Gene Regulatory Network Analysis Defines Transcriptome Landscape with Alternative Splicing of Human Umbilical Vein Endothelial Cells during Replicative Senescence

Momoko Ohori
Takeda Pharmaceutical Company

Yusuke Nakayama
Takeda Pharmaceutical Company

Mari Shimizu-Ogasawara
Takeda Pharmaceutical Company

Hiroyoshi Toyoshiba
Takeda Pharmaceutical Company

Atsushi Nakanishi
Takeda Pharmaceutical Company

Samuel Aparicio
BC Cancer Agency

Shinsuke Araki (✉️ shinsuke.araki@takeda.com)
Takeda Pharmaceutical Company

Research Article

Keywords: replicative senescence, HUVEC, alternative splicing, microexon, MYC, SIRT2

DOI: https://doi.org/10.21203/rs.3.rs-140983/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Endothelial cell senescence is the state of permanent cell cycle arrest and plays a critical role in the pathogenesis of age-related diseases. However, a comprehensive understanding of the gene regulatory network, including genome-wide alternative splicing machinery, involved in endothelial cell senescence is lacking.

Results

We thoroughly described the transcriptome landscape of replicative senescent human umbilical vein endothelial cells. Genes showing a monotonic increase or decrease in expression with the culture period were defined as hub genes in the co-expression network. Computational network analysis of these genes led to the identification of canonical and non-canonical senescence pathways, such as MYC and SIRT2 signaling, which were down-regulated in metabolism and chromosome organization processes pathways. Additionally, we showed that endothelial cell senescence involves alternative splicing. Importantly, the first and last exon types of splicing, as observed in FLT1 and ACACA, were preferentially altered among the alternatively spliced genes during endothelial senescence. We further identified novel microexons in PRUNE2 and PSAP, each containing 9 nt, which were altered within the specific domain during endothelial senescence.

Conclusions

These findings unveil the comprehensive transcriptome pathway and novel signaling regulated by RNA processing, including gene expression and splicing, in replicative endothelial senescence.

Introduction

Cellular senescence is a permanent state of cell cycle arrest caused by the interruption of cell division with limited replicative capacity, also referred to as replicative senescence [1, 2]. Besides cell cycle arrest, senescent cells exhibit morphological changes including the formation of an enlarged body mass and the up-regulation of senescence-associated β-galactosidase (SA-β-Gal) activity. Multi-signaling pathways induce and maintain senescence, which is characterized by DNA damage, oxidative stress, and telomere shortening [2]. All senescence-associated signaling pathways converge at the activation of cyclin-dependent kinase inhibitors p16 (CDKN2A), p15 (CDKN2B), p21 (CDKN1A), and p27 (CDKN1B), which are commonly used as molecular markers for senescence [3–5]. Senescent cells accumulate in aged tissues, leading to age-related diseases, such as cancer, cardiovascular disease, diabetes, and neurodegenerative disorders [6, 7]. Endothelial cell senescence is considered a key mechanism of the induction of age-related vascular diseases, such as coronary artery disease, stroke, and hypertension, through vascular endothelial dysfunction [8]. Hence, exploring the signaling pathway and mechanism of endothelial cell
senescence is critical for developing disease treatment strategies. The role of oxidative stress and mitochondrial dynamics in endothelial cell senescence has been reported previously [9, 10].

Global transcriptome analysis enables a comprehensive understanding of complex biological processes. Therefore, this technique has been used in several studies to identify senescence-related gene expression changes in inflammatory and mitochondrial pathways in fibroblasts [11–13]. Additionally, alternative splicing (AS) of genes, such as p53, SIRT1, and IGF1, has gained attention as a key determinant of cellular differentiation and aging-associated senescence [14, 15]. However, our current knowledge of the gene regulatory network including genome-wide splicing involved in replicative endothelial cell senescence is limited.

In this study, we conducted a detailed computational transcriptome analysis of senescence-induced human umbilical vein endothelial cells (HUVECs). We identified canonical and non-canonical transcriptional responses induced by cellular senescence in HUVECs compared with those induced by senescence in fibroblasts. Besides gene expression analysis, we clarified the characteristics of AS variants in HUVEC senescence. Our results showed that alternative first exon (AFE) and alternative last exon (ALE) types of splicing were predominantly induced by HUVEC senescence. Further investigation revealed that microexons, which encode small proteins of 1–17 amino acids, are highly evolutionarily conserved and play important roles in various cellular functions and diseases with tissue specificity [16]. Moreover, RNA-seq analysis revealed the alteration of novel microexons during HUVEC senescence. Overall, this study elucidated the transcriptome pathway and novel signaling in HUVEC senescence.

Results

Replicative senescence of HUVECs

We prepared senescent HUVECs, which ceased to proliferate, in the presence of a complete culture medium for comprehensive transcriptome analysis. After 60 days of culture, four independent HUVECs (C1–4) stopped dividing, which showed that the population doubling (PD) rate was <0.1 per day (Fig. 1A). Approximately 70%–80% of the cells showed SA-β-Gal activity, and the cell size was 3.4-fold greater on day 60 than it was on day 22 (Fig. 1B,C). The expression of CDKN2A was induced 10-fold greater on days 73 and 74 than it was on days 5–7 (Fig. 1D). These cellular phenotypes were characteristic of replicative senescent cells, consistent with a previous report (Salama et al., 2014).

Comparative transcriptomic analysis of senescent HUVECs and fibroblasts

To investigate transcriptome responses during endothelial cellular senescence, we conducted RNA-seq analysis of two independent HUVEC clones (C1 and C2), with four different culture periods (5, 18/20, 60/61, and 74 days) (Fig. 2A). First, to compare the gene expression signature with the previous data set
of senescence-related genes, we conducted hypergeometric test-based enrichment analysis of senescence-related gene sets extracted from three different databases, namely, Molecular Signatures Database (MSigDB), REACTOME, and Human Ageing Genomic Resources (HAGR) [17-19]. Genes showing differential expression between days 5 and 74 (fold change > 2) were significantly enriched among the known senescence-related gene sets (Fig. 2B). The most significantly enriched gene set of “FRIDMAN_SENESCENCE_UP” was previously reported to be up-regulated in senescent cells (C1, \(P < 1 \times 10^{-9} \); C2, \(P < 1 \times 10^{-4} \)) [20]. The gene set of the p53-mediated pathway and senescence-associated secretory phenotype was enriched among genes both up- and down-regulated in senescent cells (up-regulated genes: C1 and C2, \(P < 0.005 \); down-regulated genes: C1, \(P < 0.05 \); C2, \(P < 0.0005 \)) and up-regulated in senescent C1 and C2 clones (C1, \(P < 1 \times 10^{-4} \); C2, \(P < 0.05 \)). Other senescence-related gene sets did not show significant enrichment with genes showing expression changes during HUVEC senescence. These results suggest that the signature expression pattern of some genes is common to senescent HUVECs and fibroblasts, and the remaining genes are involved in a distinct senescence-related pathway in HUVECs.

Next, we examined the distribution of differentially expressed genes (DEGs) and the alternatively spliced genes (ASGs) between young (day 5) and senescent (day 74) HUVECs. The distributions of fragments per kilobase of exon model per million reads mapped (FPKM) in young and senescent HUVECs are shown in Fig. 2C. ASGs were quantified by MISO analysis, with variation in percent spliced-in (ΔPSI) (Bayes score > 10) as shown in Fig. 2D. Because AS occurs in various biological processes, especially cellular differentiation [21], we analyzed DEGs and ASGs during neuronal differentiation from induced pluripotent stem cells (iPSCs) for 10 days [22]. The results showed a three-fold change in FPKM values, thus providing 1222, 1520, and 3227 genes corresponding to C1, C2, and iPSCs, respectively (Fig. 2E). The magnitude of DEGs during senescence was statistically greater than that during neuronal differentiation from iPSCs (mean values: C1, 3.91; C2, 3.80; iPSCs, 3.64 as a scale of log2), as determined by Wilcoxon tests (C1, \(P = 0.04 \); C2, \(P = 0.0004 \)). Additionally, 637, 451, and 1561 genes were identified in C1, C2, and iPSC data sets, respectively, using the thresholds of ΔPSI > 0.1 and Bayes factor > 10, and the magnitude of ΔPSI in senescent clones was smaller than that in the iPSC data set (mean values: C1, 0.25; C2, 0.27; iPSCs, 0.32), as determined by the Wilcoxon test (C1, \(P < 1 \times 10^{-22} \); C2, \(P < 1 \times 10^{-9} \)) (Fig. 2F). These results suggest that the distribution of DEGs was greater than that of the neuronal differentiation of iPSCs and the pattern of ASGs in senescent clones was smaller than that in iPSCs. This motivated us to conduct a more detailed computational analysis of gene expression and AS.

Key regulators indicating monotonic changes in FPKM during HUVEC senescence

To examine the biological significance of responsive transcripts in senescent HUVECs, we conducted Weighted Correlation Network Analysis (WGCNA) of the FPKM transcript data. We identified four dominant FPKM profile modules (turquoise, blue, brown, and yellow) containing 60.6% of the clustered
peak events among 20 different modules (Figs 3A, S1, and S2). These four dominant modules showed a monotonic increase or decrease in responses with the culture period, whereas the other modules showed nonmonotonic patterns in a small number of genes, implying that nonmonotonic patterns detected secondary effects during senescence (Fig. 3A). Next, we conducted a functional enrichment analysis of each set of four dominant modules to identify the pathways affected by senescence. Only modules with decreasing FPKM (turquoise and blue) showed significant enrichment of biological processes such as cell cycle, DNA repair, metabolism, transcription, translation, splicing, and chromosome organization, as determined using the hypergeometric test ($P < 1 \times 10^{-4}$) (Fig. 3B, Table S1). Among these, metabolism and chromosome organization processes were down-regulated in both the turquoise and blue modules, implying that key molecules for cellular senescence are included in these processes.

Next, we analyzed the regulatory network of each of the four dominant modules by determining which genes were involved in the regulation of genes in each module. Genes with high connectivity (>0.8) were defined as hub genes; these genes were considered as key genes in a co-expression network [23]. A hub gene has the potential to affect many genes in its network. We identified 963, 247, 163, and 179 hub genes in the turquoise, blue, brown, and yellow modules, respectively (Fig. S3). To predict the transcriptional regulatory network of hub genes, we conducted a computational analysis using two different databases: the ingenuity pathway analysis (IPA) upstream database and transcription factor binding site (TFBS) database [24, 25]. The IPA upstream regulator analysis revealed potential upstream regulators of genes in each module, and upstream gene analysis using TFBSs in MSigDB revealed upstream gene candidates for each module (Fig. 3C). Canonical senescence-related molecules, identified as upstream regulators such as $E2F1$, $E2F4$, $RB1$, $CDKN1A$, $CDKN2A$, and MYC, were included in the turquoise module. Particularly, MYC included in the blue module was identified as an up-regulator in both turquoise and blue modules, suggesting that MYC is a key regulator of not only HUVEC senescence but also fibroblast senescence. Interestingly, the sirtuin (SIRT) family, $SIRT2$ and $SIRT6$, was identified as an up-regulator of genes in the blue module. $SIRT2$ was included in the yellow module as a gene showing a monotonic increase in expression. $SIRT1$ is a well-known senescence-related SIRT family protein; however, the role of $SIRT2$ in senescence remains unclear. Taken together, WGCNA and upstream pathway analysis suggest that canonical and non-canonical senescent pathways, such as MYC and $SIRT2$ signaling pathways, regulate HUVEC senescence.

Predominant changes in AFE- and ALE-type splicing during HUVEC senescence

To examine how HUVEC senescence affects AS, we quantitated the AS events between senescent HUVECs at early (day 5) and late (days 60–74) timepoints during culture (Fig. 4A). We classified the splicing events as alternative 3'' splice sites (A3SSs), alternative 5'' splice sites (A5SSs), AFEs, ALEs, mutually exclusive exons (MXEs), retained introns (RIs), and skipped exons (SEs) (Fig. 4A,B). The proportion of AFE- and ALE-type splicing increased after HUVEC senescence, and the fold increase in the number of AFEs and ALEs was greater than that in the number of SEs in both C1 and C2 clones during
senescence (AFE: 3.1- and 1.5-fold; ALE: 1.8- and 3.1-fold; SE: 1.6- and 1.2-fold, respectively). Among the alternatively spliced events between day 5 and day 74 in HUVEC culture, 74 splicing events overlapped between C1 and C2 clones in a statistically significant manner, as determined by Fisher's exact test ($P = 8.96 \times 10^{-72}$), suggesting that the identified ASGs depend on HUVEC senescence, not reflecting the difference between C1 and C2 (Fig. 4C). Some of the overlapped splicing events were detected in three senescence-related genes (EFEMP1, FLT1, and TCF3) (Fig. 4D, Table S2). A3SS-, ALE-, and SE-type splicing was altered during senescence in EFEMP1, FLT1, and TCF3, respectively. Among the ASGs, except senescence-related genes, the ΔPSI distribution for the AFE-type splicing of ACACA (acetyl-CoA carboxylase-α [ACCα]) was significantly altered in both C1 and C2 clones during senescence (Bayes factor > 10^{12}) (Fig. 4E). Multiple promoters regulate ACCα mRNA, registered as NM_198836 and NM_198834, in the presence of thyroid hormone, glucagon, and medium-chain fatty acids [26] (Fig. 4F). Quantitative PCR analysis revealed that the expression of NM_198836 was decreased compared with that of NM_198834 in a time-dependent manner during senescence, implying that AFE-type splicing of ACCα mRNA is involved in HUVEC senescence (Fig. 4G). Taken together, splicing alterations in senescence- and non-senescence-related genes were induced during HUVEC senescence, and AFE- and ALE-type splicing was predominantly altered compared with other types of splicing.

Microexon alterations during HUVEC senescence

Besides canonical splicing analysis, we examined whether microexons are induced by HUVEC senescence using VAST-TOOLS, which detects splicing alterations at all hypothetical splice junctions formed by the usage of annotated and unannotated splice sites [27]. The results of VAST-TOOLS analysis were similar to those of MISO analysis; however, more RI events were detected because of the increased sensitivity for unannotated splice sites (Fig. 5A). We identified several microexon alterations during HUVEC senescence, although to a lesser extent (Table S3). Among these, two microexons in PRUNE2 and PSAP, each containing 9 nt, were altered in both C1 and C2 clones during senescence. To confirm these results, we amplified the microexon-containing region from each isoform by reverse transcription PCR (RT-PCR). Besides C1 and C2 clones, we examined clones C3 and C4. Consistent with VAST-TOOLS results, microexons in PRUNE2 decreased and microexons in PSAP increased the PSI value, with statistical significance or tendency, during HUVEC senescence in all clones (Fig. 5B). Each altered microexon contained the CRAL-TRIO lipid-binding domain and saposin B-type domain in PRUNE2 and PSAP, respectively, implying that microexon alteration affects the function of the encoded protein.

Furthermore, to examine whether readthrough transcripts were induced by HUVEC senescence, we conducted an RNA-seq analysis using deFuse [28]. The readthrough transcript refers to a conjoined gene arising from the upstream transcript to the downstream transcript of partner genes with poly(A) sites [29, 30]. However, RNA-seq data showed that the number of conjoined genes did not change, indicating that HUVEC senescence does not involve conjoined genes (Fig. 5C). Together, our results suggest that a limited number of microexon splicing alterations are induced during HUVEC senescence.
Discussion

To clarify the transcriptome landscape of HUVECs during replicative senescence, we analyzed changes in gene expression and genome-wide splicing using comprehensive multi-technical RNA-seq analysis. Genes showing a monotonic increase or decrease in expression were identified as hub genes. Additionally, canonical and non-canonical senescence pathways were identified during HUVEC senescence. Canonical senescence-related molecules, including MYC, E2F family, RB1, CDKN1A (p21), and CDKN2A (p16), were identified from the turquoise module as upstream regulators. Generally, MYC inhibits two inhibitory regulators, CDKN1A (yellow module) and CDKN2A (brown module), and subsequently activates the E2F and RB1 pathways of turquoise and blue modules, respectively (Fig. 6). MYC inactivation is also known to induce global changes in chromatin structure and epigenetic modifications (reduction in histone H4 acetylation and increase in histone H3 lysine 9 [H3K9] methylation) [31]. Additionally, total E2F reduction induces senescence-like cell cycle arrest in cancer cells [32]; particularly, E2F1 blocks cell proliferation [33]. Given that chromatin assembly is one of the hub functions of down-regulated biological functions (Fig. 3B), MYC and E2F pathways could play key roles in the down-regulation of genes related to cell cycle, transcription, splicing, and translation during HUVEC senescence.

Besides the canonical pathway during senescence, SIRT2 was identified as one of the genes with monotonically increasing expression in the yellow module and concomitantly identified as an up-regulator in the blue module. The SIRT family proteins function as NAD+-dependent histone deacetylases and master regulators of metabolism and aging [34]. SIRT1 and SIRT6 are well-known to regulate HUVEC senescence via the regulation of transcription factors, p53, E2F1, and nuclear factor-kappa B [35, 36]. However, the role of SIRT2 in senescence has not been well elucidated, although it is known that SIRT2 is involved in the stress-induced premature senescence, but not in the quiescence, of U2OS osteosarcoma cell line [37]. The time-dependent up-regulation of SIRT2 during HUVEC senescence suggests the involvement of a novel SIRT2-related signaling pathway during HUVEC senescence, although further investigation is needed to confirm whether SIRT2 acts as a trigger of HUVEC senescence.

Novel splicing alterations during HUVEC senescence were also investigated in this study, although the distribution of ASGs in senescent clones was smaller than the neuronal differentiation of iPSCs. Particularly, AFE- and ALE-type splicing was predominantly induced by senescence. Interestingly, hub genes identified during HUVEC senescence included key splicing factors, such as SRSF1, SRSF6, hnRNPA0, and hnRNPA1, among others (Table S1). Two independent large-scale microarray-based expression cohorts in human blood have revealed that the expression of key splicing factors, SRSFs and hnRNPAs, varies with age [38]. Additionally, changes in the expression of splicing factor genes is correlated with cognitive decline and longevity in humans and mice [39]. Presumably, gene expression changes of splicing factors during senescence are involved in splicing alteration and translation, thereby contributing to aging and longevity. We further identified that novel microexon alterations are involved in HUVEC senescence, albeit to a lesser extent. These evidence raise the possibility that induced splicing isoforms preform distinct and cooperative functions during senescence and impact senescence signaling.
Conclusion

Transcriptional regulatory analysis, based on co-expressed gene clusters, during HUVEC senescence clarified hub genes as well as canonical and non-canonical responses, including MYC and SIRT2 signaling, which were down-regulated in metabolism and chromosome organization processes. Besides changes in the expression of canonical splicing factor genes, novel splicing alterations such as AFE- and ALE-type splicing and microexons were identified. Our findings define a comprehensive transcriptome network, including gene expression and splicing, in the complex mechanisms of replicative endothelial senescence.

Materials And Methods

Cell culture

HUVECs (Lonza, Basel, Switzerland) were cultured using an EBM-2 Bullet Kit (Lonza) and passaged until reaching senescence. The PD rate was calculated using the following equation [40]:

$$PD = \frac{\ln(\text{No. of cells harvested}) - \ln(\text{No. of cells seeded})}{\ln 2}$$

Then, HUVECs were subcultured at 37°C in an atmosphere containing 5% CO₂.

SA-β-Gal staining

Cell fixation and SA-β-Gal staining were conducted using Cellular Senescence Assay Kit (CBA-230) according to the manufacturer’s instructions (Cell Biolabs, Inc., San Diego, CA, USA). Briefly, cells were fixed with Fixing Solution for 5 min at room temperature, washed with phosphate-buffered saline, and then stained with Cell Staining Working Solution overnight at 37°C in the dark.

RNA-seq analysis

To comprehensively investigate transcriptome consequences during HUVEC senescence, two different HUVEC clones of HUVECs (C1 and C2) cultured for four different durations were analyzed by RNA-seq. The four timepoints selected for RNA-seq analysis included day 5 or 6 (youngest timepoint), day 18 or 20 (dividing phase), day 60 or 61 (when HUVECs stopped dividing; PD < 0.1 per day), and day 74 (oldest timepoint; 2 weeks after HUVECs stopped dividing). RNA-seq libraries were aligned to the hg19 (GRCh37) reference genome assembly using the Genomic Short-read Nucleotide Alignment Program (GSNAP) [41, 42]. Next, the mate-pair information of the aligned libraries was fixed, potential PCR duplicates were removed, and libraries were sorted using SAMtools [43]. Then, gene expression was quantified (as FPKM.
values) using Cufflinks [44]. Differential splicing was detected using MISO analysis [45] and VAST-TOOLS [27]. In MISO analysis, the following parameters were used for removing AS events: Bayes factor < 10, variation in percent spliced-in (ΔPSI) < 0.1, and zero reads supporting the inclusion or exclusion isoform or less than 10 reads supporting either of the event isoforms. Conjoined genes (readthrough transcripts) were identified using the deFuse software (omicX, France) [28], with the classifier modified by removing the est_breakseqs_percident and breakseqs_estislands_percident features since the inclusion of these classifier features can decrease the probability of gene fusion calls. Conjoined genes were identified by selecting deFuse gene fusion calls, where both participating genes were located on the same strand of the same chromosome, using the following parameters: deletion = “Y”; splice score = 4; exonboundaries = “Y”; probability ≥ 0.9.

RNA-seq data of neuronal differentiation in human iPSCs were obtained from the Gene Expression Omnibus database (GSE32625) [22]. The raw sequence data were aligned to the hg19 reference genome using GSNAP and analyzed using Cufflinks and MISO analysis (as described above).

Co-expression network analysis

Gene expression response profiles were clustered using the WGCNA R software [23]. Soft-threshold selection was facilitated by calculating the scale-free network topology model fit R^2 values for soft thresholds 1–30 using the pickSoftThreshold function. The final threshold value was manually selected, where the topology model fit was both relatively stable and high.

Genes with FPKM ≥ 1 in at least one sample of the C1 and C2 RNA-seq data sets were selected for clustering. Gene expression profiles were clustered using WGCNA R with the following parameters: networkType = “signed”; minModuleSize = 30. Genes in the RNA-seq data sets of both C1 and C2 clones were classified into 20 co-expression clusters using the following parameters: soft power threshold = 12; deepSplit = 0.

Biological process enrichment analysis and enrichment map generation

To determine whether the expression of known senescence-related genes is altered during HUVEC senescence, enrichment analysis was conducted using senescence gene sets extracted from MSigDB, REACTOME, and HAGR databases, as well as genes of both HUVEC clones (C1 and C2) showing differential expression between the youngest timepoint (day 5) and oldest timepoint (day 74).

Gene Ontology (GO) biological process term enrichment for a set of genes was conducted by generating functional interaction networks with the BiNGO Cytoscape plug-in [46] using genes in the resulting network. The GO terms were selected using the following thresholds: $P = 1.0e^{-7}$; false discovery...
rate = 1.0e^{-3}; overlap coefficient = 0.6. Enrichment maps were generated for the BiNGO biological process enrichment results using the EnrichmentMap Cytoscape plug-in [47].

Transcriptional regulatory analysis

Transcriptional regulatory factors were predicted using upstream analysis with the IPA database (Qiagen, Qiagen Redwood City, CA, USA; www.qiagen.com/ingenuity) and enrichment analysis with the TFBS database. To conduct the TFBS enrichment analysis, the MSigDB compendium of transcription factor target gene sets was used. The enrichment significance was evaluated by hypergeometric statistics [18].

Hub gene analysis

Genes with high intramodular connectivity (kWithin > 0.8) were defined as hub genes. The kWithin, which was calculated using WGCNA, represents the scaled degree of connectivity of the edge of the gene under the same module.

RT-PCR

Total RNA was extracted using the RNeasy Plus Mini kit (Qiagen), and cDNA was synthesized using the SuperScript VILO cDNA Synthesis Kit (Life Technologies Corporation, CA, USA) or the PrimeScript RT reagent Kit (Takara Bio Inc., Japan), according to the manufacturers’ instructions. Real-time PCR was conducted using TaqMan MGB probe (Life Technologies), and the amount of FAM fluorescence was measured as a function of the PCR cycle number (C_T) using the Applied Biosystems ViiA7 Real-Time PCR system (Life Technologies). To examine microexon alterations, primers were designed to contain alternative exons using Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/). RT-PCR was conducted using AmpliTaq Gold (Life Technologies) using the following conditions: an initial denaturation step at 95°C for 5 min, followed by 35 cycles at 94°C for 30 s, 60°C for 30 s, and 72°C for 45 s, and a final elongation step at 72°C for 7 min. The PCR products were separated by capillary electrophoresis, and signal intensity was measured using the LabChip GX Touch Nucleic Acid Analyzer (PerkinElmer, Inc., MA, USA). Hs01060665_g1 (Life Technologies) for β-actin, Hs00923894_m1 (Life Technologies) for CDKN2A, and the following primers and probes were used for amplification: ACACA39440 (probe): 5’-ATCGCCCGACCGACACCGTGC-3’; ACACA39440-F: 5’-GCACGCTGGTCATGTCCGATC-3’; ACACA39440-R: 5’-TCCACTTCCAGAAAGACCTCAG-3’; ACACA35313 (probe): 5’-CACCACATCCTCATTGCATGAGCCTCA-3’; ACACA35313-F: 5’-GGTGAAGAGGGTGCAGTTC-3’; ACACA35313-R: 5’-CCCTCAAGATTGACATCATGAGTGA-3’; PSAP-F: 5’-TTGCTATCCAGATGATGATGC-3’; PSAP-R: 5’-CCTCATCAGAACCATTACC-3’; PRUNE2-F: 5’-GTCATCGAGGCTTACAGAGG-3’; PRUNE2-R: 5’-GCATTAGACACCCTGCCCATA-3’.

Abbreviations
Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

RNA-seq raw sequencing data are available at GEO (GEO series accession number: GSE163251) and all data generated or analyzed during this study are included in this published article and its supplementary information files.

Competing interests

M.O., Y.N., M.S.O., H.T., A.N., and S.Ar are/were employees of Takeda Pharmaceutical Company Limited. S.A. has no any competing interests.

Funding

Takeda Pharmaceutical Company Limited provided support in the form of salaries for authors but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors' contributions
M.O., Y.N., and S.Ar designed the study and wrote the manuscript. M.O. performed the experiments. Y.N. performed RNA-seq data analysis with assistance from M.S.O.. H.T., A.N. and S.A supervised the project.

Acknowledgements

We thank O. Nakanishi and R. Hara for the great support for this study. We thank T. Ogasawara, H. Kato Y. Goto for technical assistance. We thank K. Nishimura for the great discussion. We thank all the members of the Shonan incubation laboratory and BC cancer agency members for great encouragement and support for our research.

References

35. Cardus A, Uryga AK, Walters G, Erusalimsky JD: **SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence.** Cardiovascular research 2013, 97(3):571-579.

Figures
Figure 4

Predominant changes in AFE- and ALE-type splicing during HUVEC senescence (A) Proportions of different types of splicing events in HUVECs in each culture period, as determined by MISO analysis. (B) Splicing event type counts for each comparison. (C) Venn diagram showing the overlap between AS events between day 5 and day 74 in C1 and C2 clones. Statistical significance was determined using Fisher’s exact test. (D) List of alternatively spliced genes related to senescence. (E) The ΔPSI distribution
for the splicing of ACACA in C1 and C2 clones during senescence. The Y-axis indicates the FPKM values, and the X-axis indicates the MISO PSI posterior distribution in both C1 (left) and C2 (right) at the indicated culture condition. (F) Schematic representation of two spliced isoforms, NM_198836 and NM_198834, of ACACA mRNA. Light-colored boxes represent untranslated exons, and dark-colored boxes represent translated exons. Lines represent introns. (G) Analysis of ACACA gene expression by qPCR. The Y-axis indicates relative gene expression (NM_198836 [NM_836]/NM_198834 [NM_834]). The X-axis indicates culture days. Data represent mean ± SD of two independent experiments.

Fig. 5
Microexon alterations during HUVECs senescence (A) Proportions of different types of splicing events in HUVECs in each culture period, as determined by VAST-TOOLS. (B) RT-PCR assays monitoring AS patterns of microexons in PSAP (top) and PRUNE2 (bottom) in HUVECs under short and long culture periods. PSI values are shown in the right bar plot. (C) Box plots showing the distribution of conjoined gene junction reads per condition. Data represent mean ± SD of three independent experiments (* P < 0.05, ** P < 0.01; Student’s t-test).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TableS1.xlsx