Pairwise Q*-s-(regular and normal) spaces in bitopological spaces

P. Padma (padmaprithivirajan@gmail.com)
Cheran arts science college, kangeyam
https://orcid.org/0000-0001-9804-1879

Research Article

Keywords: pairwise Q s - regular, pairwise Q s - normal, pairwise s Q s - normal, pairwise Q s - normal

Posted Date: February 17th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1367382/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Pairwise Q^*- (regular and normal) spaces in bitopological spaces

P. Padma and Alias B. Khalaf

Abstract: The notion of $\tau_1\tau_2 - Q^*$ - open sets in a bitopological spaces was introduced by K.Kannan and K.Chandrasekhararao. We introduce the notion of pairwise Q^*-regular, pairwise Q^*-normal, pairwise $s\ Q^*$-normal and obtain some characterizations of pairwise Q^*-regularity and pairwise Q^*-normality, pairwise $s\ Q^*$-normal.

Keywords: pairwise Q^* - regular ; pairwise Q^* - normal ; pairwise $s\ Q^*$ - normal; pairwise Q^* - normal.

2010 Mathematics Subject Classification: 54E55.

1 Introduction

Separation axioms are properties by which the topology on a space X separates points from points, points from closed sets and closed sets from each other. The various separation axioms give rise to a sequence of successively stronger requirements, which are put upon the topology of a space to separate varying types of subsets. These axioms are also found useful to characterize continuous mappings. In 1963, Levine introduced the concept of semi-open sets. Maheshwari and Prasad have introduced pairwise semi-T_i-spaces, $i \in \{0, 1, 2\}$. Using the notion of semi-open sets, Maheshwari, Prasad and Bhamini have defined and studied the notions of pairwise s-normal (resp. pairwise irresolutely normal), if for any pair of disjoint τ_i- closed set A and a τ_j- closed set B (τ_i- semi closed set A and a τ_j - semi-closed set B), there exists a τ_j - semi open set U and a τ_i - semi open set V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \phi$; $i \neq j$, $i, j =1, 2$.

The notion of Q^*-open sets in a topological space was introduced by Murugalingam and Lalitha [12, 13]. Mean while J. C. Kelly introduced bitopological space in 1963. There after, several authors studied the above mentioned concepts in bitopological settings. The notion of pairwise semi-T_0, pairwise semi-T_1, pairwise semi-T_2, pairwise s-regular and pairwise s-normal spaces, s-normal (resp. semi normal) spaces were introduced and studied by Maheshwari and Prasad [5, 6, 7, 9, 10, 11]. In this paper, the notion of pairwise Q^*-s-regular spaces and pairwise Q^*-s-normal spaces are introduced and their basic properties in bitopological spaces are discussed.

2 Preliminaries

Let (X, τ_1, τ_2) or simply X denote a bitopological space. For any subset $A \subseteq X$, $\tau_i - int(A)$ and $\tau_i - cl(A)$ denote the interior and closure of a set A with respect to the topology τ_i, respectively. A^C denotes the complement of A in X unless explicitly stated. We give the following definitions in bitopological spaces.

Definition 2.1 A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be pairwise homeomorphism if the induced functions $f : (X, \tau_1) \rightarrow (Y, \sigma_2)$ and $f : (X, \tau_2) \rightarrow (Y, \sigma_1)$ are
homeomorphism.

Definition 2.2 A function \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is said to be pairwise semi-homeomorphism if the induced functions \(f : (X, \tau_1) \to (Y, \sigma_1) \) and \(f : (X, \tau_2) \to (Y, \sigma_2) \) are semi-homeomorphism, i.e., the induced function are pre-semi open, irresolute and bijective.

Lemma 2.3 [12] Let \(X \) be a topological space. Then the family of all \(Q^* \)-open sets in \(X \) with \(\phi \) is a topology. It is denoted by \(\tau_{Q^*} = \sigma^* \).

Lemma 2.4 [12] Let \(X \) be a topological space. Then the set of all \(Q^* \)-closed sets with \(X \) is a topology. It is denoted by \(\tau_{Q^*} = \mu^* \).

Example 3.2 Let \(X = \{a, b, c\} \), \(\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{\emptyset, X, \{c\}, \{b\}, \{a, c\}, \{a, b\}\} \), \(SO(X, \tau_1) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{a, b\}\} \), \(SO(X, \tau_2) = \{\emptyset, X, \{c\}, \{b\}, \{a, c\}, \{a, b\}\} \) and \(\sigma_1 = \{\emptyset, X, \{a, b\}\} \), \(\sigma_2 = \{\emptyset, X, \{b, c\}\} \). Then the space \(X \) is pairwise \(g^* \)-regular but not pairwise \(Q^* \)-regular space.

Theorem 3.3 For a space \(X \), the following are equivalent:

(a) \((X, \tau_1, \tau_2)\) is pairwise \(Q^* \)-regular.

(b) For each \(x \in X \) and every \(\tau_i - Q^* \)-open set \(U \) containing \(x \), there exists a \(\tau_i \)-semi open set \(H \) such that \(x \in H \subseteq \tau_j - cl(H) \subseteq U \); \(i \neq j \), \(i, j = 1, 2 \).
(c) For every \(\tau_1 - Q^* \)-closed set \(F \), the intersection of all \(\tau_j \)-semi closed, \(\tau_j \)-semi neighborhoods of \(F \) is exactly \(F \); \(i \neq j \), \(i, j = 1, 2 \).

(d) For every set \(A \) and a \(\tau_i - Q^* \)-open set \(B \) such that \(A \cap B = \emptyset \), there exists a \(\tau_i \)-semi open set \(W \) such that \(A \cap W \neq \emptyset \) and \(\tau_j - scl(W) \subseteq B \); \(i \neq j \), \(i, j = 1, 2 \).

(e) For every nonempty set \(A \) and any \(\tau_i - Q^* \)-closed set \(B \) satisfying \(A \cap B = \emptyset \), there exists a \(\tau_i \)-semi open set \(U \) and a \(\tau_j \)-semi open set \(V \) such that \(A \cap U \neq \emptyset \) and \(B \subseteq V \) and \(U \cap V = \emptyset \); \(i \neq j \), \(i, j = 1, 2 \).

Proof. (a) \(\rightarrow \) (b) Let \(x \in U \) and \(U \) is \(\tau_i - Q^* \)-open in \(X \). Therefore, \(x \notin X - U \) and \(X - U \) is \(\tau_1 - Q^* \)-closed in \(X \). Since \(X \) is pairwise \(Q^*S \)-regular, there exists a \(\tau_i \)-semi open set \(V \) and a \(\tau_j \)-semi open set \(W \) such that \(x \in V \) and \(X - U \subseteq W \) and \(V \cap W = \emptyset \). Obviously, \(V \subseteq X - W \) and hence \(\tau_j - scl(V) \subseteq X - W \). Hence \(x \in V \subseteq \tau_j - scl(V) \subseteq U \).

(b) \(\rightarrow \) (c) Let \(F \) be a \(\tau_i - Q^* \)-closed subset of \(X \) and \(x \notin F \). Then \(X \) - \(F \) is a \(\tau_i - Q^* \)-open set containing \(x \). Therefore, by (b) there exists a \(\tau_i \)-semi open set \(O \) such that \(x \in O \subseteq scl(O) \subseteq X - F \), which implies that \(F \subseteq (X - \tau_i - scl(O)) \subseteq X - O \). Also \(X - O \) is \(\tau_i \)-semi closed, \(\tau_j \)-semi neighborhood of \(F \) which does not contain \(x \). Hence, the intersection of all \(\tau_i \)-semi closed, \(\tau_j \)-semi neighborhoods of \(F \) is exactly \(F \).

(c) \(\rightarrow \) (d) Let \(A \) be a nonempty subset of \(X \) and \(B \) be a \(\tau_i - Q^* \)-open set such that \(A \cap B \neq \emptyset \). Let \(x \in A \cap B \). Then \(X - B \) is a \(\tau_i - Q^* \)-closed such that \(x \notin X - B \). Therefore, by (c), the intersection of all \(\tau_i \)-semi closed, \(\tau_j \)-semi neighborhood of \(X - B \) is exactly \(X - B \), i.e., there exists a \(\tau_i \)-semi closed set, \(\tau_j \)-semi neighborhood of \(X - B \), say \(V \) such that \(x \notin V \). Thus, there is a \(\tau_i \)-semi open set \(U \) such that \(\tau_j - scl(U) \subseteq X - V \). Take \(W = X - V \). Then \(W \) is a \(\tau_i \)-semi open set containing \(x \) as \(x \notin B \) therefore \(x \notin V \). Hence \(x \in A \) and \(x \in W \) which implies that \(A \cap W \neq \emptyset \). Since \(X - V \subseteq X - U \subseteq B \), therefore, \(\tau_j - scl(X - V) \subseteq X - U \subseteq B \). Hence \(\tau_j - scl(W) \subseteq B \).

(d) \(\rightarrow \) (e) Let \(A \cap B = \emptyset \), where \(A \) is nonempty and \(B \) is a \(\tau_i - Q^* \)-closed set, then \(A \cap X - B \neq \emptyset \), where \(X - B \) is a \(\tau_i - Q^* \)-open set. Therefore by (d), there exists a \(\tau_i \)-semi open set \(G \) such that \(A \cap G \neq \emptyset \), and \(\tau_j - scl(G) \subseteq X - B \). Now, put \(M = X - \tau_i - scl(G) \). Then \(B \subseteq M \) and \(M \) and \(G \) are \(\tau_j \)-semi open sets such that \(G \cap M = \emptyset \).

(e) \(\rightarrow \) (a) Let \(F \) be a \(\tau_i - Q^* \)-closed subset of \(X \) and \(x \notin F \). Then \(\{ x \} \) and \(F \) are disjoint. Therefore by (e), there exists a \(\tau_i \)-semi open set \(U \) and a \(\tau_j \)-semi open set \(V \) such that \(\{ x \} \cap U \neq \emptyset \), \(F \subseteq M \) and \(U \cap V = \emptyset \); i.e., \(x \in U \). Hence \(X \) is pairwise \(Q^*S \)-regular.

Definition 3.4 A space \(X \) is said to be \(bi-Q^* \)-symmetric if every singleton \(\{ x \} \) is \(\tau_i - Q^* \)-closed, \(i = 1, 2 \).

Remark 3.5 Every \(bi - Q^* \)-symmetric is \(bi \)-symmetric but the converse need not be true in general. The following example supports our claim.

Example 3.6 Let \(X = \{ a, b \} \), \(\tau_1 = \tau_2 = \{ \emptyset, X, \{ a \}, \{ b \} \} \). Then \(X \) is \(bi \)-symmetric but not \(bi - Q^* \)-symmetric.

Theorem 3.7 Every pairwise \(Q^*S \)-regular, \(bi - Q^* \)-symmetric space is pairwise semi-\(T_2 \).

Proof. Let \(X \) be a pairwise \(Q^*S \)-regular and \(bi - Q^* \)-symmetric space. Let \(x, y \) be any two distinct points of \(X \). Since \(X \) is \(bi - Q^* \)-symmetric implies \(\{ x \} \) is \(\tau_i - Q^* \)-
closed for \(i = 1, 2\). Also \(y \notin \{x\}\). Since \(X\) is pairwise \(Q^*\) - regular, there exists a \(\tau_i\) - semi open set \(U\) and \(\tau_j\) - semi open set \(V\) such that \(\{x\} \in V, y \in U\) and \(U \cap V = \emptyset\); \(i \neq j, i, j = 1,2\). Hence \(X\) is pairwise semi-\(T_2\).

Example 3.8 In Example 3.2, the space \(X\) is pairwise \(Q^*\)-normal but not bi-\(Q^*\)-symmetric and pairwise \(Q^*\)-regular.

Theorem 3.9 Let \(f: X \rightarrow Y\) be a pairwise homeomorphism. Then \(X\) is pairwise \(Q^*\) - regular if and only if \(Y\) is pairwise \(Q^*\)-regular.

Proof. Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)\) be a pairwise homeomorphism. Let \(X\) is pairwise \(Q^*\) - regularity. Let \(F\) be a \(\sigma_i - Q^*\) - closed subset in \(Y\) such that \(y \notin F\). Then \(x \notin f^{-1}(F)\), where \(y = f(x)\) and \(f^{-1}(F)\) is a \(\tau_i - Q^*\) - closed since \(f\) is pairwise homeomorphism. By pairwise \(Q^*\) - regularity of \(X\), there exists a \(\tau_i\) - semi open set \(U\) and a \(\tau_j\) - semi open set \(V\) such that \(x \in U, f^{-1}(F) \subseteq V\) and \(U \cap V = \emptyset\). Hence \(y \in f(U), F \subseteq f(V)\) and \(f(U) \cap f(V) = \emptyset\). Since \(f\) is pairwise homeomorphism implies \(f\) is pairwise semi homeomorphism implies \(f\) is pairwise pre semi open. Therefore, \(f(U)\) and \(f(V)\) are \(\sigma_i\) - semi open and \(\sigma_j\) - semi open sets respectively. Hence \(Y\) is pairwise \(Q^*\) - regular.

Conversely, Let \(Y\) be pairwise \(Q^*\)-regular and let \(G\) be any \(\tau_i - Q^*\) - closed set in \(X\) such that \(x \notin G\). Then \(y \notin f(G)\) a \(\sigma_i - Q^*\) - closed set in \(Y\) since \(f\) is pairwise homeomorphism. By pairwise \(Q^*\) - regularity of \(Y\), there exists a \(\sigma_i\) - semi open set \(U\) and a \(\sigma_j\) - semi open set \(V\) in \(Y\) such that \(y \in U\) and \(f(G) \subseteq V\). Hence \(x \in f^{-1}(U)\) and \(G \subseteq f^{-1}(V)\) with \(f^{-1}(U) \cap f^{-1}(V) = \emptyset\). Since \(f\) is pairwise homeomorphism implies \(f\) is pairwise semi homeomorphism implies \(f\) is pairwise irresolute. Therefore, \(f^{-1}(U)\) and \(f^{-1}(V)\) are \(\tau_i\) - semi open and \(\tau_j\) - semi open sets respectively in \(X\). Hence, \(X\) is pairwise \(Q^*\) - regular.

4 Pairwise \(Q^*\)-normal spaces

In this section, we introduce the concept of pairwise \(Q^*\)-normal spaces and we establish some properties of this concept.

Definition 4.1 A bitopological space \((X, \tau_1, \tau_2)\) is said to be pairwise \(Q^*\) - normal if for every pair of disjoint \(\tau_i - Q^*\) - closed set \(A\) and \(\tau_j - Q^*\) - closed set \(B\), there exists a \(\tau_j\) - semi open set \(U\) and a \(\tau_i\) - semi open set \(V\) such that \(A \subseteq U, B \subseteq V\) and \(U \cap V = \emptyset\); \(i \neq j, i, j = 1, 2\).

Example 4.2 In Example 3.2, shows that the space \((X, \tau_1, \tau_2)\) is pairwise \(Q^*\)-normal but not pairwise \(Q^*\)-normal.

Definition 4.3 A bitopological space \((X, \tau_1, \tau_2)\) is said to be pairwise \(s^*\) - \(Q^*\) - normal if for every pair of disjoint \(\tau_i\) - semi closed set \(A\) and \(\tau_j\) - semi closed set \(B\) in \(X\), there exists disjoint \(\tau_j - Q^*\) - open set \(U\) and a \(\tau_i - Q^*\) - open set \(V\) such that \(A \subseteq U, B \subseteq V\) and \(U \cap V = \emptyset\); \(i \neq j, i, j = 1, 2\).

Definition 4.4 \([4]\) A space \(X\) is said to be pairwise \(s^*\) - normal if for any two disjoint \(\tau_i\) - semi closed set \(A\) and \(\tau_j\) - semi closed set \(B\), there exists a disjoint \(\tau_j\) - semi open set \(U\) and \(\tau_i\) - semi open set \(V\) such that \(A \subseteq U, B \subseteq V\) and \(U \cap V = \emptyset\); \(i \neq j, i, j = 1, 2\).
Definition 4.5 [19] A space X is said to be pairwise gs - normal if for any two disjoint \(\tau_i - g - \) closed set A and \(\tau_j - g - \) closed set B, there exists a disjoint \(\tau_i - \) semi open set U and \(\tau_j - \) semi open set V such that \(A \subseteq U, B \subseteq V \) and \(U \cap V = \phi; \ i \neq j, i, j = 1, 2. \)

Definition 4.6 [4] A space X is said to be pairwise s - normal if for any two disjoint \(\tau_i - \) closed set A and \(\tau_j - \) closed set B, there exists a disjoint \(\tau_i - \) semi open set U and \(\tau_j - \) semi open set V such that \(A \subseteq U, B \subseteq V \) and \(U \cap V = \phi; \ i \neq j, i, j = 1, 2. \)

Theorem 4.7 For a space X, the following are equivalent:

(a) \((X, \tau_1, \tau_2)\) is pairwise Q* s - normal.

(b) For each \(\tau_i - Q^*\) - closed set F and a \(\tau_j - Q^*\) - open set K containing F, there exists a \(\tau_j - \) semi open set U such that \(F \subseteq U \subseteq \tau_i - scl(U) \subseteq K.\)

(c) For every \(\tau_i - Q^*\) - closed set A and a \(\tau_j - Q^*\) - closed set B disjoint from A, there exists a \(\tau_i - \) semi open set U containing A such that \(\tau_j - scl(U) \cap B = \phi.\)

Proof. \((a) \implies (b)\) Let X be pairwise Q* s - normal and let K be a \(\tau_j - Q^*\) - open set containing a \(\tau_i - Q^*\) - closed set F. Then F and X - K are disjoint \(\tau_i - Q^*\) - closed and \(\tau_j - Q^*\) - closed sets respectively. So by (a), there exists a \(\tau_j - \) semi open set U and a \(\tau_i - \) semi open set V such that \(F \subseteq U \subseteq X - K \subseteq V \) and \(U \cap V = \phi.\) Thus \(U \subseteq X - V,\) which implies that \(\tau_i - scl(U) \subseteq X - V.\) Hence, \(F \subseteq U \subseteq \tau_i - scl(U) \subseteq X - V.\)

(b) \implies (c) Let A and B be respectively \(\tau_i - Q^*\) - closed and \(\tau_j - Q^*\) - closed subsets of X such that \(A \cap B = \phi,\) which implies \(A \subseteq X - B,\) a \(\tau_j - Q^*\) - open set. So by (b), there exists a \(\tau_j - \) semi open set U such that \(A \subseteq U \subseteq \tau_i - scl(U) \subseteq X - B.\) Hence, \(\tau_i - scl(U) \cap B = \phi.\)

(c) \implies (a) Let A be a \(\tau_i - Q^*\) - closed set and B be a \(\tau_j - Q^*\) - closed set disjoint from A. Then, by (c), there is a \(\tau_j - \) semi open set U such that \(A \subseteq U \) and \(\tau_i - scl(U) \cap B = \phi.\) Now \(\tau_i - scl(U)\) is semi closed. Hence, \(B \subseteq X - \tau_i - scl(U),\) let \(V = X - \tau_i - scl(U).\) Then V is a \(\tau_i - \) semi open set such that \(B \subseteq V \) and \(U \cap V = \phi.\) Hence, X is pairwise Q* s - normal.

\(\square\)

Theorem 4.8 For a space X, the following are equivalent:

(a) \((X, \tau_1, \tau_2)\) is pairwise s' Q* - normal.

(b) For each \(\tau_i - \) semi closed set F and a \(\tau_j - \) semi open set K containing F, there exists a \(\tau_j - Q^*\) - open set U such that \(F \subseteq U \subseteq \mu^*_i - cl(U) \subseteq K.\)

(c) For every \(\tau_i - \) semi closed set A and a \(\tau_j - \) semi closed set B disjoint from A, there exists a \(\tau_j - Q^*\) - open set U containing A such that \(\mu^*_j - cl(U) \cap B = \phi.\)

Proof. \((a) \implies (b)\) Let X be pairwise s' Q* - normal and let K be a \(\tau_i - \) semi open set containing a \(\tau_j - \) semi closed set F. Then F and X - K are disjoint \(\tau_j - \) semi closed set and \(\tau_i - \) semi closed sets respectively. So by (a), there exists a \(\tau_j - Q^*\) - open set U and a \(\tau_i - Q^*\) - open set V such that \(F \subseteq U \subseteq X - K \subseteq V \) and \(U \cap V = \phi.\) Thus \(U \subseteq X - V,\) which implies that \(\mu^*_i - cl(U) \subseteq X - V.\) Hence, \(F \subseteq U \subseteq \mu^*_i - cl(U) \subseteq X - V.\)

(b) \implies (c) Let A and B be respectively \(\tau_i - \) semi closed set and \(\tau_j - \) semi closed subsets of X such that \(A \cap B = \phi,\) which implies \(A \subseteq X - B,\) a \(\tau_j - Q^*\) - open set. So by (b), there exists a \(\tau_j - Q^*\) - open set U such that \(A \subseteq U \subseteq \mu^*_i - cl(U) \subseteq X - B.\) Hence, \(\mu^*_j - cl(U) \cap B = \phi.\) (c) \implies (a) Let A be a \(\tau_i - \) semi closed and B be a \(\tau_j - \) semi closed set disjoint from A. Then, by (c), there is a \(\tau_j - Q^*\) - open set U such that \(A \subseteq U \) and \(\mu^*_i - cl(U) \cap B = \phi.\) Now \(\mu^*_i - cl(U)\) is \(Q^*\) - closed. Hence, \(B \subseteq X - \mu^*_i - cl(U),\) let \(V = X - \mu^*_i - cl(U).\) Then V is a \(\tau_j - Q^*\) - open set such that \(B \subseteq V \) and \(U \cap V = \phi.\) Hence, X is pairwise s' Q* - normal. \(\square\)
Theorem 4.9 Every pairwise Q^*-normal and Q^*-symmetric space X is Q^*-regular.

Proof. Let F be a $\tau_j - Q^*$ closed subset of X with $x \notin F$. Since X is bi-Q^*-symmetric so $\{x\}$ is $\tau_i - Q^*$ closed; $i \neq j$ and $i, j = 1, 2$. So $\{x\}$ and F are disjoint $\tau_i - Q^*$ closed and $\tau_j - Q^*$ closed sets respectively in X. Since X is pairwise Q^*-normal, there exist disjoint τ_j - semi open set U and τ_i - semi open set V such that $\{x\} \subseteq U, F \subseteq V$. Hence X is pairwise Q^*-regular.

Theorem 4.10 Every pairwise Q^*-normal and bi-Q^*-symmetric space X is pairwise Q^*-regular.

Proof. Let F be a $\tau_j - Q^*$ closed subset of X with $x \notin F$. Since X is bi-Q^*-symmetric so $\{x\}$ is $\tau_i - Q^*$ closed. So $\{x\}$ and F are disjoint $\tau_i - Q^*$ closed and $\tau_j - Q^*$ closed sets respectively in X. Since X is pairwise Q^*-normal, there exists a disjoint τ_j - open set U and $\tau_j - Q^*$ open set V such that $\{x\} \subseteq U, F \subseteq V$. Hence X is pairwise Q^*-regular.

Example 4.11 Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b, c\}\}$ and $\tau_2 = \{\phi, X, \{a, c\}\}$. Therefore, the space X is pairwise Q^*-normal but not bi-Q^*-symmetric and pairwise Q^*-regular.

Theorem 4.12 Let $f : X \rightarrow Y$ is a pairwise homeomorphism. Then X is pairwise Q^*-normal if and only if Y is pairwise Q^*-normal.

Proof. Let Y be pairwise Q^*-normal. Let A and B be two disjoint $\tau_i - Q^*$ closed set and $\tau_j - Q^*$ closed sets in X. Then $f(A)$ and $f(B)$ are $\sigma_i - Q^*$ closed set and $\sigma_j - Q^*$ closed sets in Y. Since Y is pairwise Q^*-normal, there exist disjoint σ_i - semi open set U and σ_j - semi open set V in Y such that $f(A) \subseteq U, f(B) \subseteq V$. Hence, $A \subseteq f^{-1}(U), B \subseteq f^{-1}(V)$, and $f^{-1}(U) \cap f^{-1}(V) = \phi$ as $U \cap V = \phi$. Moreover, $f^{-1}(U)$ and $f^{-1}(V)$ are τ_i - semi open and τ_j - semi open sets; since f is pairwise irresolute. Hence X is pairwise Q^*-normal. Conversely, Let X is pairwise Q^*-normal. Let A and B be two disjoint $\sigma_i - Q^*$ closed set and $\sigma_j - Q^*$ closed sets in Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are $\tau_i - Q^*$ closed and $\tau_j - Q^*$ closed sets in X. Since X is pairwise Q^*-normal, there exists a disjoint τ_j - semi open set U and τ_j - semi open set V in X such that $f^{-1}(A) \subseteq U, f^{-1}(B) \subseteq V$. Hence $A \subseteq f(U), B \subseteq f(V)$, and $f(U) \cap f(V) = \phi$ as $U \cap V = \phi$. Since f is pairwise homeomorphism implies f is pairwise semi homeomorphism implies f is pairwise pre - semi open. Therefore, $f(U)$ and $f(V)$ are σ_i - semi open and σ_i - semi open in Y respectively. Hence, Y is pairwise Q^*-normal.

5 Comparison

Remark 5.1 We summarize the relationship between various special types of normal spaces in the following diagram. None of the implications is reversible.
Theorem 5.2 Every pairwise Q^*S-normal space is pairwise S-normal.

Proof. Let X be a pairwise Q^*s-normal space. To show that X is pairwise S-normal. Let A be $\tau_i - Q^*$-closed and B be $\tau_j - Q^*$-closed. Since X is pairwise Q^*s-normal, there exists a disjoint τ_j-semi open set U and τ_i-semi open set V such that $A \subseteq U$ and $B \subseteq V$. Since every Q^*-closed set is closed we have A is τ_i-closed and B is τ_j-closed. Hence X is pairwise s-normal. □

Remark 5.3 Converse of the above theorem need not be true in general.

Example 5.4 In Example 3.2, X is pairwise S-normal but not pairwise Q^*s-normal. Here $\{ b, c \}$ τ_i-closed but not $\tau_i - Q^*$-closed.

Theorem 5.5 Every pairwise Q^*S-normal space is pairwise semi-normal.

Proof. Let X be a pairwise Q^*s-normal space. To show that X is pairwise semi-normal. Let A and B be a two disjoint τ_i-semi closed set A and τ_j-semi closed set B in X. Since X is Q^*s-normal, there exists a disjoint τ_j-semi open set U and τ_i-semi open set V such that $A \subseteq U$ and $B \subseteq V$. Since every Q^*-open set is semi-open, there exists a disjoint τ_j-semi open set U and τ_i-semi open set V such that $A \subseteq U$ and $B \subseteq V$. Hence X is semi-normal. □

Remark 5.6 But the converse of the above theorem need not be true in general. i.e) every pairwise semi-normal space is not pairwise Q^*s-normal.

Example 5.7 Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{a, c\}, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{a, c\}\}$. Then the space X is pairwise semi-normal but not pairwise Q^*s-normal.

Theorem 5.8 Every pairwise S^*Q^*-normal space is pairwise semi-normal.

Proof. Let X be a pairwise S^*Q^*-normal space. To show that X is pairwise semi-normal. Let A and B be a two disjoint τ_i-semi closed set A and τ_j-semi closed set B in X. Since X is S^*Q^*-normal, there exists a disjoint τ_j-open set U and τ_i-open set V such that $A \subseteq U$ and $B \subseteq V$. Since every Q^*-open set is semi-open, there exists a disjoint τ_j-semi open set U and τ_i-semi open set V such that $A \subseteq U$ and $B \subseteq V$. Hence X is semi-normal. □

Remark 5.9 But the converse of the above theorem need not be true in general. i.e) every pairwise semi-normal space is not pairwise S^*Q^*-normal.
Example 5.10 In example 5.2, the space X is pairwise semi normal but not pairwise S^*Q^* - normal.

Theorem 5.11 Every pairwise Q^* - normal space is pairwise Q^*s - normal.

Proof. Let X be a pairwise Q^* - normal space. To show that X is pairwise Q^*s - normal. Let A and B be two disjoint $\tau_i - Q^*$ closed set A and $\tau_j - Q^*$ closed set B in X. Since X is pairwise Q^* - normal, there exists a disjoint $\tau_i - Q^*$ open set U and $\tau_j - Q^*$ open set V such that $A \subseteq U$ and $B \subseteq V$. Since every Q^* - open set is semi - open, there exists a disjoint τ_i - semi open set U and τ_j - semi open set V such that $A \subseteq U$ and $B \subseteq V$. Hence X is pairwise Q^*s - normal. □

Remark 5.12 But the converse of the above theorem need not be true in general. i.e) every pairwise Q^*s - normal space is not pairwise Q^* - normal.

Theorem 5.13 Every pairwise Q^*s - normal space is pairwise gs - normal.

Proof. Let X be a pairwise Q^*s - normal space. To show that X is pairwise gs - normal. Let A and B be two disjoint $\tau_i - Q^*$ closed set A and $\tau_j - Q^*$ closed set B in X. Since X is pairwise Q^*s - normal, there exists a disjoint τ_i - semi open set U and τ_j - semi open set V such that $A \subseteq U$ and $B \subseteq V$. Since every Q^* - closed set is g - closed we have A and B are τ_i - g closed and τ_j - g closed sets. Hence X is pairwise gs - normal. □

Remark 5.14 But the converse of the above theorem need not be true in general. i.e) every pairwise gs - normal space is not pairwise Q^*s - normal.

Example 5.15 Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the space X is pairwise gs normal but not pairwise Q^*s - normal.

References
Pairwise Q^*-(regular and normal) spaces in bitopological spaces

P. Padma1 and Alias B. Khalaf2

1Department of Mathematics, PRIST University, Thanjavur, India
Email: padmaprithivirajan@gmail.com

2Department of Mathematics, College of Science, University of Duhok, Kurdistan Region, Iraq.
Email: aliasbkhalaf@uod.ac
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- QSFINAL.tex