that s can only take values between632

0 and 1, the second indicates that, at any given time, the sum of the affiliations633

across all archetypes is equal to one. Matrices with this property are known as a634

left stochastic matrices. Mathematically, we say that x̃ is a convex combination635

of the archetypal patterns and corresponds only to an approximation of x(r, t).636

In AA, the archetypes themselves are written as required to reassemble the data.637
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To enforce this, the archetypal patterns are written as a mixture of the data638

themselves:639

zr,i =
T∑

t

xr,tct,i i ∈ [1, P ] (4)640

where ct,j are the mixture weights for archetype j, that have the constraints:641

642

ct,j ∈ [0, 1] and
T∑

t

ct,j = 1. (5)643

Matrices with this property are known as left stochastic matrices. Like with644

the affiliation probability, the c weights are constrained to take values between645

0 and 1. The weights associated with the ith archetype, ct,i sum to 1 over all646

time steps. In the case that the number of archetypes is equal to the number647

of time-steps in the dataset x(r, t) = x̃, a trivial solution where each archetype648

corresponds to a the field at a single time-step.649

650

Combining Eqns. 2 and 4 gives:651

xr,t ≈ x̃r,t =
P∑

i

T∑

j

xr,jcj,isi,t = XCS (6)652

where we write the double summation as a matrix product between the original653

data matrix X ∈ R
M×T , the C-matrix C ∈ R

T×P
≥0 , and the affiliation matrix654

S ∈ R
P×T
≥0 . The archetypal spatial patterns, such as those shown in Fig. 1, are655

given by:656

Z = XC ∈ R
M×P (7)

The problem is now: for a given data matrix X, can we find the ‘best’ C657

and S matrices, which is accomplished through the minimization problem:658

{S,C} = argmin
S,C

∥X−XCS∥F (8)659

where ∥ · ∥F is the Froebenius norm, defined as the square root of the sum of660

the squared absolute value of all matrix elements.661

662

While the manipulations written above may seem esoteric, the AA decom-663

position has a relatively straightforward interpretation. Eqn. 7 states that the664

spatial archetypal patterns are simply as an average of the original data weighted665

by the elements of the C-matrix (more specifically, a convex combination) of the666

original data, while Eqn. 6 shows that the original data can be approximated by667

an average of the archetypal patterns weighted by the elements of the S-matrix.668

669
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Geometrical Interpretation of Archetypes670

In the main text, we have referred to the archetypal patterns as extreme modes.671

However, from the mathematical formulation of the problem above, it may not672

be readily apparent how we arrive at the statement.673

674

Formally, the problem above can be shown to be equivalent to finding a dis-675

creet approximation to the convex hull of the dataset.22,24,64 The convex hull is676

defined as the smallest convex ‘envelope’ of a dataset, and can be considered to677

be the boundary of a (potentially high dimensional) dataset. Since the convex678

hull of a dataset and the convex hull of its extreme points are identical, approx-679

imating the convex hull is equivalent to finding the extreme points (or corners)680

of the data underlying distribution.681

682

As first shown by Cutler & Breiman,22 the archetypal patterns are (approx-683

imately) located on the convex hull and are, therefore, approximations to the684

(high dimensional) extremes of the data. This astonishing result occurs due to685

the constraints imposed on the S and C matricies in Eqns. 3 and 5: that these686

matricies are non-negative and stochastic.64687

Numerical Implementation688

The minimization problem posed in Eqn. 8 has no analytic solution for all but689

the simplest datasets and must be solved numerically in real-world applications.690

However, AA falls into a class of problems (non-negative matrix factorisation)691

that are known to be NP-Hard ,65 which implies that, in general, only approxi-692

mations to the ‘true’ solution can be obtained.693

694

An increasing number of open-source AA algorithms are freely available695

and have been implemented for most major computing language in use today.696

Throughout this work, we rely on the MatLab implementation, PCHA, by Mørup697

& Hansen,66 whereby the optimization problem sketched in Eqn. 8 is efficiently698

computed through a simple, but robust, projected gradient method.699

700

In order to deal with the high dimensionality of geophysical fields, we apply a
modification of AA, coined Reduced Space AA (RSAA), introduced for the first
time in67 to reduce the spatial dimension of the problem and its computational
burden. RSAA takes advantage of the invariance of the Froebenius norm in
Eqn. 8 under unitary transformation:

{S,C} = argmin
S,C

∥UΣV −UΣVCS∥F = argmin
S,C

∥ΣV −ΣVCS∥F , (9)

where the spatial patterns or Orthogonal Empirical Functions (EOFs) charac-701

terised by the unitary matrix U ∈ R
M×R can be factored out of the equation702

when a compact Singular Value Decomposition (SVD) is applied to the data703

matrix X = UΣV. The optimization is only performed on the scaled Principal704
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Components (PCs), expressed as ΣV ∈ R
R×T in Eqn. 9, with Σ ∈ R

R×R
>0 the705

eigenvalue matrix where R ≤ min{M,T} is the rank of the data matrix X. To706

recover the archetypal patterns Z, the solutions ΣVC need to be left-multiplied707

by U such that Z = UΣVC. Typically, RSAA uses a low-rank approximation708

of X, X̃ = UΣ′V, with Σ′ ∈ R
R′×R′

>0 and R′ << R.709

710

When applied to detrended OISST daily pentad (5 day averages) anomalies711

in the Australasian region (60 – 0° S, 90 – 240° E), the dimension reduction712

step allows a M=130349/R′=840 ≈ 155-fold reduction in the number of vari-713

ables, in our case grid points, the number of observations T = 2849 being left714

unchanged. The reduced rank R′ = 840 is the number of retained PCs in the715

truncated SVD factorisation in Eqn. 9. R′ corresponds to 95% of the total716

variance of X. A similar approach and level of variance truncation are applied717

to the climate model data set.718

719

Although the projection gradient algorithm used to solve Eqn. 9 can be720

shown to converge to a solution for a suitable initialisation, there are how-721

ever no guarantees that this solution is optimal given the NP-Hard character722

of the problem. An iterative procedure is required and achieved by resorting723

to multiple initialisations. Here, we combine one clustering and random based724

initialisation strategies, whereby the data driven ‘FurthestSum’ procedure ad-725

vocated by66 is compared to 999 random initialisations prescribed by68 based726

on ‘coreset’ construction for AA. The optimal solution across 1000 trials is727

kept as the final result. For each individual trial, the projection gradient al-728

gorithm PCHA is considered to have converged when the relative sum of square729

error stopping criterion reaches 10−8.730

Forming Composite Fields Using Affiliation (S-Matrix) and731

archetype weights (C-Matrix)732

Once an affiliation time-series has been computed, it can be applied as a weight
to form clusters or composites in order to identify the climatic states associated
with any particular archetype. For example, in this study, we have extracted
atmospheric and sub-surface ocean patterns associated with the extreme states
identified in the SST by the AA in order to demonstrate the remote telecon-
nections that may influence the regional extremes. This utility arises from the
interpretation of the affiliation time-series as the probability at time t that the
data is associated with the ith archetypal pattern zi:

24

si,t = Pr (zi|xt) . (10)

As such, the affiliation can be used to associate any dataset with the ith archety-733

pal state.734

735

To derive the spatial fields of a supplemental dataset (for example, atmo-
spheric geopotential height at 500hPa) y = y(space, time) = ym,t associated
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with the ith archetype, we simply compute the temporal average of y weighted
by si:

ym,i =

∑T

t ym,tsi,t∑T

t st,i
=

YST

∑T

t st,i
. (11)

In this study, AA is applied to an SST dataset with a temporal period736

from 1st January 1982 to 31 December 2020, at 5 day output frequency. As737

such, the affiliation time-series spans an identical time-period with identify out-738

put frequency. However, the atmospheric reanalysis spans a longer time-period739

(1958-present) with daily output frequency, while the Argo derived sub-surface740

temperature dataset spans a shorter time-period (2004-present) at monthly out-741

put frequency. In order to apply Eqn. 11 to these datasets, the JRA55 fields742

are first down-sampled to a 5 day output frequency by first low-pass filtering743

the data using a standard box-car filter with a cut-off period of 1/5 days, then744

sub-sampled to five day output frequency, truncated to the same temporal pe-745

riod as the SST data, which allows direct application of 11. In the case of the746

sub-surface temperature dataset, the affiliation time series is down-sampled and747

truncated to match that of the Argo product.748

A similar procedure using the archetype weights (C-matrix) may also be

enacted. However, since
∑T

t ci,t = 1, the weighted average is simply:

ym,i =
T∑

t

ym,tci,t = YC (12)

Determination of the Statistical Significance of the Com-749

posite Fields750

At present, the question of determining the significance level of archetypcal751

patterns is unresolved. As such, in this paper, the statistical significance of752

the composite fields formed from the weighted averages is assessed by a simple,753

brute force Monte-Carlo technique. To begin, we generate synthetic S and C754

matrices by populating each element with a random number drawn from a uni-755

form distribution between 0 and 1. The rows or columns are then appropriately756

normalised to apply that the constraints in Eqns. 3 or 5. We then form compos-757

ite average fields using these synthetic matrices following Eqn. 11 (when testing758

the significance of the composites formed with the affiliation time-series) or Eqn.759

12(for testing the significance of composites formed using the C-matrix). The760

procedure is then repeated 1000 times and the 95% and 5% percentile com-761

puted. The spatial patterns obtained from the AA are then tested against these762

synthetic composites: a single pixel is considered ‘significant’ (with a 95% con-763

fidence level) if its value is less than the 5th percentile or greater than the 95th764

percentile.765

766

Archetypal patterns and the associated composite averages are almost ev-767

erywhere significant, as might be expected from a methodology that specifically768

extracts patterns associated with extreme states. As such, we have not included769

29



regions of statistical significant on figures in the main text, to avoid visual clut-770

ter. These figures can be found in the supplementary material.771

772

Identification of Marine Heat Wave/Marine Cold Spell Events773

In this study, the definition of Marine Heat Waves (and Marine Cold Spells as774

discussed in the supplementary material) follows that of Hobday et al. 201832775

with a slight modification: a MHW is detected if the SST at a particular loca-776

tion exceeds the 90th percentile for a duration of at least 10 days (as opposed777

to the standard definition of 5 days). The temperature may briefly drop below778

the required thresholds for a period not exceeding 2 days and still be declared779

an extreme event. We have imposed a slightly more strict criteria on the persis-780

tence of events in order to eliminate multiple short duration, moderate intensity781

events that occur in near-coast regions that appear to be more a response to782

high-frequency “noise” in the SST that modulated low-frequency variability.783

784

Data availability785

We have made use of publicly available data only; no new data were generated786

as a result of this study. URL and DOIs for the relevant dataset can be found787

in the Data section above.788

Computer code availability789

Source code for the climate model used in the study can be obtained from the Na-790

tional Oceanic and Atmospheric Adminstration (NOAA) Goephysical Fluid Dy-791

namics Laboratory (https://data1.gfdl.noaa.gov/CM2.X/). Source code used792

for the generation of archetypes, written in the Matlab language, is freely avail-793

able from the website of its author Morton Mørup (http://www.mortenmorup.dk/MMhomepageUpdated files/P794
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genstern, and Dáith́ı Stone. Projections of future marine heatwaves for the825

oceans around new zealand using new zealand’s earth system model. Frontiers826

in Climate, 4, 2022.827

8 John M. Wallace and David S. Gutzler. Teleconnections in the geopotential828

height field during the northern hemisphere winter. Monthly Weather Review,829

109(4):784 – 812, 1981.830

9 Neil Holbrook, Hillary Scannell, Alexander Gupta, Jessica Benthuysen, Ming831

Feng, Eric Oliver, Lisa Alexander, Michael Burrows, Markus Donat, Alistair832

Hobday, Pippa Moore, Sarah Perkins-Kirkpatrick, Dan Smale, Sandra Straub,833

and Thomas Wernberg. A global assessment of marine heatwaves and their834

drivers. Nature Communications, 10, 06 2019.835
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