Deep learning-based noise filtering toward millisecond order imaging by using scanning transmission electron microscopy

Shiro Ihara (ihara-shiro@cm.kyushu-u.ac.jp)
Kyushu University

Hikaru Saito
Kyushu University

Mizumo Yoshinaga
Kyushu University

Mitsuhiro Murayama
Virginia Tech

Article

Keywords: scanning transmission electron microscopy, image processing, deep learning, noise filtering, dislocation

Posted Date: March 25th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1482132/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Deep learning-based noise filtering toward millisecond order imaging by using scanning transmission electron microscopy

Shiro Ihara1*, Hikaru Saito1,3, Mizumo Yoshinaga2, and Mitsuhiro Murayama1,4,5

1 Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
2 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
3 Pan-Omics Data-Driven Research Innovation Center, Kyushu University, Fukuoka 816-8580, Japan
4 Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA
5 Reactor Materials and Mechanical Design Group, Energy and Environmental Directorate, Pacific Northwest National Laboratory, WA 99352, USA

* ihara-shiro@cm.kyush-u.ac.jp

Abstract

Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven materials science by taking STEM’s high affinity with various analytical options into account. As is well known, STEM’s image acquisition time needs to be further shortened to capture a targeted phenomenon in real time as STEM’s current temporal resolution is far below the conventional TEM’s. However, rapid image acquisition in the millisecond per frame or faster generally causes image distortion, poor electron signals, and unidirectional blurring, which are obstacles for realizing video-rate STEM observation. Here we show an image correction framework integrating deep learning (DL)-based denoising and image distortion correction schemes optimized for STEM rapid image acquisition. By comparing a series
of distortion corrected rapid scan images with corresponding regular scan speed images, the trained DL network is proven to remove not only the statistical noise but also the unidirectional blurring. This result demonstrates that rapid as well as high-quality image acquisition by STEM without hardware modification can be established by the DL. The DL-based noise filter could be applied to in-situ observation, such as dislocation activities under external stimuli, with high spatio-temporal resolution.

Keywords: scanning transmission electron microscopy, image processing, deep learning, noise filtering, dislocation

Transmission electron microscopy (TEM) is commonly used in various fields such as materials science1,2, biology3, and so on. Recent advancement of TEM technique has enabled us to conduct various kinds of in situ observation with different external stimuli, e.g., loading4,5, heating6,7, etc. The in-situ observation in TEM can capture real-time temporal evolution of materials even at the atomic scale. Meanwhile, probing the temporal evolution of materials requires additional considerations. So far, recent developments on imaging devices have allowed the conventional TEM (CTEM) mode to be the primary candidate for in situ observation, however, the resulting data fidelity is sensitive to the sample thickness in the CTEM mode due to the chromatic aberration of the objective lenses; the sample thickness must typically be thinner than 100 nm for high resolution imaging. This limitation on the sample thickness is considerably pushed up in the Scanning TEM (STEM) mode which is basically free from imaging lens systems8,9. The STEM can visualize even thicker samples, such as three-dimensional structures of dislocations in a steel with a thickness of 300[nm] or more10,11, micro-meter dimensions of polymer samples12 and biological cells with a thickness of 1[μm]9. The working principle of the STEM that the targeted
area is scanned and imaged point-by-point by a converged electron beam, which leads a lower
temporal resolution in principle compared to the CTEM using a continuous illumination. This
limitation in temporal resolution makes the STEM difficult to be deployed as is.

It should be noted that the current limitation in temporal resolution is not from the scanning
speed itself. The commercial STEM has already realized the scanning speed of 100 [ns/pixel] or
closer, which offers several tens of millisecond per frame for an image size of 512×512 [pixels],
reaching a video-rate. Such a rapid scanning, however, brings about poor signal intensity and
artifacts mainly coming from the hardware working principles, i.e., unidirectional blurring and
image distortion in the scanning direction. The poor signal intensity causes a non-negligible
statistical noise which is also well recognized in the rapid image acquisition by using the CTEM
unidirectional blurring and distortion, on the other hand, are unique in the STEM and
originated from the delay of the detector response as well as the hysteresis effect of the scan device
Since the scanning speed and the image quality are basically in the trade-off relationship, high
quality as well as high-speed image acquisition would be challenging without developing a
creative approach. This problem is worth conquering for establishing a STEM-based in-situ
observation framework particularly for meso-scale phenomena.

As the first step in the framework development, we have proposed a deep learning (DL)-
based noise filter. Although DL application to image processing and analysis mostly focus on
detection, segmentation, and classification of objects, DL is also utilized as a denoising
technique in the field of electron microscopy. The advantage of the DL-based noise filtering
is that the noise filter does not have to assume noise types. The vast majority of noise filters
proposed so far limitedly work for noises with predictable analytical expressions such as additive
multiplicative, Poisson, and high frequency types. On the other hand, the artifacts
arising in the rapid STEM imaging are complicatedly combined with statistical noises, and the resultant artifacts or noises are difficult to predict in advance. Our previous study16 has pointed out that the BM3D (block matching 3D)29,30, which is well known to be highly effective for removing the statistical noise, could not satisfactorily work for rapid scan STEM image denoising. In this particular study, therefore, a DL-based noise filter was developed for the rapid STEM imaging, leading to considerable improvement of speed and accuracy in STEM tomography16.

Based on our initial success, this study aims to develop further to improve the performance and versatility of DL-based noise filtering technique. The DL approach performed in this paper demonstrates that it successfully removes not only the statistical noise but also the unidirectional blurring, which could not be achieved by the DL approach proposed in the previous study16. In this paper, we firstly describe the concept of the denoising approach, where a summary of STEM image properties and the procedure of the DL are discussed. Here, STEM images of dislocations are used as a model case. Then, the performance of the newly designed DL filtering is demonstrated according to the resulting data fidelity. As noted in31,32, diffraction contrast imaging STEM, which utilizes both bright field (BF) and annular dark field (ADF) detectors, has demonstrated that this method is able to obtain quantitative information from a thicker sample region (foil thickness $>200\text{nm}$) than CTEM approach by removing undesired diffraction contrast elements such as bend contour. Thus, the present technical development would add the STEM further potential to be applied to data driving electron microscopy. The denoising technique proposed in this study would be a standard tool for rapid image acquisition by the STEM, which would be applicable to in-situ observations, including but not limited to dislocation ensembles under external stress or heating.

Concept of STEM Image Processing
A STEM image of dislocations obtained by a rapid scanning, 100 [ns/pixel], exhibits image distortion. The distortion is clearly visible in Fig.1(a) where an image obtained by slow scanning, 5[µs/pixel], is superposed for comparison. The viewing area of the rapid scan image was apparently broadened and distorted non-linearly compared to the slow scan image. Since the hysteresis of the electron beam scanning coil would cause the distortion, this problem is inevitable in regular commercial electron microscopes. The image distortion makes the training process inefficient or impossible at worst as shown in Supplementary information A, because a DL network will be forced to recognize the distortion and other artifacts including statistical noise at the same time. Thus, the image distortion must be corrected before the training process. In the process, a local image distortion in a certain part of a frame was calculated by finding the optimal linear transformation scoring the highest cross-correlation between a rapid scan image and the corresponding slow scan image. Then, this process was successively performed over the whole of the frame. Note that the image distortion was reasonably assumed to be a linear within a small width parallel to the scan direction. Technical details of the distortion correction are described in the Method section. Figures 1(b) and (c) show line profiles extracted from a rapid scan image and a slow scan image, before and after the distortion correction, respectively. In the figures, discrepancies in dip positions, which correspond to the location of dislocations marked by the solid circles (Fig. 1(b)), were recognized then corrected by the distortion correction (Fig. 1(c)).

The rapid scanning also introduces the statistical noise and unidirectional blurring originated from low electron counts, i.e., poor signal-to-noise ratio, and the delay of the detector response, respectively. Figure 1(d) compares the rapid scan image and the drift-corrected-frame-integration (DCFI) image, which is created by averaging 50 frames of the rapid scan image obtained from the same field-of-view (FOV) by using the commercial software, Velox™ (Thermo Fisher Scientific
Inc.). For the sake of visibility, the contour plot of a magnified view is also shown in Fig.1(d). Note that all the images shown in the figure were after the distortion correction process. In Fig.1(d), the rapid scan image gives rather rough contour curve while the DCFI’s contour curve appears much smoother. The roughness from the rapid scan was caused by the statistical noise and the noise was removed by the DCFI’s averaging process. The unidirectional blurring generated by the rapid scanning, however, was not removed in the DCFI image as clearly seen in the contour plot. Since the slow scan image in Fig.1(d) exhibits no blurring, the blurring is a rapid scanning-specific artifact. Even if the DCFI process improved the signal intensity by averaging 50 [frames] of rapid scan image, the unidirectional blurring remained. Therefore, a noise filter has to be developed and deployed to eliminate the rapid scanning-specific artifact. However, as shown in the Fig. 1(d) bottom-right, a conventional noise filter, for example, the block-matching-and-three-dimensional (BM3D) \cite{BM3D}, could not eliminate the unidirectional blurring, although the parameter of noise type and its variance were optimized so that the peak-signal-to-noise-ratio (PSNR) between the filtered rapid scan image and the slow scan image reached the highest. The PSNR in this study was defined as,

\[
PSNR = 10 \log_{10} \frac{\text{MAX}_1^2}{\text{MSE}},
\]

where \(\text{MSE} \) is mean squared error between a reference image and a targeted image, and \(\text{MAX}_1 \) means the maximum pixel value that an image can take. We had acquired the STEM images in 16bit, therefore, \(\text{MAX}_1 = 65535 \). To eliminate undesirable objects from an image by using a non-learning noise filter, in general, the mathematical expression of the targets has to be defined a priori. To our knowledge, the rapid scanning-specific-type artifact is not formulated so far. It is worth noting that the shape of the unidirectional blurring might depend on the signal intensity of dislocations or the shape of those as shown in Fig.1(d) top-left. In the upper part of the contour
plot, which is area containing the dislocation lying horizontally, which is the scanning direction of the STEM, with a relatively higher intensity, the unidirectional blurring prolonged compared to the lower part of the plot. This shape or intensity dependency makes the modeling of the unidirectional blurring more challenging.

The basic idea of the use of DL is that the DL network could be capable of denoising the unknown and/or not-formulated type artifacts as long as sufficient number of training data sets would be obtained. The previous study has demonstrated that the adequately trained DL-based noise filter showed better denoising performance than the BM3D16. The unidirectional blurring, however, could not be completely eliminated because the DCFI images was used as the reference. Although the training between the rapid scan images and the DCFI images does not necessitate the distortion correction, thus making the necessary training setup straightforward, there is room for improvement in denoising performance. Since the slow scan images do not contain the unidirectional blurring, the denoising performance could further be improved by using those as the training data sets. In this study, a set of distortion corrected 50[frames] × 50[FOVs] rapid scan images and the corresponding slow scan images were used for a training of U-net34 as a proof of concept attempt. The details of the distortion correction process and the training are described in the Method section.

Results

Performance of the DL filter

A distortion corrected image data set of 50[frames] × 16[FOVs] was denoised through the DL filter trained by the DCFI images or the slow scan images. Figures 2(a)-(c) show a representative rapid scan image in the test image data set and its two corresponding references, i.e., the DCFI
image and the slow scan image, respectively. The original image set (Fig. 2(a)) was denoised by using the DCFI image set as a training data (Fig. 2(d) DLF-DCFI) or by the slow scan image set (Fig. 2(e) DLF-Slow). The results of identical denoising for other FOV are shown in Supplementary information A. In Figs. 2(d) and (e), the DLF-DCFI remained blurred while the statistical noise and the unidirectional blurring were successfully removed in the DLF-Slow, as clearly represented in the contour plots match-up (Fig.2(f)). This is expectable because the DCFI images originally contained the blur. As noted in the previous section, the advantage of the use of the DCFI images as a reference data is that since there is no distortion between the rapid images and the DCFI images, the DL network can be trained without the distortion correction. Because the distortion correction developed in this study requires calculating local image cross-correlation between the deformed rapid scan image and the corresponding part of slow scan image, distortion correction of images with too poor electron signal or those containing a significant amount of noise would be challenging. The DLF-DCFI might be required for denoising such images at the expense of removing the rapid scanning-specific artifacts. The obviously-superior performance of DLF-Slow can also be understood from the comparison of FFT patterns from these images, where a vertical streak (circled by broken lines) in the original image was removed in the DLF-Slow unlike in the DLF-DCFI. Since the direction of FFT spectra appears perpendicular to the lines in the original image, the unidirectional blurring, which extends in the horizontal direction (the scanning direction of the STEM), has appeared as an intense vertical feature in the FFT of Fig.2(a), (b), and (d). Again, the DLF-Slow has the least vertical feature as well as the least high frequency component indicating the statistical noise. The removal of the statistical noise by DLF-Slow is not trivial since the slow scan images, which were used as the reference images in the training process, contained the high frequency component as marked by the broken line in Fig.2(c). Actually, the
statistical noise seems to be more or less evenly distributed in slow scan images, and the noise might be reduced through the DLF-Slow, suggesting that output of the DLF-Slow could be even free from the statistical noise than the reference images. This can happen probably because the DLF was tuned so that the mean squared error between “all” the output images and the reference images was minimized, i.e., common features of the reference images selectively survive through the filtering process, resulting in elimination of random components such as the statistical noise.

We evaluated the PSNR, which is a typical parameter representing a image quality, relative to the slow scan images for the rapid scan, the DCFI, the DLF-DCFI, and the DLF-Slow images as shown in Fig.3(a), where the average of PSNR calculated by using Eq.(1) for all four types of images with an error bar indicating the standard deviation of the PSNR is given. The figure represents that the DLF-Slow images showed the highest PSNR among the four, increased by about 7% from the original images in average. Although the noise was successfully removed by the DLF-Slow operation as shown in Fig.2(e), the PSNR was not largely increased so much. This is because of the background intensity difference between the slow scan images and the DLF-Slow images as the line profiles of two images demonstrated in Fig.3(b). The signal intensity of the DLF-Slow image (orange) matched with that of the slow scan image (red) at nearly all dips (light-blue highlighted) that represent the dislocations. At the rest of locations, however, two profiles were not well aligned. By referring the intensity profile of the DCFI image (green), this result would come from the fact that the background intensity of rapid scan image originally differed from that of the slow scan image. Note that in the DCFI image, the statistical noise has been reduced by averaging 50[frames] of the rapid scan image, thus the profile of the DCFI image indicated the net signal obtained by the rapid scanning. The background difference might be caused by the difference in the BF detector response between the rapid scan at 100[ns/pixel] and the slow
The detector's response could vary depending on the dose of incident electron beam. If that is the case, the signal intensity profile of these two conditions would not be equate. The DLF-Slow operation seems to increase the signal intensity over the entire area for compensating the intensity difference in the low signal intensity section as representatively seen in the line profile after 200[pixels] in Fig.3(b). This means that the signal intensity of DLF-Slow processed images would match with that of slow scan images only within a limited signal intensity range. In fact, the PSNR calculated from the DLF-Slow images recorded within a limited signal intensity range of 20,000 ~ 40,000 was increased by 13% from the rapid scan images in average. The PSNR calculation outside the signal intensity range (0~20,000 and 40,000~65,535), on the other hand, showed only 2% increment. The signal intensity matching within a limited range suggests that datasets with various signal intensity ranges should be used in the training process to avoid the over compensation. In this study, the training dataset was acquired in a way that both the minimum and maximum signal intensities fit into a certain range rather than using the entire 16bit dynamic range of the detector, for example, the minimum and the maximum intensities in one area were 7,000~10,000 and 17,000~20,000, respectively, while those in another area were 15,000~20,000 and 30,000~40,000. Therefore, to improve the PSNR, it might be needed to acquire images with varying the signal intensity range or non-linearly adjust the contrast such as adaptive histogram equalization before training. Besides the small improvement of the PSNR value, the microstructure features of interest, dislocations in this case, were successfully and sufficiently recovered by the DLF-Slow operation, indicating that the DL-based filter trained by slow scan images showed satisfactory performance.

To further evaluate the image quality, this study discusses also the line profiles of FFT spectrums in horizontal direction as shown in Fig.3(c), where the natural logarithm of power
spectrum (squared amplitude of FFT processed intensity \(F(I) \)) is evaluated. In this study, all the FFT spectra are obtained after applying the Hanning window to the original images. The line profiles of the DCFI image and the DLF-Slow image demonstrated discrepancy from the low frequency region. Since the FFT spectrum in horizontal direction represents the wave number, whose direction means propagation direction of waves, the meaning of the line profiles contains the spatial resolution in the horizontal direction in the real space when considering images acquired in same FOV. In Fig.3(c), the FFT spectrum of DCFI image did not coincide with the FFT spectrum of slow scan image. This means the deterioration of spatial resolution in the DCFI image due to the unidirectional blurring. The FFT spectrum of DLF-Slow image, on the other hand, almost coincided with the slow scan image’s one within the wave number of about 120[\(\mu \text{m}^{-1} \)], which is about 8.3[\(\text{nm} \)] in the real space and about 4[\(\text{pixels} \)] in the original image. Since most of the width of dislocation dips in the original image was more than 4[\(\text{pixels} \)], the DLF-Slow could successfully reproduce the signals with a high spatial resolution compared to the DCFI.

From the above discussion, it was shown that the DL filter supervised slow scan images could remove not only the statistical noise, but also the unidirectional blurring, which would come from the delay of the detector response and was difficult to remove even by using the well-known noise filter, BM3D. The DLF-Slow obtained in this study could reproduce the signals from poor signal in the rapid scan images. The DL-based noise filter enabled us to acquire STEM images both fast and accurate way.

Single FOV training
The DLF-Slow has evidenced high performance for eliminating the statistical noise and the unidirectional image blurring. In this study, the noise filter was made by training either 50[frames] × 50[view] sets of the rapid scan images or the corresponding view of the slow scan images. Although this data set was enough for denoising, a possibility that only single FOV might be enough arises if we just desire to remove the statistical noise and the blurring, because these artifacts would be included even in the single FOV. Since vast majority of nanoscale phenomena, e.g., dislocation emission from a crack tip, are site-specific, the observation area is sometimes limited in a few FOVs. The DL noise filter would be required even in in-situ observation that is difficult to obtain the training data. In the following, we examine whether the artifacts can be removed by training with multiple frames taken from only single FOV or not.

A new set of data including 2500[frames] was newly acquired. Figure 4(a) shows the new distortion-corrected training data set acquired under the same condition as previous dataset except the magnification (here was ×99000). We trained the U-net by using up to 2500[frames] of rapid scan images, i.e., 100, 500, 1000 and 2500[frames]. The rest of this paper, each trained DL filter is referred as DLF-100, DLF-500, DLF-1000, and DLF-2500, respectively. The training conditions were also the same as above section except the learning rate. Since the training data set shown in Fig.4(a) contains a lot of dislocations and entangle of those, the U-net would be prone to over fit the detail, resulting in losing the capability of denoising. To avoid the over fitting, we set the learning rate from 0.001 to 1×10^-5 for DLF-100, DLF-500, DLF-1000, or 5×10^-6 for DLF-2500. Figure 4(b) demonstrates the sample images after applying each filter, where each FFT spectrum is also shown. In the FFT diagrams, the statistical noise was removed even in DLF-100, although the unidirectional blurring was remained. The filtered image became clearer with increasing the
number of training data. The vertical spectrum representing the blurring, however, could not be removed even in the DLF-2500.

The line profiles of FFT diagrams are also evaluated as shown in Fig.4(c). The DLF-2500 image is chosen as a representative case of the single FOV training. In Fig.4(c), the line profile in DLF-2500 did not match that of the slow scan after passing the low frequency region of about $48 \mu m^{-1}$. Since the matching was lower than the DLF-Slow, which almost coincided up to around $120 \mu m^{-1}$, the ability for reproducing slow scan equivalent image quality became inferior if only the single FOV was used for the training. The reason why the single FOV training was less effective than the multi FOVs training might be because of the dislocation-shape dependence or dislocation-signal-intensity dependence of unidirectional blurring as has been shown in the contour plot of Fig.1(d). During the training process, the DL network is trained so that it reproduces the slow scan images from the corresponding rapid scan images. The transformation function to modify the difference of background intensity would be educated in this process. The background intensity of rapid scan images, however, contains the unidirectional blurring whose shape depends on the shape of dislocations or the intensity of dislocation signal. Therefore, it would be needed to learn multiple patterns of dislocation signal to eliminate the blurring. Although the single FOV training could partially eliminate both the statistical noise and the blurring if the number of frames was increased, the denoising performance would likely be limited because the DL network would not learn the dislocation-shape-dependence or the dislocation-signal-intensity-dependence of the blurring.

In conclusion, the single FOV trained DL filter could remove the image blurring, although the performance was inferior to 50[FOVs] trained one. This study indicates that more and more FOV were included for training, the performance of DL noise filter is increasing. Nevertheless, in
the case that obtaining many different FOVs are practically challenging, the DL filter will still be worthwhile training for eliminating the statistical noise. This study has also demonstrated that the poor electron signals caused by the rapid scanning in the STEM could be recovered by using DL filtering operations. Therefore, the DL-based technique could be applied for mostly in-situ observation by using the STEM, where temporal resolution is required.

Since the STEM has more than twice the tolerance of specimen thickness compared to the CTEM, in-situ observation by using the STEM can capture dynamic evolution of phenomena with less effects of surface. The STEM also enables us to obtain the chemical components and bonding state, etc., at the same time when we observe a texture of a sample, providing a large amount of data even in one experiment. Such a big data-like data acquisition could be a standard in the current data-driven materials science. Because of these reasons, the STEM would be a better tool compared to the CTEM for operand observation utilizing data science. Therefore, the denoising technique developed in this study could be an essential approach for electron microscope observation which is difficult to establish in the conventional way, such as observing a dynamic evolution of dislocation structures in a thick sample under external stimuli.

Method

STEM Image Acquisition

We employed a SUS316L of FCC single crystal with 3% of compressive pre-strain, which was applied by strain rate of 1×10^{-4} [s$^{-1}$] along $<1 0 0>$ direction, as a specimen. The specimen was ion-polished by Ar$, by using a cryo-ion slicer (JEOL Ltd.) to make a foil.
To obtain STEM images, we operated a transmission electron microscope (TEM) Titan Cubed G2 (Thermo Fisher Scientific Inc.) at an acceleration voltage of 300 [kV] under the STEM mode with a relatively small convergence semi-angle of the incident electron beam, 1.2[mrad]. The specimen tilt was carefully adjusted to an exact Bragg condition (so-called two-beam condition) and only the direct beam was detected to obtain high contrast dislocation images. All the dislocation images were BF images using a reciprocal vector of (0 2 2). A commercial software Velox (Thermo Fisher Scientific Inc.) equipped in the TEM was used to acquire the STEM images. In this study, the STEM images were set to 512×512 [pixels] of 16bit images and taken with the magnification of 80,000 by the rapid scan at 100 [ns/pixel], with continuous acquisition of 50 [frames], and the slow scan at 5 [μs/pixel] to a same view. Therefore, we obtained 50 [frames] of the rapid scan image, one 50-frame-averaged DCFI, and one slow scan image for one view. The total was 66 [FOVs], where the 50 [FOVs] were used to the training, and the rest was utilized as test images.

The STEM images used in the single FOV training (Fig.4(a)) were acquired by the magnification of 99,000. Other conditions were the same as above, and continuous acquisition of 2,500 frames of rapid scan images and one frame of slow scan image were obtained. The test images were also the same as the multiple FOVs training.

Distortion Correction

Figure 5(a) shows a flow chart of distortion correction process employed in this study. It composed of roughly three processes, i.e., view matching, linear distortion correction, and non-linear distortion correction. Each process consisted of mainly the calculation of cross-correlation to the slow scan images. This procedure was dependent on inhomogeneity of image, i.e., an image
that the dislocations were entirely distributed but their distribution was heterogeneous was ideal. This is because of the unidirectional blurring, which could not be removed even in the DCFI operation, and the difference of intensity range between the rapid scan image and the slow scan image. In such a case, landmarks that characterize the image will be essential to precisely find the corresponding position or distortion. Thus, for calculating the non-linear distortion correctly, we selected an ideal FOV in which the dislocations were heterogeneously distributed. Then, the obtained distortion was applied for the rest of images. The following describes the details of each method represented in Fig. 5(a). Note that brightness of all the images was adjusted by our in-house code so that the minimum and the maximum intensity equal to 0 and 65535 (the maximum of 16bit image), respectively, before the distortion correction.

Figure 5(b) shows the initial processes for the series of distortion correction. Since the rapid scan images contains extra view compared to the slow scan images due to the distortion, we had to firstly modify the view by aiding the cross-correlation. The distortion made it difficult to match the view at once, thus, we divided the process into the horizontal and the vertical direction. We let the template with the width of 50 [pixels] taken from the edge of the slow scan image be scanning on the corresponding rapid scan image to find corresponding position showing the highest zero-mean normalized cross-correlation (ZNCC). The outside was removed, leaving the cut image. Then, it was linearly stretched to the original size for the horizontal direction. The process was carried out both left and right side of images. For the vertical direction, on the other hand, the cutting of image was only the top or bottom of image which showed higher ZNCC, and the stretching was not carried out, because the distortion was limited to the horizontal direction, which is the scanning direction of electron beam, in this study. Note that the vertical direction was almost coincide with the slow scan images compared to the horizontal direction in this study. These
cuttings and deformation were applied to all the rapid scan and DCFI images (the slow scan was also to be cut if they had been drifted).

After the view matching, we corrected the non-linear distortion as shown in Fig.5(c). We initially extracted a part of the DCFI image from the left most side, then, let it be deformed from -50% to 100% in the horizontal direction. The deformed image was to be used to calculate the PSNR with the part of slow scan image taken from the left most side and having the corresponding width. Then, the deformation that showed the highest PSNR was chosen as a distortion of that position. The deformed image portion and the corresponding rectangle taken from the slow scan image were removed for the rest of process, meaning that the non-linear distortion correction for the next was carried out from the left most side of the rest of uncorrected image. The same procedure was applied until the initially cut rectangle reached the right side of image. To avoid the dependency of the initial cut width, we set it from 10 to 100 [pixels] and chose the width giving the highest PSNR at the finally obtained image. Figure 5(d) shows the distortion distribution obtained in this study, where plotting the cutting position and its distortion calculated in the above process. In this study, the distortion between the cutting position was interpolated by cubic spline. This distortion distribution was applied to all the rapid scan images. The representative result of distortion correction has been shown in Fig.1(c).

Deep Learning

Figure 6(a) shows the DL scheme employed in this study. As noted in “STEM Image Acquisition”, we prepared 50[frames] of the rapid scan image per one FOV, and total of 50 [FOVs] for training. 20% of image data set were utilized as a validation data. The slow scan images and the DCFI
images were duplicated to correspond with the number of the rapid scan images, and set to be the reference. Note that all the training images were already corrected by the distortion correction as described in Fig.5(a), and their brightness was adjusted so that the minimum and the maximum intensity equal to 0 and 65535 (the maximum of 16bit image), respectively. The DL architecture utilized here was U-net34, well known as a U-shaped network as shown in Fig.6(b), implemented in a commercial software, Dragonfly (Object Research Systems Inc.)35. We trained the network with the following condition; patch size was 64×64 [pixels], loss function was Mean Squared Error (MSE), optimization algorithm was Adam36, learning rate was 0.001, total epoch was 100. The single-view training, on the other hand, the learning rate was decreased to 1×10^{-5} for DLF-100, DLF-500, and DLF-1000, and 5×10^{-6} for DLF-2500. Other conditions were same.

Data availability

The STEM images used in this study and the codes employed for the noise filtering and distortion correction are available from the corresponding author upon reasonable request.

Competing interests

The authors declare no competing interests.

Reference

25. Bioucas-Dias, J. & Figueiredo, M., Multiplicative noise removal using variable splitting and

Acknowledgements

This work was supported by R3QR Program (Qdai-jump Research Program) 01271 and JSPS KAKENHI Grant Number (JP21K20491, JP20K21093), Iketani science and technology foundation, and Five-star Alliance. M.M. greatly appreciates the financial support by the JST CREST (JPMJCR1994), JSPS KAKENHI Grant Numbers (JP19H02029, JP20H02479), Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), supported by NSF (ECCS 1542100 and 2025151).
Author contributions

S.I., M. M., and H.S. planned the presented method. S.I. prepared the sample. S.I. and H.S, carried out the STEM observation. S.I. implemented the image distortion correction. S.I. and M.Y. trained the U-Net architecture and evaluated the performance. S.I., H.S. and M.M. participated in the interpretation, discussion of the results, and wrote the article.
Figures

Figure 1

STEM images obtained by different acquisition speed and those properties. Rapid scan of 100[ns/pixel] causes image distortion as clearly represented by (a) superposition with STEM image acquired by slow scan of 5[μs/pixel]. The distortion is to be corrected by the way described in Method section. Line profiles (b) before and (c) after distortion correction show the discrepancy at dips representing dislocations is modified by the distortion correction. (d) The rapid scanning brings about poor electron signals and delay of detector response, causing statistical noise and unidirectional image blurring, respectively. Although
the drift-corrected-frame-integration (DCFI), which is made by averaging 50 frames of rapid scan images, reduces the statistical noise, thus it shows rather smooth contour plot, the blurring remains. The blurring also remains even if the image is processed by well-known noise filter, block-matching-and-three-dimensional (BM3D)30, while the slow scan image contains no blurring.

![Figure 2](image)

Figure 2

Sample STEM images. (a) Rapid scan, (b) DCFI, (c) slow scan, DL filtered rapid scan supervised by (d) DCFI images (DLF-DCFI), and (e) slow scan images (DLF-Slow) are represented. This figure also shows FFT spectra of those images, where the vertical pattern in FFT indicating the unidirectional blurring is circled by broken line. (f) Contour plot of the partial DLF-DCFI image demonstrates that the blurring remains, while the DLF-Slow completely removes it. Note that all the FFT spectrum images displayed in this paper are obtained by using DigitalMicrograph (Gatan, Inc.) after applying the Hanning window.
Figure 3

Evaluations of DL filtered images. (a) DLF-Slow images show highest PSNR to slow scan images among others, with about 7% increase in average from original rapid scan images. The little increase comes from the difference of background intensity as represented in (b) line profiles of each image. In the figure, it is demonstrated that the DLF-Slow mainly matches the intensity at the dislocation dips marked by light-blue stripes. (c) Line profiles of FFT spectrum image, which shows natural logarithm of power spectrum of FFT processed image $F(l)$, represents good agreement between the slow scan image and the DLF-Slow image within the low frequency region up to 120$[\mu\text{m}^{-1}]$, while the line profile of FFT spectrum in the DCFI image is little agreement with that in the slow scan image.
Figure 4

Single FOV training procedure and its results. We conducted additional observation and obtained (a) 2500 [frames] of rapid scan images and a slow scan image (reference image) from single view. The data set shown in (a) has already corrected by the distortion correction described in Method section. The results of single FOV trained DL filters are shown in (b), where DLF-xxx means xxx [frames] of (a) were used during the training. (c) The line profiles of FFT spectrum are evaluated in the same way as Fig.3(c).
Figure 5

Overview of distortion correction process. This process is roughly divided into three processes, i.e., view matching, linear distortion correction, and non-linear distortion correction, as shown in (a) flow chart. (b) The view matching and the linear distortion correction are conducted before (c) the non-linear distortion correction. The calculated distortion distribution is shown in (d).
Figure 6

Summary of DL process. (a) Schematic drawing of DL procedure in this study. The architecture of DL algorithm is shown in (b)\(^{34}.\)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInfo.pdf