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Ozaltin Oznur, Yeniay Ozgur  

(Hacettepe University, Institute of Science, Department of Statistics) 

 

Abstract 

Nowadays, the number of sudden deaths due to heart disease is increasing with the Coronavirus pandemic. 
Thus, Electrocardiogram (ECG) signals automatic classification is of vital importance for diagnosis and treatment. 
Thanks to deep learning algorithms, the classification can be performed without manual feature extraction. In this 
study, we propose a novel convolutional neural networks (CNN) architecture. Further, the proposed CNN can be 
extracted automatic features from images. Here, we classify a real ECC data set using our proposed CNN that 
includes 34 layers. While this dataset is one-dimensional signals, these are transformed into two-dimensional 
scalograms by continuous wavelet transform (CWT). In addition, we compare it with well-known architectures: 
AlexNet and SqueezeNet. When we classify ECG scalograms with proposed CNN, we find it more effectively than 
others. Although the results are very good, we benefit from support vector machines (SVM). Essentially, our main 
aim is to achieve the best classification results on account of health. Thus, we modify the proposed CNN with 
SVM. As a result, we achieve the highest success with an accuracy of 99.21% from our proposed CNN-SVM. 

Keywords: Convolutional Neural Networks (CNN), Continuous Wavelet Transform (CWT), Feature extraction, Scalograms, Support Vector 
Machine (SVM).  

1. Introduction 

Qualitative processing and classification of biomedical signals are very important for diagnosis and 
treatment. Many methods are used to process biomedical signals. 

 Some important methods are Discrete Fourier Transform (DFT), Short-Term Fourier Transform (STFT), 
Continuous Wavelet Transform (CWT), and Discrete Wavelet Transform. For stationary signals, the Fourier 
transform provides a very good frequency domain. However, the time domain is almost non-existent. Especially, 
when it is wanted to infer time-dependent features, it can lead to serious problems. However, when signals are 
transformed with the wavelet transform, both frequency and time domains are distinguishable. In other words, the 
wavelet transform (WT) is a transformation method that divides signals into different frequency components and 
works each component with the time domain of the respective scale. 

In this study, we focus on electrocardiogram (ECG) signals. The signals resulting from the electrical 
activity of the heart, the major vital organ of the human body, are called an electrocardiogram (ECG). Currently, 
sudden deaths due to heart disease increase with COVID -19. For this reason, the processing and analysis of signals 
received from the heart are very important for fast diagnosis and treatment. 

In conventional methods, in the pre-processing phase of ECG signals, an appropriate sampling method is 
used and the signals are cleaned from the noise. Then the manual feature extraction phase is started where it is very 
important to seek expert opinions. This phase is very critical, since incorrect feature extraction may lead to 
misclassification of signals and result in serious errors in diagnosis and treatment. After all these phases are 

 



2 

 

completed, classification is made by using traditional classification algorithms. However, the studies show that the 
situation is different for Deep Learning algorithms in recent years. Thanks to deep learning algorithms, successful 
classifications can be made automatically. Thus, the health status of patients can be monitored even without expert 
opinion using smartphones, watches, etc.  

In this study, a novel Convolutional Neural Networks (CNN) architecture which is one of the deep learning 
algorithms, is proposed for automatically ECG signal classification. This novel CNN architecture is designed for 
two-dimensional images with having 34 layers which contain robust features. Actually, the new proposed CNN is 
not only considered as ECG signals classification but also considered as other biomedical signals, images, etc. 
classification. In this context, of course, the ECG signals are transformed from one-dimensional signals to two-
dimensional scalograms (or images) by using continuous wavelet transform (CWT) in the pre-processing phase. 
This wavelet transform has three different mother wavelet functions: Amor, Bump, and Morse which are used 
mostly. These functions' effects on classification performance are examined as well. In general, the signal sample 
size is taken as 360 Hz by the researchers. In this study, as well as this generally used sampling size is also 
investigated with other sampling sizes: 500 Hz and 1000 Hz, whether the wave characteristics become more 
obvious. Fig.1 shows the scalograms which are obtained with different sample sizes of ECG signals, 360 Hz, 500 
Hz, and 1000 Hz respectively. In total, 9 different datasets are acquired in these conditions. In the classification 
phase, these datasets are classified separately with the same training options parameters using the proposed CNN 
architecture, AlexNet and SqueezeNet. Additionally, we work not only on CNN architectures but also support 
vector machines (SVM) algorithms, in this study.  

CNN and SVM algorithms have high classification success separately, as known. Generally, the dropout 
technique, data augmentation, etc. are applied to overcome extreme learning for CNN architectures. However, it 
does not give a good result every time. These techniques may change depending on the data structure. In this study, 
the proposed CNN is tasked as an automatic feature extractor. Therefore, the proposed CNN is modified with the 
SVM algorithm and this structure can overcome extreme learning.    

Nowadays, artificial intelligence is evolving day by day, many studies are also being carried out to classify 
ECG signals and other biomedical signals using CNN architectures. Khorrami and Moavenian[1]  have applied the 
CWT, the discrete wavelet transforms (DWT), and the discrete cosine transform (DCT) to ECG signals. In addition, 
they have compared SVM with Multi-layer Perceptron (MLP) algorithms in the classification phase. Especially, 
they have found that combinations (CWT -MLP, DWT -MLP, DCT-MLP) created with MLP are superior to SVM. 
Rahhal et al. [2] have transformed signals from different datasets by using CWT to identify arrhythmias in ECG 
signals. Besides, they have used the CNN algorithm and obtained an accuracy of 99% in the classification phase.  
Huang et al. [3] have transformed ECG signals with STFT and obtained two-dimensional scalograms in their study. 
Moreover, they have benefited from the CNN architecture for classifying these scalograms and achieved an 
accuracy of 99%. In addition, they have also classified the one-dimensional ECG signals using CNN and found an 
accuracy of 90.93%. Krak et al. [4] have transformed ECG signals using CWT and DWT in their study. 
Furthermore, they have classified using the CNN architecture and obtained an accuracy of 96% in the classification 
phase. Baloglu et al. [5] have designed a 10-layer end-to-end CNN architecture for the classification of one-
dimensional multiclass ECG data and achieved an accuracy of a 99.78%. Mahmud et al. [6] have created a CNN 
architecture for one-dimensional multiclass ECG data and obtained an accuracy rate of 99.28%. Salem et al. [7] 
have utilized DenseNet architecture to classify transformed two-dimensional ECG data and achieved an accuracy 
of 97.23%. Zhao et al. [8] have proposed a CNN which included 24 layers for classifying transformed ECG data 
and achieved an accuracy of 87.1%. Xu and Liu [9] have created a CNN architecture in order to analyze ECG data 
taken from a Holter device and achieved an accuracy of 99.4%. Rajkumar et al. [10] have suggested a CNN 
architecture for one-dimensional ECG data by using ELU activation layers and achieved an accuracy of 93.6%.  
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Hua et al. [11] have developed a CNN architecture for one-dimensional ECG signals and achieved an accuracy of 
97.45 %. Kiranyaz et al. [12] have proposed a CNN architecture for real-time patient-specific one-dimensional 
ECG classification and achieved an accuracy of 96.4%. Chen et al. [13] have suggested CNN +Long-Short-Term 
Memory (LSTM) which can classify six kinds of ECG fragments. They have classified two ECG databases: MIT-
BIH arrhythmia database and MIT-BIH arrhythmia database+ Challenge2017, and achieved an accuracy of 99.32% 
and 97.15%, respectively, by using CNN+LSTM. Sandeep et al. [14] have utilized the CNN architecture to classify 
ECG data and also achieved an accuracy of 90.63%. Furthermore, Machine Learning Algorithms such as Support 
Vectors Machine (SVM), K- Nearest Neighbors (KNN), Decision Tree (DT), Extreme Learning Machine (ELM), 
Ensemble Learning, Multi-layer Perceptron (MLP), etc. to classifying ECG signals were also used by many other 
researchers[15-19] .  

Considering all the studies in the literature, a deeper CNN architecture is proposed which can be 
automatically done feature extraction without expert opinions. Besides, the proposed architecture is compared with 
two well-known pre-trained architectures: AlexNet and SqueezeNet on the created 9 different ECG datasets. 
Moreover, this study is highlighted the best sample size and the best mother wavelet function.  As a result of the 
comparison, it is found that the proposed architecture is superior to the other architectures in terms of classification 
success and sensitivity. Essentially, the proposed CNN of classification success is well. However, the CNN 
architecture is modified with the SVM since it is aimed that minimum error to classification on ECG signals. 
Hereby, the classification success of the proposed CNN-SVM architecture is improved. 

 

 

Fig.  1. 227x227x3 size scalograms of taken signal lengths with 360 Hz, 500 Hz, and 1000 Hz from data respectively. 

 

 

2. Materials and Methods 

 In this section, firstly we present the details of ECG datasets. Then, we examine pre-processing method: 
CWT. Next, we introduce in general CNN, the proposed CNN, and pre-trained architectures: AlexNet[20] and 
SqueezeNet[21]. In the last, we present SVM and the proposed CNN-SVM architecture for the classification of 
ECG datasets. Fig.2 shows the framework for the classification of ECG datasets. 
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2.1. ECG Dataset 

 In this study, we benefit from three different ECG datasets off  PhysioNet databases [22]. Each raw 
ECG dataset is taken as 1- hour signal length and sampled with 128 Hz.  The first ECG dataset consists of 48 
patients' ECG records which contain two leads. It is received from MIT -BIH Arrhythmia Database and named as 
“ARR”. [23, 24]. The next ECG dataset consists of 15 patients' ECG records which contain two leads. It is taken 
from BIDMC Congestive Heart Failure Database and named “CHF”[23, 25]. The final ECG dataset consists of 18 
patients' ECG records which include two leads. It is received from MIT -BIH Normal Sinus Rhythm and named as 
“NSR” [23].  Totally, 96 ARR, 30 CHF, and 36 NSR are in the ECG dataset.  

 

 

 

 

Fig.  2. Flowchart of ECG Signals Classification. 
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2.2 Continuous Wavelet Transform 

 The continuous wavelet transform (CWT) which is a transformation method that allows simple analysis 

of its frequency components, can transform a one-dimensional signal into a two-dimensional scalogram by 

providing a mapping of the signal also on the time axis. The mathematical formulation of the CWT and WT family 

is offered in Equation (1) and Equation (2), respectively: 
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where  ( )f t  is a continuous signal function received in this study as an ECG signal function, , ( )a b t is the mother 

wavelet function, a indicates a scale parameter, and b  indicates shift parameter or translation, the symbol of * 

indicates the complex conjugate function [28].  
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will be in the form like in Equation (3). The signal function ( )f t  can be converted from the inverse of  ,CWT a b

, as follows:  
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where C indicates the normalization constant depending on the choice of the mother wavelet function in Equation 

(4) [28].  
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will be in the form in Equation (5-7). Here  Morl
t , Morlet,  Mexh

t , Mexican hat and  Bump
ab , Bump shows 

the mother wavelet function [28]. 

 

2.3. Convolutional Neural Network (CNN) 

 Convolutional Neural Network (CNN) emerges as a specialized deep learning approach for analyzing 

two-dimensional data. Not only it is preferred algorithm in the analysis of multidimensional data but also one-

dimensional data. Other classifications and clustering algorithms are difficult to apply to real-time data due to their 

computational complexity [26]. For this reason, deep learning technology that can overcome this complexity is 

evolving day by day. Moreover, CNN can perform feature extraction and classification automatically using raw 

data, so deep learning algorithms are very popular in the field of artificial intelligence. Further, it is found to give 

very good results of classification studies involving both big data and small data by researchers. Thanks to the CNN 

algorithm, ECG signals can be analyzed and observed on smartphones, watches, Holter monitoring devices, etc. 

[3]. 

 

 The CNN processes an image in different layers and separates all its features. The most commonly used 

layers are: 

1. Convolution layer 

2. Nonlinear layer 

3. Pooling layer 

4. Flattening layer 

5. Fully connected layer 

expressed as [5, 27, 28].   

1. Convolutional Layer: The convolution process is the layer where the features of the image are determined. To 

determine more than one feature, the number of convolutional layers increases in the same proportion. This layer 

is the main building block of CNN. 

2. Non-Linear Layer: This layer is also known as the activation layer. It is used to realize the activation of the 

system with nonlinear functions. Rectified Linear Unit function (ReLU), which is widely used because it is faster 

than others, is preferred in recent years. 

3. Pooling Layer: Smaller matrices are obtained while preserving the properties of the existing input. In this way, 

the computational complexity is reduced. 

4. Flattening Layer: The matrix format data obtained from the previous step is prepared following the fully 

connected layer. 

5. Fully-Connected Layer: It is the most important layer of convolutional neural network layers. The data is taken 

from the flattening layer and trained by the neural network and the learning process is performed. 
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2.4. Pre-trained architectures: AlexNet and SqueezeNet 

AlexNet[20] was five convolution layers combined with max-pooling layers, 3 fully connected layers. It 
was also a dropout layer and a softmax. Moreover, each layer was activated with the ReLU activation function. 
Firstly, in 2012, it was used the ReLU activation function in place of the tanh function [29]. Thus, the architecture 
was accelerated. The total number of parameters is 62.3 million. The input image size is 227x227x3. 

 

SqueezeNet[21]  started with an independent convolutional layer (conv1), followed by eight firing 

modules, and ended with the last convolutional layer (conv10). In total, it consisted of ten convolutional layers, 

some max-pooling layers, and a SoftMax layer, in the recently presented version. 

 In this study, a novel CNN architecture that contains 34 layers is presented and it is trained much more 

than once. This proposed CNN classifies more effectively than pre-trained CNN architectures and overcomes 

overfitting thanks to the dropout layer. Fig.3 is a schematic of the proposed CNN. 
 

 

 

Fig.  3. Scheme of proposed CNN architecture

 

2.5 Novel Proposed CNN Architecture 

 A CNN architecture usually consists of an input layer, some convolutional layers, some pooling layers, 

and a fully connected layer [11]. In this study, we introduce a novel CNN architecture which are seven 

convolutional layers, seven batch normalization layers, seven activation layers (ReLU), seven maximum pooling 

layers, and two fully connected layers with one dropout layer. Additionally, a SoftMax layer and a classification 

layer with an entropy approach are used as well. The convolution layers are effectively utilized for feature 
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extraction from ECG data. This is important since well feature extraction is also meaning very sensitive 

classification. Essentially, these layers are filtered to enhance the features of the primary signal while reducing the 

noise [11, 30]. The pooling layers reduce the dimension of the input images, and these are prepared for the next 

layer. Finally, extensive features in the fully connected layers are reduced with 0.5 probability by using the dropout 

layer and transferred to the SoftMax layer for the classification. Details of the parameters of the proposed CNN are 

given in Table 1.  

 The proposed CNN is a novel architecture that has different filter sizes, number of filters, strides, and 

padding. Fundamentally, we develop the architecture for biomedical image classification. However, it is tested on 

known classical datasets such as CIFAR-10, like pre-trained architectures. Additionally, it is also utilized on 

Physikalisch-Technische Bundesanstalt (PTB) Diagnostic ECG Database[23, 31]. And, this architecture is 

observed successfully in all these datasets. Moreover, this architecture is compared with the pre-trained AlexNet 

and SqueezeNet architectures with the same training options parameters. Here, the optimization method has been 

chosen as the stochastic gradient descent, and the momentum parameter is determined as 0.95, and the learning rate 

is also started with 0.0001. As a comparison result, our novel proposed CNN architecture is shown higher 

classification performance than others.  
 

2.6. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a machine learning algorithm that an effective separation with a kernel-
based method to the datasets for classification or regression [32]. It is improved by Vapnik and Cortes [33] for two 
classes. Then the algorithm is advanced and generalized for multi-class and non-linear datasets. In general, the 
dataset can be separated in high-dimensional feature space with a kernel function. Also, SVM can be overcome 
confused datasets and extreme learning. The most common representation of the SVM function is 

 ( ) T
f x w x b  where n

w R  b R and  x  is a feature map.  

2.7. Modified Proposed CNN+ SVM architecture  

In this present study, the proposed CNN has been designed with an SVM algorithm. In the modified model 
is assembled the best properties of the proposed CNN and SVM. Here, it is taken into consideration CNN whose 
extracts features from a dataset, automatically. Briefly, how CNN-SVM works are explained as follows: First, the 
proposed CNN is trained with all layers. Then, the fully connected layer (FC-8) is removed from the proposed 
CNN architecture. Here, 4096x (number of images) dimensional features are obtained from the dataset. In the 
following stage, the dataset is divided into a 30% training set and 70% testing set and these features are activated 
as training features and testing features. Highlighted in this study, a very large percentage is allocated to the test 
set and the robustness of the study is tried to be determined. After, these training features are trained with SVM 
which is a Gaussian kernel function and one versus all method. Finally, the classification of the testing features is 
obtained with an SVM classifier. Similarly, the same stages are performed for the maximum pooling layer (Max-
Pooling 7) which is removed from the architecture. This study is essenced as a matter of fact that since the 
convolutional layers do not have a lot of parameters, extreme learning is an issue and so, the dropout layer would 
not have much influence [34, 35]. 

Both of them are observed to increase classification success. However, a higher success rate is achieved 
by removing the Max-Pooling 7 layer. Fig. 4 demonstrates the scheme modified with the SVM algorithm of the 
proposed CNN architecture.  



9 

 

 

 

 

 

 

 

 

  

              Fig.  4. Scheme of modified proposed CNN-SVM architecture

 

 

 

 

 

 

 

Modified Proposed CNN with SVM 
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Table 1  

Layers details of Proposed CNN architecture. 

 

 

 

 

Layer Name Type Layer Parameters Output Shape 

Input Image Input              227x227x3 images with 'zerocenter' normalization 227x227x3 

Conv-1 
 

Convolution 2D 
 

Filter size=64, Number of filters=[5 5], Stride=[1 1],  
Padding=[1 1 1 1], BatchNormalization, ReLU 

225x225x64 

MaxPool-1 Max Pooling Pool size=[3 3], Stride=[2 2],  Padding=[0 0 0 0] 112x112x64 

Conv-2 
 

Convolution 2D 
 

Filter size=128, Number of filters=[3 3],Stride=[1 1],  
Padding=[1 1 1 1],BatchNormalization, ReLU 

112x112x128 

MaxPool-2 Max Pooling Pool size=[3 3], Stride=[2 2], Padding=[0 0 0 0] 55x55x128 

Conv-3 
 

Convolution 2D 
 

Filter size=128,Number of filters=[13 13],Stride=[1 1],  
Padding=[0 0 0 0],BatchNormalization, ReLU 

55x55x128 

MaxPool-3 Max Pooling Pool size=[3 3],Stride=[2 2],  Padding=[0 0 0 0] 27x27x128 

Conv-4 
 

Convolution 2D 
 

Filter size=256, Number of filters=[7 7],Stride=[1 1],  
Padding=[1 1 1 1],BatchNormalization, ReLU 

27x27x256 

MaxPool-4 Max Pooling Pool size=[2 2], Stride=[2 2],  Padding=[0 0 0 0] 13x13x256 

Conv-5 
 

Convolution 2D 
 

Filter size=128, Number of filters=[3 3],Stride=[1 1],  
Padding=[1 1 1 1],BatchNormalization, ReLU 

13x13x128 

MaxPool-5 Max Pooling Pool size=[3 3],Stride=[2 2],  Padding=[0 0 0 0] 6x6x128 

Conv-6 
 

Convolution 2D 
 

Filter size=128, Number of filters=[3 3],Stride=[1 1],  
Padding=[1 1 1 1],BatchNormalization, ReLU 

6x6x128 

MaxPool-6 Max Pooling Pool size=[3 3],Stride=[2 2],  Padding=[0 0 0 0] 3x3x128 

Conv-7 
 

Convolution 2D 
 

Filter size=128, Number of filters=[3 3],Stride=[1 1],  
Padding=[1 1 1 1],BatchNormalization, ReLU 

3x3x128 

MaxPool-7 Max Pooling Pool size=[2 2],Stride=[2 2], Padding=[0 0 0 0] 1x1x128 

FC-8     Fully Connected 4096 1x1x4096 
Drop-8 Dropout 50%  
FC-9 Fully Connected 3 (number of class) 1x1x3 
Softmax Softmax  1x1x3 
Output Classification  Cross entropy  
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2.8. Performance Metrics 

CNN architectures are evaluated in terms of performance metrics which are overall accuracy, sensitivity, 
specificity, precision, and F1-Score, as follows [9, 29]: 
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                                                                                                                 (12)   

where, TP : True Positive, FP : False Positive, TN : True Negative, and FN : False Negative is expressed in 

Equation (8-12). 

 

3. Experimental Results 

 In recent studies, it is observed that the CWT-CNN hybrid structure is used in the classification of ECG 

signals. In this regard, this study is also benefited from this hybrid structure. In the present study, a novel CNN 

architecture is suggested using an ECG dataset. The highlighted of the study can be grouped under four main 

heading as follows:  

i. Pre-processing phase: ECG signals are normalized with the minimum-maximum normalization method. 

Following, one-dimensional signals are transformed to two-dimensional scalograms by using CWT. 

ii. Comparison phase: Chosen the best sampling size, the best mother wavelet function, and the best 

architecture via performance metrics. 

iii. Feature Extraction phase: ECG scalograms are trained with proposed CNN architecture.  

iv. Classification phase: ECG scalograms are classified by using SoftMax (cross-entropy approach), SVM, 

and their features are classified with proposed CNN-SVM. 
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3.1. Pre-Processing Phase 

  In first, raw one-dimensional ECG signals are normalized with the minimum-maximum normalization 

method. 

 

min( )

max( ) min( )

signal signal
X

signal signal





                                                                                                              (13)                                 

 

where X is denoted normalized ECG signal. Here, min(.)  is minimum function and max(.) is maximum function. 

Next, one-dimensional normalized ECG signals taken randomly with different sampling lengths of signals, 360hz, 

500hz, and 1000hz are transformed into two-dimensional scalograms with CWT. Besides, three different mother 

wavelet functions namely Amor, Bump, and Morse are applied to each sampling length. Also, the size of the 

scalograms is set as 227x227x3 and .jpg format. For each class (ARR, CHF, and NSR) are created randomly 300 

scalograms. In total, there are 900 scalograms for each ECG dataset.  Therefore, 3 different ECG scalogram datasets 

are generated with 360 Hz sampling lengths of signals, 3 different ECG scalogram datasets are designed with 500 

Hz sampling lengths of signals and 3 different ECG scalogram datasets are composed with 1000 Hz sampling 

lengths of signals. Finally, 9 different ECG scalograms datasets are prepared for classification. Further, these 

datasets randomly are divided 80% for training and 20% for testing.  

 

 

3.2. Comparison phase 

 

 In this phase, transformed 9 ECG datasets are classified with AlexNet, SqueezeNet, and the proposed 

CNN. Here, the same options parameters such as epochs, learning rate, batch size, optimization method, etc. are 

utilized for each training phase in order to a fair comparison. When these architectures are trained separately for 

all datasets throughout 476 iterations, the overall test accuracy results for classification success are shown in Fig. 

5 and Fig.6. 

 
When Fig.5 is investigated in the matter of sampling size, 360 Hz is not contained sufficient information 

to classify scalograms because all architecture’s performance metrics are lower than others. Besides, 1000 Hz is 
not increased its distinctiveness for classification performances. However, this situation is different for the 500 Hz 
sampling size. According to performance metrics of these architectures, scalograms wavelet with 500 Hz sampling 
size or signal length is observed that it became clear. Thus, the best sampling size or signal length is determined as 
500 Hz.  

When Fig.5 is also examined in terms of a mother wavelet function, Amor and Morse give nearly similar 
results to classify scalograms for AlexNet and our proposed CNN. However, these results do not give for 
SqueezeNet. When SqueezeNet is investigated in regards to mother wavelet function, Bump is found the best for 
its. Hence, if researchers would like to utilize SqueezeNet, they can choose the Bump wavelet function when they 
perform CWT. When Fig.6 is inspected for the proposed CNN in the matter of the mother wavelet function, 
choosing Amor to classify the scalograms is the best one. 



13 

 

 

 

 

Fig. 5. The comparison of classification performance on different sampling lengths and mother wavelet function for CNNs 

architectures
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Fig. 6. The comparison of classification performance on different sampling lengths and different mother wavelet functions for 

Proposed CNN 

 

In the comparisons is demonstrated that the proposed CNN is offered successful results in terms of overall 
accuracy. As well as the overall accuracy, the other performance metrics are also provided good results for the 
proposed CNN. It is shown the details for each comparison performed, in Table 2.  

When all performance metrics are investigated, this proposed CNN’s metrics are observed over 96%. 
Notably, NSR performances regarding specificity and precision value are viewed as %100. Additionally, its 
performances in terms of other metrics are also over than %98. 

  When it is examined to metrics what the classifiers performed well, it is prominent that the F1 Score of 
the proposed CNN is superior to the others, in Table2. Hence, the proposed CNN is determined as the best classifier 
concerning performance metrics.  

As a result of this part, the best signal length, the best mother wavelet function, and the best architecture 
are determined as 500 Hz, Amor, and the proposed CNN, respectively. Thus, these foundations have shown that 
just an ECG dataset is classified. In addition, Fig.7 shows the accuracy rate graph and loss graph for Proposed CNN 
while the signal length is 500 Hz and the wavelet function is “Amor”.
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Fig. 7. Accuracy rate and loss graph of training progress for proposed CNN 

 

 

Table 2 

Performance metrics of proposed CNN, AlexNet, and SqueezeNet architectures. 

CNN 
Architecture 

Class 
Name 

Sensitivity 

(%) 
Specificity 

(%) 
Precision 

(%) 
F1-Score 

(%) 
 Test Accuracy 

Rate(%) 
Proposed-
CNNa 

 

ARR 97.96 98.02 96 96.97 98 

CHF 98 99.02 98 98 98 
NSR 98.04 100 100 99.01 98 

Proposed-
CNNb 

 

ARR 93.88 96.04 92 92.93 95.33 
CHF 96.15 100 100 98.04 95.33 
NSR 95.92 98.01 94 94.95 95.33 

AlexNeta 

 

ARR 92.31 97.96 96 94.12 94.67 
CHF 97.87 96.12 92 94.85 94.67 
NSR 94.12 98.6 96 95.05 94.67 

SqueezeNeta 

 

ARR 94.34 100 100 97.09 94.67 
CHF 90.57 97.94 96 93.20 94.67 
NSR 100 96.05 88 93.62 94.67 

aECG  Signal Length 500Hz  ,bECG  Signal Length 1000Hz 
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3.3. Feature Extraction  

 Here, our proposed CNN is trained for the ECG dataset.  Essentially, the proposed CNN is considered 
both as a feature extractor and a classifier.  

In this phase, the proposed CNN is trained 5 times in a loop to measure its performance, detailed in Table 
3.  As a result, its mean values and standard deviations are calculated for all performance metrics, also shown in 
Table 3.  All mean performance metrics are observed over 96.53% and also maximum standards deviation (Std) 
has been 0.0173. Therefore, the proposed architecture is traditionally trained and saved to classify scalograms.  

 

Table 3 

Performance metrics of proposed CNN when it is trained 5 times. 

 

Training 
Number 

Sensitivity 
 (%)  

Specificity 
 (%)  

Precision  
(%)  

F1-Score 
(%)  

Test Accuracy      
Rate (%) 

1 94,86 97,60 94,67 94,66 94,67 
2 95,53 97,72 95,33 95,33 95,33 
3 96,05 98,12 96,00 96,00 96 
4 98,06 99,03 98,01 97,99 98 

98,67 5 98,68 99,45 98,67 98,67 

Mean + Std 96,64± 1,65 98,38±0,82 96,54± 1,72 96,53± 1,73 96,53±1,73 

 

 

Then, the Fully connected (FC-8) layer is removed from the proposed CNN. Namely, this layer is included 
4096x900 dimensional features. As known, every image has 227x227x3 dimensions and so 4096 features are 
provided by CNN via a fully connected layer for each image, automatically.  Next, it is settled and activated the 
SVM method to the proposed CNN. In addition, Max-Pooling 7 layer is also removed from the proposed CNN 
owing to investigating the performance of classification, similarly.  

 

3.4. Classification Phase 

 

Consequently, all performance metric values are observed to increase for two different methods. However, 
the highest accuracy rate of the proposed CNN-SVM is achieved by removing the Max-Pooling 7 layer from the 
CNN, detailed in Table 4. For this reason, activation of SVM is preferred via removing the Max pooling-7 layer, 
in this study. 
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Table 4 

 Performance metrics of modified proposed CNN+SVM architecture 

Removed 
Layer Name 

Sensitivity 
(%)  

Specificity 
(%)  

Precision  
(%)  

F1-Score 
(%)  

Test Accuracy       
Rate(%) 

MaxPooling-7 99,206 99,66 99,213 99,206 99,21 

        FC-8  98,72 99,5 98,75 98,732            98,73 

 

 This study is not only performed CNN but also performed SVM which has very high success in image 

classifying, is also studied. The combination of these two methods, which have separately high successes, 

performed very well.  Table 5 shows a comparison of all methods in terms of performance inferences. Moreover, 

Fig. 8 indicates the confusion matrix of the modified proposed CNN-SVM which has the highest performing in 

terms of all performance inferences.  

 

 

Fig. 8. Confusion matrix of modified proposed CNN+SVM 

 
Table 5 

 Comparison of all methods in terms of performance inferences. 

Classification  
Algorithm 

Sensitivity 
(%)  

Specificity  
(%)  

Precision  
(%)  

F1-Score 
(%)  

Test Accuracy       
Rate(%) 

Proposed CNN 96,64 98,38 96,54 96,53 96,53 

SVM 85,56 93,68 85,56 85,51 85,56 

Proposed CNN-SVM 99,206 99,66 99,213 99,206 99,21 
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 4. Discussion                                                                                                   

Many approaches are used for the classification of arrhythmia (ARR), congestive heart failure (CHF), and 
normal sinus rhythm (NSR) datasets. Essentially, successful classification is very important for diagnosis and 
treatment. For this reason, we suggest a novel deep learning algorithm that has 34 layers, mentioned as the proposed 
CNN, in this study. As well as this ECG dataset, other datasets have been also classified with our proposed CNN, 
such as the PTB ECG dataset and CIFAR-10 dataset. As known, the presented CNN (pre-trained) architectures are 
tested on the traditional dataset. Additionally, the proposed CNN architecture is also tested on the CIFAR-10 dataset 
and it is investigated whether it could make a successful classification, in this study.  

CIFAR-10 dataset consists of 10 classes and 60,000 images. Similarly, this huge dataset is also split into 
80% for training, 20% for testing as presented in the study. Thus, 50,000 images are trained and 10,000 images are 
tested as well. Besides, the same options parameters are applied for both datasets.  In Table 6, it is demonstrated 
the proposed CNN of success on different datasets. Moreover, Fig.9  shows the confusion matrix for the CIFAR-
10 dataset. 

 

Table 6 

 The proposed CNN performance on different datasets. 

Datasets Number 
of Class 

Sensitivity 
(%)  

Specificity  
(%)  

Precision  
(%)  

F1-Score 
(%)  

Test Accuracy   
Rate (%) 

PTB ECG Dataset [31]  2 96,42 94,96 95 95,56 95,6 

CIFAR-10 10 83,95 98,22 84,10 83,87 84 

ECG Dataset in this 
Study 

3 96,64 98,38 96,54 96,53 96,53 

 

As seen, the performance of the proposed CNN is very well. However, as mentioned previously, this CNN 
must be wonderful for classification biomedical signals or images. Therefore, the proposed CNN is modified with 
SVM for perfect classification. In general, if any CNN architecture has a fully connected layer, this layer is removed 
from the CNN and settled to SVM. Of course, this method provides good advantages because of extracted features. 
However, Deep Learning Algorithm (also CNN) is a complex non-linear model and it is said a black box. [36].  
Accordingly, it must be investigated what last layers contain good features within this probabilistic process. Under 
all these considerations, the features in the Max-pooling7 (just previous of the FC-8 layer) are also studied, in the 
present study. According to the findings obtained in this study, it is necessary to investigate the features in the last 
layers for more sensitive analysis, detailed in Table4.  
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Fig. 9. Confusion matrix of the proposed CNN on the CIFAR-10 dataset 

 

 

 In this study, the aggregate classification is considered significant so the overall test accuracy is evaluated 
and detailed in Table 2-5. Apart from this, the inference of performance is appraised over the pre-trained 
architectures that are well-known in other studies. And, the proposed CNN is superior to them on the ECG 
scalograms dataset as well as sensitivity results are better than others.       When the literature reviews are 
investigated in the classification on the same property ECG dataset which is shown in Table 7, the proposed CNN-
SVM achieves the highest performance in terms of overall accuracy rate.

 

 

 

 

 

 

 

 



20 

 

 

Table 7 

The comparison of classification performances for different studies on ECG signals. 

Study Pre-processing Method Algorithm Accuracy Rate(%)  

Çınar and Tuncer[37] STFT CNN (AlexNet-SVM) 96,77 

Eltras et al. [38] CQ-NSGT* CNN(AlexNet) 98,82 

Gaddam et al.[39] CWT CNN(AlexNet) 95,67 

Golgowski and Osowski[40]   CWT    CNN 82,06 

 DWT Extra Random Forests 97,78 

Krak et al. [4]                            CWT CNN 96 

Krishnakumar et al.[41] CWT CNN (GoogleNet) 96,88 

Kumari et al. [42] DWT SVM 95,92 

Nahak and Saha [43] 
 

RR 
Wavelet with AR 
Fusion of Features 
 

SVM 
SVM 
SVM 
 

86,77 
92,22 
93,33 

Olanrewaju et al. [44] CWT CNN(AlexNet) 98,7 

Rahuja and Valluru [45] CWT CNN(AlexNet) 97,3 

Proposed CNN CWT CNN 96,53 

Proposed CNN-SVM CWT CNN-SVM 99,21 

 

*Constant-Q Non-Stationary Gabor Transform

 

Conclusion 

Many of the sudden deaths due to heart disease continue to increase these days with Coronavirus (COVID-
19). Based on this, the automatic classification of signals received from the heart is of great importance for 
diagnosis and treatment. In this study, we classify ECG data using our proposed CNN that overcame overfitting 
with the dropout layer. This CNN is also performed on other datasets, shown in Table 6. In addition, the proposed 
CNN is compared with AlexNet and SqueezeNet on 9 different ECG datasets whose is prepared via CWT using 3 
different wavelet functions and 3 different signal lengths. All results show that the best signal length especially for 
two-dimensional scalograms is 500Hz and the best mother wavelet function is "Amor”. Besides, the proposed 
CNN, AlexNet, and SqueezeNet comparison of classification success in terms of overall accuracy rate are 98%, 
94.67%, and 94.67% respectively. Hence, the proposed CNN architecture is performed classification on ECG 
dataset whose is generated with “Amor” wavelet function and 500 Hz signal lengths superior to others.  Further, it 
is trained 5 times in a loop to measure the performance of the proposed CNN architecture, detailed in Table 3. 
Accordingly, it is observed all mean performance metrics are over 96.5%, and also maximum standard deviation 
(Std) is 0.0173 on testing the ECG dataset. The main purpose of the study is to find an excellent classification 
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algorithm on the ECG dataset. Thus, the proposed CNN is modified with SVM. Here, it is pointed out that CNN is 
thought of as extracting features from the ECG dataset, automatically.  

In general, if any CNN architecture has a fully connected layer, it is replaced with SVM, in the CNN-
SVM studies. However, it is highlighted that it can be provided an advantage to examine features from the last 
layers of CNN, such as the max-pooling layer, in the present study. In order to improve the proposed CNN 
performance, it is removed max-pooling 7 and FC-8 layers from this CNN respectively, detailed in Table 4. As a 
result, the highest success with a 99.21% accuracy rate is achieved by removing the Max-Pooling 7 layer from its. 
When the comparison is examined with other studies on similar ECG datasets, the modified proposed CNN-SVM 
is observed as the highest performing for classification, detailed in Table 7.  

In the next studies, the proposed CNN architecture will be tried on binary and multiclass biomedical 
datasets to see how it is well. 
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