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Abstract
Low cycle fatigue strength properties of additively manufactured Ti-6Al-4V alloy were experimentally
investigated under proportional and non-proportional multiaxial loading. Fatigue tests have been
conducted by means of hollow cylinder specimens with and without heat treatments, at room
temperature in air. Fatigue tests with proportional loading represented by a push-pull strain path and non-
proportional loading represented by a circle strain path were conducted, respectively. The fatigue lives of
additively manufactured specimens were drastically reduced obviously by internal voids and defects in
comparison with the specimens used in the previous study [1]. In addition, the defect size is measured,
and the defect does not cause fatigue strength reduction above some size. The fracture surface was
observed using SEM to investigate fracture mechanism of additively manufactured specimens under two
types of strain path. Different fracture patterns are recognized for the two strain paths; however, both
showed the retention of the crack propagation in spite of the presence of numerous defects. The crack
propagation properties of the materials with numerous defects under non-proportional multiaxial loading
were elucidated to increase the reliability of additive manufactured components.

1 Introduction
Additive manufacturing (AM) has enabled to fabricate complex geometry parts, to lighten weight, and to
shorten processing time due to the creation of subsequent thin cross-sections of a component and
represents one of the most innovative fabrication technologies in recent years [2–4]. However, AM has a
lot of process parameters, and the process control is extremely di�cult. Moreover, the defects and
residual stresses are arisen by thermal expansion or thermal contraction in a manufacturing process [2–
8]. Therefore, AM mostly is not recognized practicable because strength reliability of AM parts is inferior
to traditional manufacturing technologies such as casting, forging and rolling in general [9–10].
Accordingly, to widen the applicability of AM parts, fatigue strength properties of additively manufactured
components need to be accurately understood.

The titanium alloy Ti-6Al-4V is currently employed, mostly in the aeronautical and medical �elds, because
it has the properties of high strength, excellent thermal and corrosion resistance and biocompatibility. On
the other hand, material cost is expensive, and the machinability is worse. From the above, Ti-6Al-4V is
considered to be a good material for AM [11]. Uniaxial high cycle fatigue tests for AM Ti-6Al-4V have been
widely analyzed; however the research on low cycle fatigue strength under non-proportional multiaxial
loading in which principal direction of stress or strain changes in a cycle has not yet been reported [12–
18].

In this study, low cycle fatigue tests under non-proportional multiaxial loading were conducted by means
of additively manufactured specimen. In addition, the fracture mechanism of AM components with
defects was investigated by the fracture surface observation. Then, the factor of the decrease in fatigue
strength was discussed focusing on internal defects, that have hardly been clari�ed in the previous study
[1].
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2 Laser Powder Bed Fusion
The laser powder bed fusion (L-PBF) is the most employed technique for fabrication of additively
manufactured components. The steps of the fabrication technique are represented schematically in
Figure 1 [19], and manufacturing processes are shown below: 1. Layer of powdered material is applied to
building platform; 2. Powdered material is solidi�ed into a cross-section of a 3D model with laser; 3.
Building platform is lowered. The next layer of powder is applied; 4. The process repeats itself until the
creation of the part is complete; 5. The part is removed from the unused powder.

As the advantages, L-PBF can economically fabricate ideal parts with complex geometries in a rapid
design to manufacturing cycle. However, as the disadvantages, the components fabricated by L-PBF have
voids, residual stresses and surface roughness due to the in�uence of different process parameters. For
the improvement, performing HIP and sandpapering can remove voids and surface roughness,
respectively. Thus, fatigue strength of AM components can be improved.

3 Low Cycle Fatigue Tests

3.1 Testing Machine
Figure 2 and Figure 3 show a schematic view and a photo of the electrical servo-controlled tension
torsion fatigue testing machine. The testing machine is equipped with 2 types of cylinders for axial and
torsion loading, and it enables to generate non-proportional loading. The maximum axial load is 50 kN,
and maximum torque is 500 Nm. The load cell was equipped for load measurement, and the
extensometer which has equipped the eddy current sensor was employed to detect axial strain and shear
strain, simultaneously. Figure 4 shows a schematic view of the extensometer attached onto the
specimen.

3.2 Material and Specimen
The material tested was titanium alloy Ti-6Al-4V. Figure 5 show the shape and dimensions with no
machining process and the resultant hollow cylinder specimen which has a 9 mm inner diameter, an 11
mm outer diameter, and 12 mm parallel part. The types of specimens were with (HT) and without (NHT)
heat treatment to remove the residual stresses. The layer was laminated perpendicular to the longitudinal
direction of the specimen. The specimens were polished with an alumina powder solution (particle size 1
μm) on the external surface and with a sand paper with #2000 grit on the internal surface to avoid the
in�uence of surface roughness on fatigue life. A parallel part of the specimens has numerous defects;
However, the number of defects differs for each of them.

3.3 Test Condition
The testing machine that can perform tensile and torsion tests was used to apply both proportional and
non-proportional loading paths to the specimens. The proportional loading path is represented by push-
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pull strain path (PP), whereas the non-proportional loading path is represented by circle strain path (CI) in
which axial and shear strain have 90 degrees-out-of-phase. In the CI, the intensity of the von Mises’
equivalent strain was constant while the direction of the principal strain changes during the cycle. The
axial and shear strain were measured using an extensometer with a 12 mm strain gage length connected
to the specimens. The applied strains are visualized in Figure 6. The test temperature was room
temperature in air, and strain rate �εeq = 0.2 %/s was applied. Fatigue tests were conducted under strain
control. Number of cycles to failure (failure life) was de�ned when axial and shear stress amplitude
decreased to 3/4 of the maximum stress recorded.

4 Experimental Results And Discussion

4.1 Fatigue Properties
Figure 7 shows the test results correlated the von Mises’ equivalent strain amplitude Δεeq/2 with the
failure life Nf. Figure 8 shows the generated hysteresis loops for 0.5Nf and the maximum stress behavior
during the tests in each test condition.

The results (Fig. 7) of fatigue tests under PP clearly show that the data scatter is not so drastic and were
within the factor of 3 bands. Moreover, they were no difference between heat treatment and no heat
treatment. It is considered the temperature for heat treatment was not su�cient to remove residual
stresses. However, the data of PP HT (Δεeq = 1.3 %) exhibited lower failure lives and out of the factor of 3
bands. In Fig. 8 (a), (b) and (e), the hysteresis loops and the maximum stress amplitude at Δεeq = 1.3 %
were compared. The hysteresis loops indicated the almost same elastic deformation. The maximum
stress amplitude for NHT remains almost constants. Then probably, the crack initiated from the vicinity
of Nf, and the failure occurred very quickly after the crack initiation. On the other hand, for HT, the
maximum stress amplitude decreased instantly from around 0.3Nf. Therefore, the crack was considered
to initiate from 0.3Nf, and after some crack propagation, the failure took place.

Failure life (Fig. 7) under CI was reduced compared to PP resulting in 10% decrease in fatigue life. The
scattering of data was also very small; however, it cannot be con�rmed due to limited data (the presence
of the only one data of CI NHT (Δεeq = 0.5%)), the reduction in failure life for NHT cannot be seen. For the
other material such as stainless steel and carbon steel, in case of low strain level, the failure life is the
almost same as PP, but it is not clear for this study due to limited data. In Fig. 8 (c), (d) and (f), the
hysteresis loops and the maximum stress amplitude of Δεeq = 0.5% were compared. In case of low strain
level, the hysteresis loops also exhibited the almost same elastic deformation. The maximum stress
amplitude for two data was similar in deformation behavior. Although the overload was seen in the data
of HT, it is estimated that there is almost no effect because it could be adjusted in 10 cycles. Therefore,
why this data shows the longer life than other data remains as question. The previous test results are
also shown in Fig. 7 [1]. In the previous study data, failure lives were longer than that of this study. The
specimens of the previous study were the same material (Ti-6Al-4V) but were fabricated with a different
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manufacturing condition. Based on the above-mentioned, the internal defects were investigated to
quantify the size of defects.

4.2 Internal Defects
Figure 9 compares the internal defects between the previous study and this study. In the previous study,
the small defects were observed inside, but in this study, the internal defects depend on the observation
site. AM components have usually the defects inside, and fatigue strength of the material depends on
size and density of the defect; however, the defects size does not affect the fatigue life above a certain
size because the results of fatigue tests (Fig. 7) shows a clear correlation regardless of various defect
size. It is necessary to investigate the dependence of fatigue strength reduction on defect size.

4.3 Fracture Surface
Figure 10 shows the pictures of fracture surface after fatigue tests, and the observation surface is
perpendicular to the specimen axis. It is di�cult for main crack initiation site to be analyzed as for
specimens of this study. The cracks were initiated from the boundary of partly melted defects regardless
of strain range and strain paths, and the stress concentration in the defects causes premature rupture in
comparison to the results which were obtained with the same material [1]. From Figure 10 (a2) and (b2),
the crack propagation patterns were divided into the �rst phase (from the crack initiation site to the crack
middle site) and the second phase (form the crack middle site to the crack end site) during test. In the �rst
phase of the test, the propagation path was different due to strain paths, and it is possible that high
stress existed evidenced by rougher fatigue fracture surfaces. In PP, the crack propagated simply, but in
the CI, it became complicated. Basically, due to the change of the principal direction of stress and strain
during the cycle in CI, maximum shear stress plane is changed in the cycle. Thus, there is a possibility for
the crack to initiate and propagate to many directions. In the second phase of the test, fatigue fracture
surfaces were with the similar pattern, and the crack propagation seems to be suppressed. It is estimated
that a local non-propagating effect under multiaxial stress took place. Thus, it is possible that the change
of the crack propagation pattern in each phase of the test is a characteristic of AM components with
numerous defects, and it is noticeable under non-proportional multiaxial loading.

From this study, the fatigue strength is absolutely inferior to that of the previous study and traditionally
manufactured components; however, there is a possibility that AM technology is used for the mechanical
structure because the non-propagating effect of cracks was veri�ed under non-proportional multiaxial
loading.

Conclusions
(1) The failure lives under PP and CI were almost not affected by heat treatment performed to remove
residual stresses due to insu�cient temperature. In PP, the data scatter is not so drastic and almost all
data were within the factor of 3 bands. In CI, although the scattering of data was also very small, failure
life under CI was reduced compared with PP resulting in 10% decrease in failure life.
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(2) The small defects were observed inside in previous study, and the defects were larger in this study.
Stress concentration at the boundary of defects was generated, and the results of fatigue test shows a
clear correlation, so the size of defects above a certain size does not affect the failure life.

(3) Regardless of strain range and strain paths, the cracks were initiated from the boundary of partially
melted defects, indicating that stress concentration in the defect caused premature rupture compared to
the results obtained with the same material.

(4) In the �rst phase of the test, the propagation path was different due to strain paths; however, in the
second phase of the test, fatigue fracture surfaces were with the similar pattern, and the crack
propagation seems to be suppressed.
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Figure 3

Photo picture of fatigue testing machine
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Figure 4

State of lever type extensometer during fatigue test

Figure 5

Shape and dimensions of specimen after (a) L-PBF and (b) the machining process
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Figure 7

Relationship between Mises equivalent strain amplitude Δεeq/2 and failure life Nf
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Figure 10

SEM images of the fracture surface; (a) push-pull strain path and (b) circle strain path


