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Abstract

Background: Lipid metabolic reprogramming was considered as a new

hallmark of malignant tumors. It has been reported to play a crucial

biological role in cell proliferation, energy homeostasis and

signal-transduction. However, the important value of lipid

metabolism-related genes(LMRGs) in prognostic prediction and the

tumor immune microenvironment has not been explored by large sample

studies in colorectal cancer(CRC).

Methods: In this study, the lipid metabolism status of 1086 CRC samples

was analyzed using RNA expression profiles and clinical data from the

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

databases, of which the former was determined as training set and the

latter as validation set. The risk signature was constructed by the

univariate Cox regression and Least Absolute Shrinkage and Selection

Operator(LASSO) COX regression. The patients were stratified into

high- and low-risk groups according to the median value of the risk score.
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Immune and mutation landscape between low- and high-risk CRC

patients were also explored. Additionally, we established a nomogram

integrating the risk signature and clinical factors to improve risk

assessment of CRC patients.

Results: A four LMRGs signature, including PROCA1, CCKBR, CPT2

and FDFT1, was constructed to predict the prognosis of CRC. The risk

signature as an independent prognostic factor for CRC was associated

with a variety of parameters. Survival analysis showed that patients with

low risk score had a better prognosis. There were different immune

landscapes between low and high-risk CRC patients, especially in

monocytes, dendritic cells, M0 and M2-like macrophages. Patients in the

low-risk group were more likely to have higher tumor mutation burden,

stem cell characteristics and level of PD-L1 expression. In addition, it

was found that genes that played crucial biological functions in

tumorigenesis (including TP53, PI3K and MUC16) had significant

differences in mutation frequency between two groups.

Conclusion: A lipid metabolism-related risk signature for predicting the

prognosis of CRC was identified in this study. Furthermore, this

prognostic signature may be a potential biomarker for predicting the

efficacy of chemotherapy and anti-PD-L1 therapy in CRC.

Keywords: Colorectal carcinoma, Lipid metabolism-related genes,

Prognostic value, Tumor immune microenvironment



Introduction

Lipids, a general term for fatty acids, triglycerides and cholesterol,

are hydrophobic or amphiphilic small molecules soluble in nonpolar

solvents but not in water. Lipids generally receive less attention than

other biological molecules that make up cells, such as nucleic acids and

proteins[1]. Lipids are one of the important nutrients needed by the

human body supplying the energy and essential fatty acids. As an

indispensable part of cellular and organelle membranes in mammals,

lipids participate in many key biological functions in specific cell areas

under normal physiological conditions. Furthermore, lipids can act as a

second messenger and involve in intracellular signaling[2].

Dyslipidemia is closely related to the occurrence and development

of various metabolic diseases and malignancies. Metabolic

reprogramming was considered as a new hallmark of malignant tumors[3].

Although most of the knowledge of cancer metabolism alterations has

focused on glucose metabolism (called Warburg effect) at present, the

abnormal lipid metabolism in cancer cells has been gradually recognized

in the past few years[3]. A rapidly proliferating cancer cell requires more

energy than a normal cell and meets its biological needs by activating an

endogenous production pathway or increasing the intake[6]. ATP

generated by fatty acid oxidation is an important energy source for cancer

cells when energy provision is insufficient. Adipocyte and free fatty acid



in hypoxic tumor microenvironment could markedly conduce to cancer

proliferation, progression, invasion and metastasis[7, 8]. It was reported

that cancer cells relied mostly on the endogenous adipogenesis rather than

uptake of exogenous fatty acids which was more common in normal

cells[9]. Hence, abnormal lipid metabolism, especially fatty acids

synthesis and oxidation, has increasingly been regarded as an important

feature of metabolic reprogramming.

Epidemiological studies have shown that serum triglyceride levels

were associated with susceptibility to colorectal cancer (CRC)[10, 11].

The research of Wang et al confirmed that alterations in the abundance of

individual lipids were observed in CRC using shotgun lipidomics[12].

The study showed that the expression of lipogenic enzyme involved in de

novo adipogenesis (fatty acid synthesis) was increased in CRC, including

fatty-acid synthase, acetyl-CoA carboxylase, carnitine

palmitoyltransferase, while the enzyme involved in fatty acid oxidation

was decreased. As a mitochondrial serine/threonine phosphatase, PGAM5

regulates a variety of metabolic pathways in vivo. Research by Zhu et al.

showed that blocking PGAM5 would reduce lipid metabolism and inhibit

the occurrence of CRC in mice[13]. Gong and his colleagues showed that

the reprogramming of lipid metabolism in tumor-associated fibroblasts in

the tumor microenvironment significantly enhanced the invasion and

metastasis of CRC[14]. Besides, drug resistance in antiangiogenic therapy



is frequently appeared in cancer treatment, and underlying molecular

mechanism might include lipid metabolism reprogramming[15]. Iwamoto

et al noticed that blocking of carnitine palmitoyl transferase 1A, a key

enzyme in lipid metabolism, can obviously revert the sensitivity of

antiangiogenic therapy. Thus, they brought a promising cancer therapy

concept to overcome drug resistance by combining conventional therapy

and targeted lipid metabolism[8].

Existing studies have confirmed the closely relationship between

altered lipid metabolism and CRC on tumorigenesis, progression and

treatment. Previous studies showed that lipid metabolism-related

genes(LMRGs) signature had high prognostic value in papillary thyroid

cancer or diffuse glioma[16, 17]. However, the prognostic value of

LMRGs in CRC has not been verified by large sample studies. The

present study aimed to develop a novel risk signature based on the

LMRGs for providing additional information on risk assessment, as well

as clinical-decision making in CRC.

Materials and Methods

Study population and data collection

The flow chart of this research was presented in Figure 1. Level 3

RNA sequencing data(RNA-seq), mutation data and matched clinical

information were obtained from the TCGA CRC cohort

(https://portal.gdc.cancer.gov/repository) as a training set. The raw CEL



data and paired clinical information of CRC patients was downloaded

from GEO GSE39583 cohort (https://www.ncbi.nlm.nih.gov/geo/) as a

validation group.

Both TCGA and GEO database are publicly available, thus the

present study was exempted from the approval of local ethics committees.

Figure 1 Flowchart of study design. (LMRGs: lipid metabolism-related genes; DEGs:
differentially expressed genes; LASSO: the Least Absolute Shrinkage and Selection
Operator; TCGA: the Cancer Genome Atlas; GEO: the Gene Expression Omnibus)

Identification of IMRGs

The five IMRGs sets were collected from the Molecular Signature

Database[17](Supplementary Table 1). A total of 1044 genes were found

to be involved in lipid metabolism process after removing overlapping

genes.

Data processing

The RNA-seq transcriptome data(FPKM) from TCGA cohort were

converted into log2(TPM+1) for normalized counts. The robust multichip



average (RMA) was used to normalize the raw data from GEO cohort by

the R package affy.

Criteria for study exclusion were: (1) Patients with unknown

survival status, follow-up information, and disease stage. (2) Patients who

died within a follow-up period of 30 days. Consequently, 544 cases (500

tumor and 44 normal samples) meeting the criteria were included in the

training set and 542 cases (523 tumor and 19 normal samples) in

validation set (Supplementary Table 2). The TCGA cohort was used to

establish a risk signature, and the GEO set were used for validation.

Construction a risk signature based on the LMRGs

The shared LMRGs in the GEO and TCGA sets were selected for

subsequent analysis. Differentially expressed genes(DEGs) between

tumor and normal tissue samples were screened in TCGA cohort by the

“limma” R package with a false discovery rate(FDR) <0.05. Meanwhile,

the LMRGs with prognostic value were identified using univariate Cox

analysis. Nextly, the overlapping genes between genes with prognostic

value and DEGs were identified by venn diagram for the follow analysis.

Subsequently, the Least Absolute Shrinkage and Selection

Operator(LASSO) COX regression was used to select the best predicting

model based on these overlapping genes in TCGA CRC patients. The

LASSO analysis was performed using R package “glmnet” and the

optimal value of penalty parameter was determined by 10-fold



cross-validation. The risk signatures were generated from the TCGA and

GEO cohort according to the expression of LMRGs and corresponding

coefficients simultaneously. The risk score of each sample was calculated

as the following formula. (expGene: the expression level of LMRGs in

TCGA or GEO cohort; Coef: the coefficient of LMRGs in LASSO

regression model in training set)
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Prognostic value of the risk signature in training and validation

group

The patients were stratified into high- and low-risk groups according

to the median value of the risk score. Kaplan Meier(K-M) survival curve

with the log-rank test were performed to show the prognostic ability of

the risk signature. Additionally, the area under curves(AUCs) of receiver

operating characteristic(ROC) at 1-, 3-, and 5-year were calculated

simultaneously to evaluate the performance of those two signatures.

Gene set enrichment analysis (GSEA)

To explore potential molecular mechanism between the two groups,

the GSEA was carried out between the high- and low-risk groups. The

annotated gene set list, h.all.v7.2.symbols.gmt (Hallmarks), was selected

as the reference gene set from the Molecular Signature Database[18].

Independence of the risk signature from other clinicopathological

parameters



To determine the independence of the risk signature from other

clinical parameters, univariate and multivariate analysis of risk score with

age, gender and tumor stage were performed. The forest plots were used

to show the independence of the risk score.

Correlation between the risk signature and other clinicopathological

parameters

The association was further explored between the risk signature and

clinicopathological parameters including age, gender, tumor stage,

pathological T stage, N stage and M stage. Patients were stratified into

subgroups of age≤65 years and age≥65 years, female and male,

pathological tumor stage I + II and stage III + IV, T1 + T2 and T3 + 4, N0

and N1 + 2, M0 and M1. K-M survival analysis of the aforementioned

paired subgroups was performed.

Cancer stem cells are highly dependent on lipid metabolism to

maintain their stem cell characteristics. One study showed that cancer

stem cells in CRC had higher lipid metabolism level than tumor cells or

normal colonic epithelial cells[19]. Malta et al had developed a novel

analysis tool to assess the stemness features based on the gene

expression[20]. In this study, the mRNA expression-based stemness index

(mRNAsi) of each CRC patient was downloaded from the research of

Malta et al. Besides, CD133 is a marker gene of many tumor stem cells.

Hence, the relationship of risk score with mRNAsi score and CD133



mRNA also were analyzed.

Nomogram construction and validation

A nomogram integrating the risk signature and other

clinicopathological factors was established for prognostic evaluation

using the “rms” package. The AUCs of ROC were demonstrated to assess

the predictive capability of the nomogram. Calibration curves were

simultaneously established to assess the predictive accuracy of the

nomogram.

Estimation of relative abundance of immune cell types in different

risk groups

The CIBERSORT algorithm (https://cibersort.stanford.edu), an

approach to quantify the relative abundance of immune cell types based

on specific gene expression profiles, was used to assess the distribution of

22 immune cell types in CRC samples[21]. Moreover, the P-value,

correlation coefficient and root mean squared error were also presented to

evaluate the accuracy of the results in each patient. Samples with P-value

< 0.05 were retained to compare immune cell abundance in different risk

groups.

Mutation analysis

The top 20 genes with the highest mutation frequency in CRC were

analyzed in both high and low risk groups using the GenVisR R package.

The tumor mutational burden(TMB) were associated with the



efficacy of curative resection combined with followed adjuvant

chemotherapy (fluoropyrimidine plus oxaliplatin regimen) in CRC[22,

23]. TMB was also an independent predictor of response to treatment

with immunocheckpoint inhibitors (ICPI) in a variety of tumors[24, 25].

Therefore, the relationship between risk score and TMB was also

explored in this study. The TMB score was generated by the total number

of mutations divided by the number of exons in each sample. The exon

size is often approximately estimated at 38 megabase.

Statistical analysis

All of statistical analyses and drawing in this study were conducted

by the R (version 4.0.2) software or Graphpad Prism (version 8.3.0).

T-test was applied to analyze differences of continuous variables. The

Fisher’s exact or Chi square test were employed for the comparison of

categorical variables. Log-Rank test was used to estimate the difference

among K-M survival curves. P-value<0.05(two-tailed) was considered

significant.

RESULT

Identification of differentially expressed and prognosis-related genes

in LMRGs

The expression data of LMRGs was extracted from TCGA and GEO

cohort, respectively. A total of 945 shared LMRGs were matched. There

were 729 differentially expressed genes(DEGs) between normal and



tumor tissues, including 365 up-regulated and 364 down-regulated have

been identified in training cohort when cut-off was set as FDR< 0.05 (Fig.

2A). At the same time, univariate Cox analysis was employed to filtrate

genes with prognostic value in the 945 intersected genes. Finally, 57

LMRGs shown to be prognostically related in the training set.

Conclusively, there were 47 shared LMRGs that were both differentially

expressed and prognostic genes (Fig. 2B, C).

Functional enrichment analysis showed that the enriched terms were

related to lipid metabolism. The top five terms in biological process

included. steroid metabolic process, glycerolipid metabolic process, lipid

localization, phospholipid metabolic process and lipid transport (Fig. 2D).

Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis found that

these 47 LMRGs were mainly engaged in fat digestion and absorption,

PPAR signaling pathway, glycerolipid metabolism, cholesterol

metabolism and adipocytokine signaling pathway (Fig. 2E).



Figure 2 Identification of the differentially expressed and prognosis-related genes in
the TCGA cohort. (A) Volcano map showed the differentially expressed genes
between normal and tumor tissues. Red meant up-regulated genes and green
represented down-regulated genes. (B) Venn diagram showed the 47 differentially
expressed genes which also had prognostic value. (C) Forest plot for the univariate
Cox regression analysis of the 47 overlapping genes. (D) The main GO enrichment
terms of the 47 overlapping genes. (E) The most significant KEGG pathways of the
47 overlapping genes. (GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes
and Genomes)

Construction and validation of gene signature

Nextly, the expression profile of the 47 LMRGs was used to

establish a risk signature using the LASSO COX regression analysis (Fig.

3A, 3B). Finally, 4 LMRGs, namely PROCA1, CCKBR, CPT2 and

FDFT1, were identified to establish the optimal lipid metabolism-related

risk signature. The risk score for each patient was calculated by following

same formula: risk score=(PROCA1*0.03071) + (CCKBR*0.58956)

+(CPT2*0.00972) +(FDFT1*0.01381).

The predictive value of this risk signature was evaluate by ROC.

The AUCs of this signature were 0.6901 at 1 year, 0.6776 at 3 years and


