Systematic surveillance and meta-analysis on the prevalence of Metallo-β-Lactamase producers among carbapenem resistant clinical isolates in Pakistan

Noor ul Ain
University of the Punjab

Samyyia Abrar
University of the Punjab

Rehan Ahmad Khan
University of the Punjab

Abdul Hannan
University of the Punjab

Namrah Imran
University of the Punjab

saba riaz (✉️ saba.mmg@pu.edu.pk)
University of the Punjab https://orcid.org/0000-0002-6630-5689

Research

Keywords: Metallo-β-lactamases, Carbapenem resistance, Meta-analysis, New Delhi Metallo-β-lactamase (NDM)

DOI: https://doi.org/10.21203/rs.2.23189/v1

License: ☋ ⓘ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Rapid emergence of carbapenem resistance (CR) is a health concern of pertinent importance. Epidemiological surveillance of CR at global and indigenous level (Pakistan) can help to improve infection control strategy and establish pharmacovigilance programs. This study evaluate the prevalence of clinically significant CR isolates, and its genetic variant distribution among different geographical regions of Pakistan.

Methods: A meta-analysis was conducted to present the current rate of CR infections and prevalence of Metallo-β-lactamases (MBLs). The proposed subject was researched using robustic electronic databases a) PubMed b) PubMed Central® (PMC), and c) Google Scholar to identify the available literature. Thereafter, relevant data was extracted and statistical analysis was performed using STATA version 14.

Result: A total of 110 relevant studies were identified with 19 meeting the inclusion criteria for the meta-analysis of CR, while 22 for MBLs. Pooled rate for carbapenem resistance was determined to be 0.28 (95% CI: 0.26-0.31) with overall significant heterogeneity (I²=99.61%, p<0.001) and significant estimated score ES=0 (Z=22.65, p<0.001). In case of Pakistan, the overall pooled proportion of MBL producers was 0.34 (95% CI: 0.29-0.39) with overall heterogeneity significance (I² =99.62%, p<0.001) and respective significant ES=0 (Z=13.17, p<0.001). Conclusively, diverse variants of carbapenemases (VIM, IMP, NDM, KPC, GIM, SIM) along with other co-existing β-lactamase variants (OXA, TEM, SHV, CTX-M) have been reported across the country. However, New Delhi Metallo-β-lactamase (NDM)-variants were reported in predominant literature.

Conclusion: The prevalence of CR isolates in Pakistan is alarming, associated with MBL production primarily evident from the studies. The study emphasizes the need for regular surveillance, pharmacovigilance and antibiotic stewardship programs to ensure the availability of data to the authorities for preemptive measures of infection control.

Introduction

The global spread of antibiotic resistant poses significant therapeutic challenges in clinical and non-clinical settings. Carbapenem drugs are the most potent β-lactam drugs used as an ultimate strategic remedy against pathogens resistant to most broad spectrum antibiotics [1]. Recently, the infection associated with pathogens resistant to carbapenem have been documented for high rates of morbidity and mortality [2, 3]. β-lactamases, the prime factor of carbapenem-resistance (CR) which not only degrade carbapenem but several other β-lactam drugs [4]. The mobile genetic elements being the disseminators of the gene encoding enzymes variants, produce new β-lactamase variants. [5]. The mobile genetic elements (MGE) facilitate the inter-species spread of the resistance determinant and mutations, that diminish the boundaries between nosocomial bugs and community pathogens [4, 6].

Among the β-lactamases, Carbapenemases are the significant cause of resistance to carbapenem drugs. Moreover, they have been extensively reported in Enterobacteriaceae and non-lactose fermenting Gram negative bacteria (Pseudomonas spp. and Acinetobacter baumannai) [6, 7]. It is pertinent to mention here, that the occurrence of different variants i.e. NDM-type, VIM-type, and IMP-type Metallo-β-lactamases (MBLs) bring them to a concern of prime attention for the region (Pakistan) [4]. Appreciable literature investigates the
emergence and epidemics of new variants of MBLs at global level [8, 9, 6], however, the South-Asian countries hold extreme vulnerability [10–12].

Developing nations (South Asia), barely allocate independent funds for health based research with state of art infrastructural growth. Being one of the developing territories, Pakistan has been through the crest & trough of infrastructural development in the recent past. As per national level records, antibiotic resistance imparts 50% to the mortality rate [13]. Likewise, intrinsic and extrinsic issues such as self-medication practices, ignorance, substandard health facilities, unhygienic sanitation/flushing system and indiscriminate use of antibiotics in poultry and livestock are the major factors responsible for reinforcing antimicrobial resistance. Consequently, extreme antimicrobial resistance has left the health sector with limited options of antibiotics that could efficiently treat infections. Afore-mentioned alarming situation grab the attention of researcher in health sector to explore the novel action mechanism of carbapenem drug and accordingly CR. It is very important to mention here that proactive measures should be adopted to suppress the progressive spread of CR across the country.

Conclusively, there is a dire need to assemble the available authentic literature in regards to the current rate of carbapenem resistance across the country. Therefore, a comprehensive study was conducted with the aim to determine the overall pooled prevalence of CR and MBL-production having scope limited to Pakistan. This research also demonstrates a comprehensive explanation of meta-analysis from Pakistan focusing the pathogens resistant to carbapenems and the prevalence of MBLs. Moreover, this review will not only improve infection prevention strategies but will also provide a platform to promote antibiotic stewardship and pharmacovigilance programs. Finally, the current research has also highlighted open ended problems that demand thorough investigation specifically for the regions that lack surveillance data.

Methods - Strategic Approach

Study Design – Analyses schematics

To determine the rate of carbapenem resistance and prevalence of MBLs in Pakistan, a descriptive meta-analysis, based on critical evaluation and scientific investigation was conducted. To achieve the object of study, extensive literature review was carried with subsequent statistical analyses.

Reviewing Literature And Study Selection

The object of the study was achieved via developing a systematic plan, starting with reviewing vast literature using tailored computational efforts i.e. PubMed, PMC, Web of Science, and Google Scholar. The keywords used for the comprehensive search were: Carbapenem resistance, Metallo beta lactamases (MBLs), MBLs in Pakistan, MBL genes, Detection of MBLs and MBLs in different geographical areas of Pakistan. Prominent and relevant literature was listed by taking into account the theme, executive summary and findings of the studies. Additionally, the inclusion criteria were also extended to the relevant cited references of the same idea.
Inclusion Vs Exclusion Criteria

Author names, publication year, sample size, number of carbapenem resistant isolates and reported rate of MBLs were the key parameters for the extraction of data in the current research. Thereafter, the summarized data was classified into 4 groups on the basis of geographical locations in the country i.e. a) Punjab, b) Islamabad Capital Territory (ICT) c) Sindh d) Khyber Pakhtunkhwa (KP).

Brief revision of all the selected articles (n = 110) was conducted and irrelevant papers were omitted (Fig. 1). To proceed with the analyses step, two groups were organized, Group 1 & 2. Group 1 presented the rate of CR while Group 2 depicts the rate of MBLs. It is pertinent to mention that all the selected studies (group 1 & 2) were based on clinical isolates only. Moreover the respective inclusion criteria for Group 1 were studies reporting the rate of CR from all regions of Pakistan while for Group 2 the selected criteria were literature representing MBL rate through any of the phenotypic or molecular detection of gene variants across the country.

A collective exclusion criteria were formulated for both the groups, based on the successive arguments. Since the scope of this research was limited to clinical relevance, therefore, studies related to environment and animal specimens were excluded. Likewise, case reports, posters or abstracts, and duplicates were also removed. Similarly individual exclusion criteria were also designed for Group 1 & 2. Studies not clearly mentioning the rate CR were excluded in case of Group 1, while for Group 2 exclusion was adopted for the studies without experimenting the rate of MBL and taking into account β-lactamases alone other than MBLs.

Data Extraction

The extracted data for prevalence of CR and rate of MBL-producers detected by phenotypic tests including combination disc test (CDST), modified Hodge Test (MHT), and epsilometer test (E-Test), and molecular detection tool for gene variants (i.e., PCR) was organized in tables and reviewed twice before analyses to remove any error/ omission (Table 1).
Table 1
Year-wise distribution of articles reporting CR rate and MBL-producing isolates from different regions of Pakistan.

<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Region</th>
<th>Publication year</th>
<th>Study duration</th>
<th>Sample size</th>
<th>Isolate size</th>
<th>Phenotypic detection tests</th>
<th>Molecular detection tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DDST</td>
<td>CDST</td>
</tr>
<tr>
<td>1</td>
<td>Lahore</td>
<td>2019</td>
<td>2016-2017</td>
<td>12</td>
<td>126</td>
<td>170</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACINO</td>
<td>TO</td>
</tr>
<tr>
<td>2</td>
<td>Lahore</td>
<td>2018</td>
<td>2015-2016</td>
<td>10</td>
<td>10</td>
<td>89</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>Lahore</td>
<td>2018</td>
<td>2016-2017</td>
<td>12</td>
<td>126</td>
<td>170</td>
<td>80</td>
</tr>
<tr>
<td>Sr. no.</td>
<td>Region</td>
<td>Publication year</td>
<td>Study duration</td>
<td>Sample size</td>
<td>Isolate specific study isolates.</td>
<td>Carbenem resistant isolates.</td>
<td>Phenotypic detection tests</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Lahore</td>
<td>2018</td>
<td>2015 - 2017</td>
<td>94</td>
<td>All gram negative pathogens</td>
<td>142</td>
<td>90 no yes yes yes NO</td>
</tr>
<tr>
<td>5</td>
<td>Faisalabad</td>
<td>2018</td>
<td>2016 - 2017</td>
<td>15</td>
<td>All gram negative pathogens</td>
<td>103</td>
<td>58 no yes yes no no no no</td>
</tr>
<tr>
<td>6</td>
<td>Lahore</td>
<td>2016</td>
<td>2013 - 2014</td>
<td>1,168</td>
<td>Escherichia coli and Klebsiella pneumoniae</td>
<td>134</td>
<td>13 yes yes yes no NO NO NO</td>
</tr>
<tr>
<td>Sr. no.</td>
<td>Region</td>
<td>Publication year</td>
<td>Study duration</td>
<td>Sample size</td>
<td>Isolate specific study isolates.</td>
<td>Carbapenem resistant isolates.</td>
<td>Phenotypic detection tests</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DDST CDST MHT E-test MIC</td>
</tr>
<tr>
<td>7</td>
<td>Lahore</td>
<td>2016</td>
<td>2014</td>
<td>112</td>
<td>Acinetobacter baumannii</td>
<td>66</td>
<td>63 yes yes yes no NO NO</td>
</tr>
<tr>
<td>8</td>
<td>Lahore</td>
<td>2015</td>
<td>not mentioned</td>
<td>200</td>
<td>Pseudo monas aeruginosa</td>
<td>56</td>
<td>49 no yes no no NO IM P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sindh</td>
<td>2017</td>
<td>2014</td>
<td>100</td>
<td>Acinetobacter sp species</td>
<td>95</td>
<td>2 yes yes yes yes NO</td>
</tr>
</tbody>
</table>

Note: DDST = Disc Diffusion Sensitivity Test, CDST = Cup Diffusion Sensitivity Test, MHT = Microbroth Titration Test, E-test = Etest, MIC = Minimum Inhibitory Concentration.
<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Region</th>
<th>Publication year</th>
<th>Study duration</th>
<th>Sample size</th>
<th>Isolate specific study isolates</th>
<th>Carbapenem resistant isolates</th>
<th>MBL Positive</th>
<th>Phenotypic detection tests</th>
<th>Molecular detection tests</th>
<th>Genes Most detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Karachi</td>
<td>2016 - 2018</td>
<td>114</td>
<td>10</td>
<td>4</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ND M-1, IM P, KP C, VI M</td>
</tr>
<tr>
<td>11</td>
<td>Karachi</td>
<td>2014 - 2018</td>
<td>114</td>
<td>10</td>
<td>8</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>ND M-1, IM P, KP C, VI M</td>
</tr>
<tr>
<td>12</td>
<td>Karachi</td>
<td>2013 - 2018</td>
<td>114</td>
<td>10</td>
<td>7</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>ND M-1, IM P, KP C, VI M</td>
</tr>
<tr>
<td>Sr. no.</td>
<td>Region</td>
<td>Publication year</td>
<td>Authors</td>
<td>Sample size</td>
<td>Isolate specific study isolates</td>
<td>Carbenem MBL resistant</td>
<td>Phenotypic detection tests</td>
<td>Molecular detection tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Karachi</td>
<td>2008</td>
<td>Irfan et al. [1]</td>
<td>142</td>
<td>115</td>
<td>10 yes no no no Ye s No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Islamabad</td>
<td>2015</td>
<td>Humayun et al. [4]</td>
<td>277</td>
<td>14</td>
<td>8 no yes no no no Gi M, IM P, ND M, SI M, SP M, V M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Rawalpindi</td>
<td>2016</td>
<td>Braun et al. [4]</td>
<td>7857</td>
<td>all gram negative pathogens</td>
<td>82 - no no no no no ND M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr. no.</td>
<td>Region</td>
<td>Study duration</td>
<td>Authors</td>
<td>Sample size</td>
<td>Isolate specific</td>
<td>Phenotypic detection</td>
<td>Molecular detection tests</td>
<td>Carbenem MBL</td>
<td>Positive detection tests</td>
<td>Genes Most detected</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>16</td>
<td>Islamabad</td>
<td>2014-2011</td>
<td>Hasan et al. [3, 4]</td>
<td>90</td>
<td>Acinetobacter baumannii</td>
<td>59</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>OX A-51, ND M-1, OX A-23</td>
</tr>
<tr>
<td>17</td>
<td>Islamabad</td>
<td>2014-2009</td>
<td>Qamar et al. [4, 3]</td>
<td>71</td>
<td>Enterobacter cloacae</td>
<td>-</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>18</td>
<td>Islamabad</td>
<td>2013</td>
<td>Naheed et al. [4, 4]</td>
<td>35-6</td>
<td>All gram negative pathogens</td>
<td>160</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>19</td>
<td>Islamabad</td>
<td>2013-2011</td>
<td>Day et al. [4, 5]</td>
<td>17-5</td>
<td>Enterobacteriacae</td>
<td>32</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Sr. no.</td>
<td>Region</td>
<td>Publication year</td>
<td>Study duration</td>
<td>Sample size</td>
<td>Isolate specific study isolates.</td>
<td>Carbenem resistant isolates.</td>
<td>MBL Positive Phenotypic detection tests</td>
<td>Molecular detection tests</td>
<td>DDST</td>
<td>CDST</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>20</td>
<td>Rawa</td>
<td>2011</td>
<td>2010</td>
<td>20</td>
<td>Enterobacter cloacae</td>
<td>-</td>
<td>37</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Li</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Rawa</td>
<td>2010</td>
<td>2009</td>
<td>23</td>
<td>All gramm negative pathogens</td>
<td>50</td>
<td>39</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Li</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

KPK

22	Pesha	2015	2013	55	Pseudomonas aeruginosa	70	18	no	yes	no	no	no	no	no
	war													
Statistical Analysis

The pre-published data of carbapenem resistance and MBL prevalence from different areas of Pakistan was interpreted into two groups for future analysis. Afterwards, the screened data was evaluated for the statistical analysis. The statistical analysis was conducted using STATA Version 14.1 (College Station, Texas, USA) according to a previous study [14]. The non-uniformity in statistical data (Statistical heterogeneity) was investigated using I^2 statistics (Measure of inconsistency) at a signified level of 5%. The significant P-value, suggested by literature as 0.05, was used for conversion of meta-analysis results to definite tests of statistics. Using the Random Effects Model (REM), a pooled prevalence of 95% Confidence interval (CI) was obtained. A funnel plot and Begg tests were carried out to investigate the publication partiality using data statistically and graphically.

Results

Distribution of articles describing the rate of CR and prevalence of MBLs

To demonstrate the overall rate of CR and prevalence of MBLs an initial search was launched that shortlisted 110 published papers. Among the total, 24 studies were proceeded for further analysis. As per the inclusion criteria, 19 papers on rates of CR and 22 describing the frequencies for MBL-producers were selected. The
maximum number of studies 41.67% (n = 10) were observed from ICT, followed by Punjab 33.34% (n = 8) on the second, Sindh 25% (n = 6) third, and KP 12.5% (n = 3) last. However, no study on the subject was found from the peripheral regions of the country including Baluchistan region and Gilgit Baltistan. In the year 2018, the subject was highly researched followed by 2016 with a decreasing trend in the descendant past years (Table 4).

<table>
<thead>
<tr>
<th>Year</th>
<th>Punjab</th>
<th>KPK</th>
<th>Sindh</th>
<th>ICT</th>
<th>Annual Total Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upto 2009</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (20.00%)</td>
<td>0 (0%)</td>
<td>1 (4.16%)</td>
</tr>
<tr>
<td>2010</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (12.50%)</td>
<td>1 (4.16%)</td>
</tr>
<tr>
<td>2011</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (12.50%)</td>
<td>1 (12.50%)</td>
</tr>
<tr>
<td>2012</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>2013</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (20.00%)</td>
<td>2 (25.00%)</td>
<td>3 (12.50%)</td>
</tr>
<tr>
<td>2014</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (20.00%)</td>
<td>2 (25.00%)</td>
<td>3 (12.50%)</td>
</tr>
<tr>
<td>2015</td>
<td>1 (12.50%)</td>
<td>1 (33.33%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>2 (8.34%)</td>
</tr>
<tr>
<td>2016</td>
<td>2 (25.00%)</td>
<td>0 (0%)</td>
<td>1 (20.00%)</td>
<td>0 (0%)</td>
<td>3 (12.50%)</td>
</tr>
<tr>
<td>2017</td>
<td>0 (0%)</td>
<td>1 (33.33%)</td>
<td>1 (20.00%)</td>
<td>0 (0%)</td>
<td>2 (8.34%)</td>
</tr>
<tr>
<td>2018</td>
<td>4 (50.00%)</td>
<td>1 (33.33%)</td>
<td>0 (0%)</td>
<td>2 (25.00%)</td>
<td>7 (29.17%)</td>
</tr>
<tr>
<td>2019</td>
<td>1 (12.50%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (4.16%)</td>
</tr>
</tbody>
</table>

In detail, 9 studies researched all types of Gram negative pathogens whereas a few studies were found to be isolate specific, for example, Acinetobacter spp. (n = 4), Pseudomonas aeruginosa (n = 3), Enterobacteriaceae (n = 3), Klebsiella pneumoniae (n = 1), Escherichia coli (n = 1), Enterobacter cloacae (n = 1), Acinetobacter & Pseudomonas (n = 1), and K. pneumoniae & E. coli (n = 1). In this research, among the 24 investigations, 92% (n = 22) papers were associated with hospitalized patients, while 8% (n = 2) have presented the cases from in-patients as well as out-patients departments (OPD). None of the studies demonstrate any gender associated with the rate of CR or MBL infections. Moreover, blood cultures and pus specimens were dominant in all studies followed by tracheal secretion. To understand the gastro-intestinal tract CR infections, stool samples were taken into account in two different studies. Only one study was based on neonates specifically while there was no age limit in remaining studies (Table 1).

Laboratory Methods For Determining The MBLs Prevalence

Among the variable phenotypic methods used for MBLs detection in 22 studies, the most common method was combination disc test (CDST) (68.18%, n = 15), followed by modified Hodge test (MHT) (n = 12, 54.54%)
and double disc synergism test (DDST) \((n = 6, 27.27\%) \). E-test for MBLs detection was performed by only three studies whereas Minimum inhibitory concentrations (MIC) of carbapenem drugs (Imipenem, Meropenem) was determined in six articles.

Molecular Methods Used To Determine The Frequency Of MBLs

Among the 18 studies included in MBL detection, PCR based gene detection method was used by 12 (66.67%) of the studies NDM gene was reported \((n = 5, 27.78\%) \) to be the most prevalent among MBL producing isolates. Existence of other \(\beta \)-lactam genes (OXA, TEM, SHV, SIM, and SPM) in combination with \(\text{bla}_{MBL} \) is also reported. Other MBL gene variants included IMP \((n = 8) \) and VIM \((n = 7) \).

Rate Of CR In Different Geographical Regions Of Pakistan

To explain the rate of CR across the country, 18 articles were reviewed. Among them, 7 (38.89%) were from Punjab, 6 (33.34%) from Islamabad/Rawalpindi, 2 (11.12%) from KP, and the remaining 3 (16.67%) from Sindh. Based on the extracted data from the reviewed literature (Figure 2; Table 2), the overall pooled proportion of CR was 0.28 (95% CI: 0.26–0.31). The overall heterogeneity was significant \((I^2 = 99.61\%, P < 0.001) \) and significant \(ES = 0 \) \((Z = 22.65, P < 0.001) \). The pooled proportion of CR-producer for Punjab was observed to be 0.17 (95% CI: 0.14–0.19) with significant heterogeneity \((I^2 = 99.23\%, P < 0.001) \) and significant \(ES = 0 \) \((Z = 12.55, P < 0.001) \). In case of ICT, the pooled proportion of CR was determined to be 0.18 (95% CI: 0.14–0.22) with respective significant heterogeneity \((I^2 = 98.99\%, P < 0.001) \) and corresponding \(ES = 0 \) \((Z = 8.19, P < 0.001) \). Moreover, for KP and Sindh, the pooled proportion of CR was estimated to be 0.12 (95% CI: 0.10–0.14) and 0.86 (95% CI: 0.75–0.96) respectively, while their significant ES was calculated to be \(ES = 0 \) \((Z = 10.35, P < 0.001) \) and \(ES = 0 \) \((Z = 16.07, P < 0.001) \) respectively.

MBLs prevalence and distribution in different geographical regions of Pakistan

To present prevalence rate and distribution of MBLs, 22 articles were peer-reviewed: 7 (31.8%) from Punjab and ICT each, 3 (13.6%) from KP and 5 (22.7%) from Sindh. Based on the available literature (Fig. 3; Table 3), the overall pooled proportion of MBL producers was 0.34 (95% CI: 0.29–0.39) with overall heterogeneity significance \((I^2 = 99.62\%, P < 0.001) \) and significant \(ES = 0 \) \((Z = 13.17, P < 0.001) \). The pooled proportion of MBL-producers for Punjab and ICT was 0.32 (95% CI: 0.20–0.44) and 0.22 (95% CI: 0.12–0.31) respectively, and corresponding significant heterogeneity was found to be \((I^2 = 99.54\%, P < 0.001) \) and \((I^2 = 98.57\%, P < 0.001) \) with significant \(ES = 0 \) \((Z = 5.28, P < 0.001) \) and \(ES = 0 \) \((Z = 4.57, P < 0.001) \) respectively. Furthermore, in case of KP the pooled proportion of MBL producers was estimated to be 0.10 (95% CI: 0.03–0.17) with significant \(ES = 0 \) \((Z = 2.78, P < 0.01) \) whereas for Sindh, it was found to be 0.68 (95% CI: 0.22–1.14) with significant heterogeneity \((I^2 = 99.79\%, P < 0.001) \) and \(ES = 0 \) \((Z = 2.88, P < 0.001) \).
Discussion

The past few decades, infections associated with extensive drug resistance have been highly reported by the literature, as a cause of high mortality and morbidity rates. However, researchers tailored the usage of Carbapenem, for treatment of life threatening infections. The issue of increasing drug resistance specifically CR needs to be highlighted by collecting the data, enlightening the major findings, experimenting with the techniques and tools for easy availability to health care practitioners and the concerned authorities. This research compiles a brief description for the first time in Pakistan that demonstrates the rate of CR and incidence prevalence of MBLs from different geographical regions of the country, with alarmingly high rates of CR and incidence of MBLs [15–18].

Multiple analyses techniques were adopted by various researchers in past, however meta-analysis was the most recommended numerical technique [19, 20]. The findings of meta-analysis are paragraphed as follows.

As per statistics, the overall pooled proportion of CR was 28%. Interesting, high rates of CR have been reported from Iran, wherein 2016 the resistance to imipenem was 55% [95% confidence interval (CI), 53.0–56.5] [20]. However, the steady increase of CR in Iran is evident from the studies published in advancing years with a pooled prevalence of resistance to imipenem and meropenem to be 81.1% (95% CI 76.6–84.9) and 83.6% (95% CI 78.7–87.5), respectively [19]. More recently, a similar study from Iran, based on the prevalence and mechanisms of carbapenem resistance in A. baumannai has reported the pooled frequency of carbapenem resistance as 85.1% (95% confidence interval [CI]: 82.2–88.1) [21]. However, the rate of CR in Enterobacteriaceae reported by a meta-analysis study from the US was 0.3–2.93 infections per 100,000 person-years [22].

The Pakistan's overall pooled proportion for MBL production was 34%. However, in the Asian continent, only one meta-analysis report from Iran, specifically on P. aeruginosa has reported the pooled prevalence of VIM-1 associated MBL production to be 13% (95% confidence interval isolate = 10.5–16.5%) [23]. It is worth noticing that the maximum number of studies from Pakistan are based on the Acinetobacter spp. which emphasizes the highest incidence of MBL-producers in Acinetobacter spp. This can be related to the several other studies from the continent of Asia, where a high rate of CR is found to be associated with Acinetobacter spp. [24–29] Differences in the proportion of MBLs have been documented from all over the world based on surveys of community-acquired and nosocomial infections. However, we have found no meta-analysis study specifically on Metallo-β-lactamases.

Among 24 studies included, 22 focused on the in-door patients in hospital settings, which indicates that the resistance to carbapenem is more often associated with hospital acquired infections. A meta-analysis study describing the risk factors of CR in Enterobacteriaceae presented that the use of medical devices generated the highest pooled estimate (odds ratio [OR] = 5.09; 95% confidence interval [CI] = 3.38 to 7.67), followed by carbapenem use (OR = 4.71; 95% CI = 3.54 to 6.26) [30]. The highest incidence rate of MBL producers has been recorded from Sindh. Moreover, the rate of MBL producers has found to be varying among different studies. This variation may be associated with different factors like availability and use of antibiotics, difference of nosocomial and community-based studies, and methods to determine the MBL-producers [15, 16, 31]. The studies that have employed molecular methods to determine the gene variants have also reported the co-
existence of other beta-lactamase genes with MBL related genes [12, 32, 33]. This aspect of the study is in concordance with reports from different regions of the world where the simultaneous presence of other beta-lactam genes with metallo β-lactamase genes have been described [34–36].

The NDM gene variant was found to be the most prevalent genetic determinant of MBL-production. The region being the epicenter for this gene variant in the community pathogens, bring out the need for detailed studies to prevent further dissemination. Many studies from the continent have reported a high prevalence of the NDM type MBL variant [37, 38]. Some of the studies included here have also reported the serine beta-lactamases, OXA variants, and KPCs to be the causative agents of carbapenem resistance. [12, 38, 39]. Limited literature and research on the subject suggest to consider the matter earnestly. Currently, there is no data published regarding the overall proportion of carbapenem resistance and MBL-production from Pakistan.

Conclusion And Recommendations

This investigation develop a comprehensive article on CR and MBLs by applying meta-analysis numerical approach for the available data across Pakistan. Based on the analysis results, the following conclusion were drawn.

The application of meta-analysis showed an increasing trend in the rate of CR and MBL incidence in the health care settings. It has been observed that no literature is available from the area of Baluchistan and Gilgit Baltistan, hence, the research communities are appreciated to work on the proposed subject in terms of making the data available.

In Pakistan self-medication is a common practice and number of healthcare facilities are low, resistance to antibiotics is increasing which mitigate their efficacy. Standard operating procedures and laws are the needed to standardize the use of antibiotics to prevent critical consequences in the future. In the era where antibiotic resistance is at its verge, the differences in CR and MBL molecular epidemiology for every country is very important for the counter actions and proactive action plans. Moreover, the study suggests effective intervention, such as implementation of national action plan, infection control programs, targeted therapeutics, antibiotic stewardship programs and proper disinfection methods in hospital settings that may play a beneficial role in combating the problem.

Abbreviations

Declarations

This is part of Ph. D thesis of Ms. Noor Ul Ain.

Ethics approval and consent to participate
This study was approved by local ethical committee (Citilab and Research Center Ref # 27th – 17CLRC/27th).

Consent for publication

Not applicable

Availability of Data

Please contact author for data requests

Funding

No funding was provided for this study

Authors’ Contributions

Study concept and design of the study: (Saba Riaz); data collection: (Noor Ul Ain, Abdul Hannan and Namrah Imran); Statistical analysis: (Rehan Ahmad Khan), Preparation of draft, editing and reviewing: (Noor Ul Ain)

Acknowledgements

We would like to pay our gratitude towards College of Statistical and Actuarial Sciences, University of the Punjab and Citilab and Research center, Lahore Pakistan for supporting the study.

Competing interests

The authors declare that they have no competing interests

Authors’ details

1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 2College of Statistical and Actuarial Sciences, 3Citi Lab and Research Center, Faisal Town Lahore, Pakistan.

References

Tables 2-3

Due to technical limitations, Tables 2-3 are provided in the Supplementary Files section.

Figures
Figure 1

Flow diagram of the study selection, literature search, and article selection
Figure 2

Proportion estimates of Carbapenem resistant clinical isolates in Pakistan. Midpoint of each horizontal line segment shows the proportion estimate in each study. Rhombic mark shows the pooled proportion from all studies.
Figure 3

Proportion estimates of MBL-producing clinical isolates in Pakistan. Midpoint of each horizontal line segment shows the proportion estimate of MBL in each study. Rhombic mark shows the pooled proportion from all
Figure 4

Published research on CR & MBLs across Pakistan

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Tables23.docx