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Abstract 1 

Background: Time-of-flight (TOF) PET technology determines a reduction in the noise and 2 

improves the reconstructed image quality in low counts acquisitions, such as in overweight patients, 3 

allowing a reduction of administered activity and/or imaging time.  However, international guidelines 4 

and recommendations on 18F-fluoro-2-deoxyglucose (FDG) activity administration scheme are old or 5 

only partially account for TOF technology and advanced reconstruction modalities.   6 

The aim of this study was to optimize FDG whole-body studies on a TOF PET/CT scanner by using 7 

a multivariate approach to quantify how physical figures of merit related to image quality change 8 

with acquisition/reconstruction/patient-dependent parameters in a phantom experiment.  9 

Methods: The NEMA-IQ phantom was used to evaluate contrast recovery coefficient (CRC), 10 

background variability (BV) and contrast-to-noise ratio (CNR) as a function of changing emission 11 

scan duration (ESD), activity concentration (AC), target internal diameter (ID), target-background 12 

activity ratio (TBR), and body mass index (BMI). The phantom was filled with an average 13 

concentration of 5.3 kBq/mL of FDG solution and the spheres with TBR of 21.2, 8.8, and 5.0 in 3 14 

different sessions. Images were acquired at varying background activity concentration from 5.1 to 1.3 15 

kBq/mL and images were reconstructed for ESD of 30-151 seconds per bed position with and without 16 

Point Spread Function (PSF) correction. The parameters were all considered in a single analysis using 17 

multiple linear regression methods.  18 

Results: As expected, CRC depended only on sphere ID and on PSF application, while BV depended 19 

on sphere ID, ESD, AC and BMI of the phantom, in order of decreasing relevance. Noteworthy, ESD 20 

and AC resulted as the most significant predictors of CNR variability with a similar relevance, 21 

followed by the weight of the patient and TBR of the lesion.  22 

Conclusions: AC and ESD proved to be effective tools in modulating CNR. ESD could be increased 23 

rather than AC to improve image quality in overweight/obese patients to fulfil ALARA principles. 24 
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Background 1 

Thanks to the improvements in hardware components and in imaging reconstruction techniques, 2 

significant advances have been made in recent years in positron emission tomography / computed 3 

tomography (PET/CT) systems [1,2]. They are mainly related to the use of fast detectors, Lutetium 4 

Oxyorthosilicate (LSO) and/or Lutetium Yttrium Oxyorthosilicate (LYSO) coupled to both Time-of-5 

Flight (TOF) technology and advanced reconstruction modalities such as the modelling of the system 6 

Point-Spread-Function (PSF) [3,4,5] and/or noise [6] which improve the accuracy of quantitative 7 

information and enhance the detectability of small lesions [7, 8].  8 

The main motivation for TOF-PET has always been the potential image quality improvement or 9 

reduction in image acquisition time [1,2]. The effective sensitivity gain was already described nearly 10 

40 years ago [8,9] as depending on the ratio between the object size D and the spatial FWHM of the 11 

TOF kernel Δx.  12 

In oncology practice, typically a longer acquisition time is needed for a larger patient characterized 13 

by higher attenuation. Often the longer acquisition time does not compensate for the poor quality of 14 

the data. Because of the higher attenuation, larger patients are affected by more noise. TOF acts as a 15 

compensation, bringing the image quality in larger patients closer to that in patients of average size 16 

[10,11]. Thus, the first consequence of TOF technology is that SNR gain is increased, and this is 17 

especially more evident for larger patients [2, 12]. This improvement has been used in the clinical 18 

setting predominantly to reduce the imaging time [1,2]. 19 

However, international guidelines and recommendations on FDG activity administration scheme are 20 

rather old or only partially account for time-of-flight technology [13] and advanced reconstruction 21 

modalities.  Further indications on optimisation were provided by EARL [14] that suggested a 22 

procedure to assess to which level of FDG activity can be reduced while keeping image quality and 23 

quantification accuracy within acceptable limits. Other studies recommended a quadratic relation 24 

between the 18FDG activity to administer and the body mass of the patient [15] or criteria based on 25 

NECR-dosage curve [16]. 26 
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However, precise information on how to tune administered FDG activity and emission scan duration 1 

in whole-body oncological studies on TOF-PET/CT scanners, is still a demanding need for the nuclear 2 

medicine physicians.  3 

Few papers in the literature studied the optimization of 18FDG activity administration [17,18] or 4 

emission scan duration [19] on TOF-PET/CT scanners, but they examined the two factors 5 

independently. 6 

The aim of this work was to describe how the physical figures of merit related to PET image quality 7 

change with different acquisition, reconstruction and object dependent parameters on a TOF-PET/CT 8 

scanner. The study was designed to simultaneously analyse the impact of the different factors with a 9 

multivariable approach, using phantoms with a variable weight, which hosted several well-defined 10 

target sizes with a known target-to -background ratio, as done in previous study [20]. We selected the 11 

emission scan duration (ESD), the FDG activity concentration (AC), the target-to-background 12 

activity concentration ratio (TBR), the target size (ID), the body mass index (BMI) of scanned object 13 

and the application of PSF correction (PSF) as the factors that could affect the Contrast Recovery 14 

Coefficient (CRC), the Background Variability (BV) and the Contrast-to-Noise Ratio (CNR), 15 

identified as PET image quality descriptors.  16 

 17 

Methods 18 

PET/CT scanner 19 

The Ingenuity TF 64 (Philips Healthcare, Cleveland, OH, USA) is a Lutetium-Yttrium 20 

Oxyorthosilicate (LYSO) TOF PET/CT scanner. The energy window is set between 440 and 665 keV 21 

and the coincidence window is 3.8 ns. 22 

The performance characteristics of this TOF-PET/CT scanner according to NEMA NU 2012 standard 23 

have already been described in detail [21]. 24 

 25 
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Phantom setup 1 

The International Electrotechnical Commission (IEC) 61675–1 emission phantom (NEMA image 2 

quality phantom, NEMA-IQ phantom) with 18F solution was used. The NEMA-IQ phantom has an 3 

interior cavity volume of 9947 mL and contains 6 fillable spheres with 10, 13, 17, 22, 28, and 37 mm 4 

inner diameters (ID). A cylindrical insert filled with low density foam (density of 0.30 g/cm3) was 5 

fixed along the centre of the phantom. Four micro-hollow spheres with ID of 4.1, 4.7, 6.5, and 8.1 6 

mm (Data Spectrum Corporation) were fixed to a foam support attached to the lung insert at the 7 

bottom of the phantom, as shown in Figure 1a. The microspheres are tightly fixed to the foam support, 8 

in a unique position that guarantees the microspheres to be set always at the same height with respect 9 

to the base of the phantom to exclude possible bias in the further analysis. 10 

 The NEMA-IQ phantom was centred in the transverse FOV of the scanner with the equatorial plane 11 

of the standard spheres coplanar to the centre of the axial FOV.  12 

To simulate the activity outside the scanner FOV, the scatter phantom (Data Spectrum Corporation) 13 

was placed close at the end of the IEC phantom, strictly following NEMA NU-2 recommendations 14 

[22]. It is a solid circular cylinder composed of polyethylene with outside diameter of 203 mm and a 15 

length of 700 mm. A 6.4 mm hole is drilled along central axis of the cylinder. A 700 mm polyethylene 16 

tube with an inside diameter of 3.2 mm and an outside diameter of 4.8 mm is placed in the hole. 17 

Finally, to simulate a different patient habitus, a ‘belt’ of 11 water bags of 500 mL and 3 cm thick 18 

was fit over the NEMA-IQ phantom (Figure 1b) [20, 23]. A few papers in the literature [24, 25] 19 

developed methods to assess the Size Specific Dose Estimate in patients undergoing chest and 20 

abdomen CT examinations, based on the relation between the body mass index (BMI) and the 21 

effective diameter deff of the patient:  22 

deff (cm) = 0.6414 (cm· m2/kg) x BMI + 12.976 (cm)  (1) 23 
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BMI was calculated accordingly to the formula provided by the World Health Organization [26], 1 

BMI= (weight x height-2) and deff = √dLL x dAP, being dLL, dAP the latero-lateral and antero-posterior 2 

diameter of the patient.  3 

From the measure of the dAP and dLL made on the CT scan of both NEMA-IQ and NEMA-IQ fitted 4 

with the additional belt, BMI values were calculated by means of the relation above for the two 5 

configurations. 6 

 7 

Phantoms preparation and acquisition 8 

The spheres of the NEMA-IQ phantom were filled with 18F activity concentrations of 117.3, 46.6 and 9 

25.6 kBq/ml and the IEC cavity with 18F activity concentration of 5.5, 5.3 and 5.1 kBq/ml, in three 10 

different experimental sessions, respectively, thus providing 21.2, 8.8 and 5.0 target-to-background 11 

ratios (TBR). The reference time for all the activity concentrations is the time of the first acquisition, 12 

as described in the paragraph below. 13 

A more clinical parameter used to evaluate the uptake in a lesion is the Standardize Uptake Value 14 

(SUV) which describes the activity concentration in the lesion with respect to the total activity 15 

concentration in the phantom (this last being normally higher than the background concentration). 16 

The correspondent theoretical SUV values realized in the three experimental sessions were 19, 8 and 17 

5, respectively. 18 

The capillary present in the scatter phantom was filled with 18F activity concentrations of 5.3, 5.1, 5.3 19 

kBq/ml in the three experimental sessions, respectively. 20 

PET/CT images of both NEMA-IQ and NEMA-IQ wrapped with the belt (b-NEMA-IQ) were 21 

acquired in list mode with the NEMA NU-2 2012 protocol with one bed of 151 sec to simulate a total 22 

body scan of 100 cm axial imaging distance in 30 minutes of emission imaging and in accordance to 23 

the manufacturer’s protocol [27]. NEMA-IQ and b-NEMA-IQ phantoms were acquired sequentially, 24 

at different activity concentrations of about 5.1, 3.1, 2.2, 1.5 and 1.3 kBq/ml. Overall 30 (5 activity 25 
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concentrations x two phantoms x 3 sessions) acquisitions were performed. A CT scan was used for 1 

attenuation correction. 2 

 3 

Image reconstruction 4 

After correction for attenuation, scatter, random, detector normalization, radioactive decay, system 5 

dead time and crystal timing, images were reconstructed using a TOF, list-mode, blob-based, ordered 6 

subsets maximum likelihood expectation maximization algorithm (TOF-OSEM) [28]. 7 

The standard protocol provided by the manufacturer for clinical whole-body examinations was used 8 

to reconstruct all the images acquired, by setting the Speed to Normal (99 equivalent iterations and a 9 

TOF kernel width of 14.1cm), the Smooth to Normal (full width at half maximum FWHM of the 10 

Gaussian filter equal to 4mm and the relaxation parameter equal to 1.0) on a 144 x 144 frame (4 mm 11 

isotropic voxel). The reconstructions were performed for different emission scan durations (ESD) 12 

with (PSF=1) and without (PSF=0) the application of the resolution recovery algorithm or PSF 13 

correction (PSF) as shown in Table 1. On the Ingenuity TF PET/CT scanner, PSF correction is 14 

characterized by two parameters, the number of iterations and the regularization kernel width 15 

(FWHM expressed in mm). The default parameters suggested by the manufacturer (iteration = 1, 16 

regularization = 6mm) were used when PSF was applied. 17 

The different ESD were obtained by cutting the list-mode file after ESD seconds. Namely, ESD was 18 

set to 30, 45, 60, 75, 90 and 120 seconds. The PSF, speed and smoothing filter parameters were kept 19 

fixed for each reconstruction, as no significant difference in contrast recovery coefficient and 20 

background variability exists by changing speed, smooth and PSF values [21].  21 

 22 

Table 1 Reconstruction parameters values used in phantom image reconstruction 23 
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 2 

 3 

 4 

 5 

 6 

Image analysis 7 

The percentage Contrast Recovery Coefficient (CRC) and the Background Variability (BV) were 8 

evaluated by a routine provided by the manufacturer, according to NEMA NU-2 2012 standards: 9 

𝐶𝑅𝐶 =  (𝐶𝑆𝑗𝐶𝐵𝑗)−1(𝐴𝑆𝐴𝐵)−1 𝑥100%    (2)  10 

𝐵𝑉𝑗 = 𝑆𝐷𝑗𝐶𝐵𝑗 𝑥 100%     (3) 11 

where: 𝑆𝐷𝑗 = √∑ (𝐶𝐵𝑗𝑘 − 𝐶𝐵𝑗)2/(𝑘 − 1)𝑘1  12 

 CSj = average counts in the ROI for sphere j 13 

 CBj = average of the background counts for sphere j 14 

 AS = activity concentration in the spheres 15 

 AB = activity concentration in the background 16 

This routine provides the user with a pattern of six ROIs of fixed diameters equal to the physical 17 

internal diameter of the spheres and fixed relative distances. After choosing the slice corresponding 18 

to the equatorial section of the spheres, the user can only rotate and translate the pattern to establish 19 

its correct position over the hot spheres in the central slice. A pattern of twelve groups of 37 mm 20 

background ROIs at a distance of 15 mm from the edge of the phantom but no closer than 15 mm to 21 

any sphere is linked to the pattern of the six ROIs and is automatically placed in the background. The 22 

positioning of the smaller ROIs (10, 13, 17, 22, and 28 mm) on background, concentric to the 37 mm 23 

ones, is done automatically. The same pattern of 12 background ROIs is automatically positioned at 24 

Reconstruction parameter Values 

PSF correction (on/off) 1 iteration, 6 mm regularization 

Speed Normal 3 iterations, 33 subsets 

Smooth Normal 4 mm Gaussian filter FWHM 
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a distance of  ±1 and ±2 cm from the central slice for a total of K=60 background ROIs, as prescribed 1 

by NEMA recommendations. The analysis of CRC and BV for the four microspheres was performed 2 

by means of a routine developed on purpose in ImageJ v 1.48 (National Institutes of Health, Bethesda, 3 

Maryland, USA [29]). The ImageJ routine was written to act similarly to the manufacturer’s one, with 4 

the difference that the pattern provided contained 4 ROIs of fixed diameters equal to the physical 5 

internal diameter of the microspheres and fixed relative distances correspondent to their positions. 6 

The background ROIs pattern consisted of 12 groups of concentric ROIs of 4.1, 4.7, 6.5 and 8.1 mm 7 

diameters. 8 

Both the routines output CRC and BV values for each sphere and ROI dimension, as well as the mean 9 

and standard deviation of the activity concentration for all the ROIs drawn. 10 

Moreover, the contrast-to-noise ratio (CNR), which is the physical figure of merit more closely related 11 

to lesion detectability, was evaluated for all the spheres that were detected on the reconstructed 12 

images. In accordance with [18], CNR for sphere j was defined as: 13 𝐶𝑁𝑅𝑗 = (𝐶𝑆𝑗−𝐶𝐵)/𝐶𝑆𝑗𝑆𝐷𝐵/𝐶𝐵     (4) 14 

where: CSj = average counts in the ROI for sphere j 15 𝐶𝐵 = 1𝐽 ∑ 𝐶𝐵𝑗𝐽1 , CBj is the average counts measured in all background ROIs of size j,  16 

𝑆𝐷𝐵 = √∑ ∑ (𝐶𝐵𝑗,𝑘 − 𝐶𝐵)2/(𝐾 ∙ 𝐽 − 1)𝐾1𝐽1 , J=8 (accounting for the number of visible spheres) 17 

and K=12 (accounting for the ROI positions in the phantom background). 18 

Overall, 3360 CNR values were evaluated (8 visible ID x 7 ESD x 3 TBR x 5 Aacq x 2 phantoms x 19 

2 PSF values). 20 

Finally, the visibility of the hot spheres in the reconstructed images was assessed independently by 21 

two nuclear medicine physicians using a five-point rating scale from 0 to 4 to answer the question “Is 22 

the sphere visible?” The scores were defined as: 0=definitely no; 1=probably no; 2=possibly yes; 23 

3=probably yes; 4=definitely yes. Three sets of consecutive transaxial image planes were displayed 24 
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for each case to be rated, allowing the reader to evaluate the central plane in the context of adjacent 1 

planes. Readers were able to adjust the lookup table of each image to facilitate image viewing. The 2 

order in which images sets were evaluated was randomized. 3 

 4 

Statistical Analysis 5 

 Correlation matrices were used to identify potential univariate correlations between image 6 

quality figures of merit (CRC, BV and CNR) and acquisition (ESD, AC), reconstruction (PSF 7 

application) and object dependent parameters (ID, TBR and BMI). Only significant predictors at 8 

univariate analysis were considered and inserted into multiple linear regression methods to derive 9 

analytical formulas of the model.  10 

The weight of different independent variables in explaining the dependent variables were quantified 11 

by means of standardized regression coefficients (β). The βs can be used as a measure of relative 12 

importance, with the independent variables ranked in order of the sizes of these coefficients (ignoring 13 

sign) [30]. 14 

Box and whiskers plots were used to provide a univariate graphical representation of CRC and BV 15 

with respect to significant predictors, identified by the regression models.  16 

The impact of the different acquisition and object dependent parameters on CNR, was further 17 

investigated by a multiple way principal effects ANOVA: acquisition and object dependent 18 

parameters were considered as independent variables (factors) and CNR as the dependent variables 19 

A post-hoc test (Scheffe´ F test) was performed to identify the main sources of variability. If a 20 

significant F value was found for one independent variable, then this was referred as a main effect. 21 

When a main effect was found, then the Scheffe´ test was performed to compare the dependent 22 

variable upon the levels of the factor 2 x 2, thus identifying the main sources of variability. These 23 

comparisons were represented by drawing the least squares means, which are the best linear estimates 24 

for the marginal means in the ANOVA design, together with the standard errors of the means (and 25 
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thus the 95% confidence intervals) [30].The reproducibility of visual scoring of hot spheres in the 1 

reconstructed images was estimated by the correlation agreement using Cohen weighted Kappa (kW).  2 

All statistical analyses were performed with the software STATISTICA 6.0 (Statsoft Inc, USA). 3 

 4 

Results 5 

Phantoms  6 

The dAP and dLL measured on the CT scan were 22.9 and 29.5 cm and 27.9 and 36.1 cm for the 7 

NEMA-IQ and the b-NEMA-IQ phantoms, respectively, resulting in effective diameters of 26.0 and 8 

31.7 cm, respectively (Figure 1b). By using the relation (1), the deff values corresponded to BMI 9 

values of 21.4 and 29.2 kg/m2 for NEMA-IQ and b-NEMA-IQ, respectively and allow to classify the 10 

two phantoms as simulating normal and high-overweight patients. 11 

 12 

Contrast recovery coefficient 13 

The recovery of 18F activity in the spheres of NEMA-IQ phantom depends on sphere ID ( ID=0.68) 14 

and on the application of PSF correction ( PSF=0.23), in order of decreasing relevance of the weight 15 

of the variable in the model. F was 1382 (p<0.0001). The adjusted R2 of model fitting was 0.51 and 16 

the residual were normally distributed. 17 

Figure 2 shows box plot of CRC with respect to sphere ID (a) and PSF correction (b). 18 

 19 

Background variability 20 

The multiple linear regression analysis showed that BV depends on sphereID ( ID=-0.65), ESD 21 

( ESD=-0.40), AC ( AC=-0.35) and W ( W=0.25), in order of decreasing relevance. F was 1641 22 

(p<0.0001).  The adjusted R2 of model fitting equals to 0.71 and the residual were normally 23 

distributed. The multiple linear regression equation that summarizes the model with BV as predicted 24 

variable and sphere ID, ESD, AC and BMI as predictors can be written as: 25 
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 1 BV = 23.7 − (0.5𝑚𝑚−1 x sphereID) − (0.1𝑠−1x ESD) − (1.8 𝑚𝑙𝑘𝐵𝑞  x AC) + (0.4 𝑚2𝑘𝑔  x BMI)        (5) 2 

 3 

Figure 3 shows box plot of BV with respect to sphere ID (a), ESD (b), AC (c) and BMI (d), 4 

respectively. 5 

 6 

Contrast to noise ratio 7 

The CNR of the spheres detected on the images depends on ESD ( ESD=0.53), AC ( AC=0.50), BMI 8 

( W=-0.37) and TBR ( ESD=0.26), in order of decreasing relevance. F was 1528 (p<0.0001). The 9 

adjusted R2 of model fitting equals to 0.73 and the residuals were normally distributed. The regression 10 

equation that best summarizes the results obtained in a multiple regression model for CNR is: 11 

 12 CNR = 4.87 + (0.03𝑠−1 x ESD) + (0.74 𝑚𝑙𝑘𝐵𝑞  x AC) − (0.19 𝑚2𝑘𝑔 x BMI) + (0.08 x TBR)  (6) 13 

 14 

ESD and AC impact with a similar weight on CNR. As expected, BMI impacts with a negative 15 

regression coefficient on CNR, i.e. as the BMI increases the CNR decreases. Only last came TBR, 16 

with a slight impact on CNR about one half the one of ESD and AC. The major gain in CNR was 17 

observed for low TBR (or low SUV) values, as when moving from TBR 5.0 to 8.8 the CNR increases 18 

of about 19%, while when moving from TBR 8.8 to 21.2 the CNR increase is only of about 9% 19 

(Figure 4d). However, this is an intrinsic characteristic of the lesion itself and cannot be managed in 20 

the optimization process. 21 

Post-hoc Scheffè test showed a statistically significant increase in CNR for every contrast between 22 

adjacent levels of AC in the range explored (p<0.001) (Figure 4a). When considering 2.2 kBq/mL, 23 

which represents the activity concentration 60 minutes post injection of 3 MBq/kg of 18F-FDG, the 24 
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CNR mean value increases of about 19% when moving to an activity concentration of 3.1 kBq/mL 1 

(which correspond to an injection scheme of 4.5 MBq/kg). 2 

A similar behaviour was observed for all the ESD, BMI and TBR contrast tested. Post-hoc Scheffè 3 

test showed a statistically significant increase in CNR for every contrast between adjacent levels of 4 

ESD (Figure 4b), BMI (Figure 4c) and TBR (Figure 4d) in the range explored (p<0.001). 5 

 6 

Visual detection of the spheres 7 

Interobserver reproducibility analysis showed an excellent reproducibility between the two observers 8 

(kW = 0.87). A hot sphere was considered visually detectable if its median score was 2. Figure 5a and 9 

5b show the results of visual detection of different sphere ID for different TBR, AC and ESD for 10 

NEMA-IQ and b-NEMA-IQ phantoms, respectively. From these data it is evident that the overall 11 

scores for the lesions in the NEMA-IQ phantom are higher than those for the lesions in the b-NEMA-12 

IQ one, confirming the impact of the BMI on lesion detectability. 13 

In particular, one can observe that this PET/CT scanner is unlikely to detect lesions with dimension 14 

of 6.5 mm or less with TBR 21.2 or lower, lesions of dimension 8,1 mm or less with TBR is 8.8 or 15 

lower, and lesions of dimension of 13 mm or less with TBR ratio is 5.0 or lower. Moreover, the 16 

increase in activity concentration and emission scan duration appears to be particularly important to 17 

achieve lesion detection for the b-NEMA-IQ phantom configuration. 18 

Figures 6a and 6b show NEMA-IQ and b-NEMA-IQ reconstructed images obtained for TBR = 8.8 19 

with increasing of AC (ESD=60s) and ESD (AC=2.0 kBq/ml), respectively.  20 

 21 

Discussion 22 

The optimization process invoked by the Euratom Directive 2016-59 [31], requires optimal image 23 

quality of FDG whole-body PET/CT examinations by opportunely tuning acquisition and 24 

reconstruction parameters as well as the FDG activity to administer to patients. This process must be 25 
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performed in the light of reducing the radiation dose burden in particular to patients frequently 1 

exposed to several radiological examination during their follow up.The image quality and lesion 2 

detectability in 18F-FDG PET imaging are limited by different factors as the low signal-to-noise ratio, 3 

the relatively low spatial resolution and patient’s motion, which results in the partial-volume effect 4 

affecting lesion visualization and quantitation [2]. 5 

This work was aimed to characterize the quality of PET images for a TOF-PET/CT scanner in a wide 6 

range of acquisition, reconstruction and object dependent parameters in settings like those 7 

encountered in clinical practice, by means of a phantom study. CRC, BV and CNR, which is closely 8 

related to lesion detectability, were the figures of merit used to describe PET image quality. Our study 9 

used a multivariate approach to quantify how these figures of merit change as a function of ESD and 10 

AC for different target size, TBR, BMI and under the effect of the point spread function correction.  11 

The main result of this study is that the CNR of FDG lesions depends on ESD and AC in a similar 12 

way ( =0.53 and =0.50). This result is not obvious, if one considers that different FDG 13 

administration schemes are proposed by the literature. A previous study performed on a non-TOF 14 

PET scanner [20] concluded that the main predictor of CNR was ESD ( =0.60) and only with a half 15 

of the explanatory power ( =0.27) came AC. On the other hand, EANM guidelines [13] provides 16 

administration schemes based on a linear and a quadratic relationship [15], respectively, between PET 17 

acquisition time per bed position, patient weight and recommended FDG activity. Moreover, the 18 

difference in CNR dependence on ESD and AC on the two PET/CT scanners may rely on the TOF 19 

technology that is available in the PET/CT scanner used in the present study, but not in [20]. As the 20 

reduction of acquisition time is one the main achievement of TOF technology, this last can be the 21 

reason for the reduced dependence of CNR on ESD with respect to non-TOF PET scanners. 22 

Moreover, our results show also a significant increase in CNR for each increasing step in AC or ESD 23 

in the range explored, i.e. from 1.3 to 5.1 kBq/ml and from 30 to 151 sec. The visual inspection of 24 

phantom images confirmed that the image quality, in terms of the noise level and contrast, can be 25 

improved by increasing the AC (Figure 4a) or ESD (Figure 4b). This finding agrees with the clinical 26 
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results reported in the recent paper of Prieto [18]. The author observed a statistically significant 1 

difference in both the image noise and the overall image quality indexes of PET images obtained after 2 

18FDG activity administration of 5.2 and 3.7 MBq/kg on the Siemens mCT TOF-PET/CT scanner. 3 

The third predictor of CNR was the BMI of the phantom ( =-0.37), indicating that on average the 4 

CNR decreased by 25 % with increasing the BMI of the scanned object by a factor of 1.4. It is known 5 

that the TOF technology allowing the reduction of the uncertainty on the annihilation event acts as a 6 

noise equalizer and brings an overall gain in signal-to noise ratio, being this effect more evident for 7 

larger object [1, 10]. However, notwithstanding TOF technology, this result confirms that there is still 8 

a residual dependence of CNR on the size of the imaged object as evidenced by the literature [1]. The 9 

b-NEMA-IQ phantom realized in this study, with a BMI of 29.6 kg/m2 calculated from its deff, 10 

simulates a high-overweight patient. A way to improve lesion detection is then to define specific 11 

acquisition protocols for oncological whole-body studies tailored on patient’s BMI, rather than using 12 

a fixed ESD. Should this result be confirmed in clinical studies, it would indicate an additional way 13 

to improve the lesion detectability for larger patients, depending on their weight or their body habitus.  14 

The last predictor of CNR was the TBR of the lesion ( =0.26). This dependence may be explained 15 

by the partial volume effect, which reduces the apparent activity concentration in the lesion in the 16 

reconstructed image preventing the recovering of the true amount of activity for structures less than 17 

twice the reconstructed image resolution.  18 

The fitted multiple regression model of CNR based on these premises, accounts for more than two 19 

thirds of CNR variance (adjusted R2 = 0.76).  20 

From these findings, one can derive that it is possible to opportunely tune ESD and AC on patient’s 21 

BMI in order to keep constant the CNR, or the detectability level, on the PET images of this scanner. 22 

As a typical example, let us consider the following situation: a lesion with a TBR of 9 (SUV=8.8) in 23 

a standard BMI patient injected with 3 MBq/kg of 18F-FDG imaged for 60 sec, 60 minutes post 24 

injection. According to equation (4), we should expect a CNR of 5.9 for a 10mm-diameter lesion. To 25 

obtain a similar value in CNR for the same lesion uptake in a high overweight patient injected with 3 26 



17 

 

MBq/kg of 18F-FDG, the patient should be scanned for 110s. In an analogous way, one could double 1 

the activity administration scheme (i.e. 6 MBq/kg) to obtain the same CNR. However, from a 2 

radiation protection point of view, it would be more advisable to increase the ESD than the AC for 3 

an improvement in lesion detectability, still considering that a long ESD would increase the risk of 4 

patient’s movement. 5 

Another result of this study is the dependence of CRC on sphere ID ( =0.68) and PSF application 6 

( =0.23). This result confirms the dependence of CRC already reported by Zorz et al. [21], even with 7 

a slightly different analytical expression with respect to (2). This may be explained by observing that 8 

in [21] only four spheres (ID = 10,13,17 and 22mm) were included in NEMA-IQ phantom analysis 9 

and CRC fitting was almost perfectly linear (Radj
2=0.93). In our study, on the contrary, CRC 10 

dependence on ID was analysed in a wider sphere dimension range, where CRC values assume a 11 

trend with respect to ID (Figure 1a) definitely different from the linear one, explaining also the 12 

relatively low Radj
2 of 0.51. 13 

The third parameter related to image quality we investigated, the BV resulted to be dependent on the 14 

ROI dimension for which is defined ( =-0.62), emission scan duration ( =-0.39), activity 15 

concentration ( =-0.31) and BMI ( =0.24), in order of decreasing relevance, this model explaining 16 

77 % of variance in BV (Radj
2 of 0.77). The strong dependence of BV on sphere ID is not new and 17 

was also found by Zorz [21] and Brambilla [20], with similar weights. Even if BV cannot be 18 

considered a descriptor of noise, it is interesting to note the equivalent dependence of BV on ESD (β 19 

= -0.39) and AC (β = -0.31), in analogy with the finding that CNR depends on both these parameters 20 

with similar weights, reported above. The impact of the BMI of the phantom on BV, reinforces the 21 

same finding on CNR.  22 

Some limitations of the present study must be acknowledged.  23 

First, the results on CNR, CRC and BV found in the present study strictly apply to this PET/CT 24 

scanner and to 18F whole body acquisitions: extrapolation of these results to different TOF-PET/CT 25 

scanners and to different radionuclides should be tested in advance before application. 26 
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Second, the ‘belt’ added to the NEMA-IQ phantom to simulate a high overweight patient was filled 1 

with non-radioactive water, while in obese patients, the adipose tissue is mildly radioactive, typical 2 

SUVs being around 0.3g/ml. When considering the attenuation and the scatter caused by the belt on 3 

the photons coming from the NEMA-IQ phantom, these effects would be equivalent to those 4 

originating from a 18F filled belt. Nevertheless, the photons emitted from the radioactive belt will 5 

cause an increase in the noise and thus a deterioration of the quality of the NEMA-IQ phantom image.  6 

Another issue concerning the ‘belt’ is the presence of air gaps between the water bags and the NEMA-7 

IEC phantom, as Figure 1 shows, the air gaps accounting for less than the 10% of the total area of 8 

section of the b-NEMA-IEC phantom, reducing the attenuation and the scatter phenomena effects. In 9 

ultimate analysis, both the non-radioactive water and the presence of air gap between the ‘belt’ and 10 

the NEMA-IQ phantom are in some way an ameliorative condition of the real clinical situation. Thus, 11 

in this scenario, the conclusion that the image quality in overweight patients is worsened, is 12 

reinforced. 13 

Third, the NEMA-IQ and the b-NEMA-IQ phantoms represent the thorax-abdominal regions of a 14 

patient. For a comprehensive analysis of the effect of activity concentration, emission scan duration 15 

and target-to-background ratio on image quality, the simulation of head and neck and pelvis regions 16 

should be devised. To this end, clinical studies would help in confirming the results of the present 17 

study. 18 

 19 

 20 

 21 

 22 
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FDG: 18F-fluoro-2-deoxyglucose 1 

PET: Positron Emission Tomography 2 

CT: Computed Tomography 3 

CRC: Contrast Recovery Coefficient 4 

BV: Background Variability 5 

CNR: Contrast to Noise Ratio 6 

ESD: Emission Scan Duration 7 

AC: Activity Concentration 8 

ALARA: As Low As Reasonably Achievable 9 

ID: Internal Diameter 10 

TBR: Target-Background activity Ratio 11 

BMI: Body Mass Index 12 

LSO: Lutetium Oxyorthosilicate 13 

LYSO: Lutetium Yttrium Oxyorthosilicate 14 

PSF: Point Spread Function 15 

FWHM: Full Width at Half Maximum 16 

NEMA: National Electrical Manufacturer Association 17 

IEC: International Electrotechnical Commission 18 

b-NEMA-IQ: NEMA-IQ phantom wrapped with belt 19 

OSEM: Ordered Subset Expectation Maximization 20 
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Figures

Figure 1

Phantom setup in antero-posterior view (a) and CT scan of the b-NEMA-IQ phantom at standard spheres
level (b).



Figure 2

Box plots of CRC values as function of sphere ID (a) and PSF (b). Outliers and extremes are points higher
than the value of the 75th percentile plus 1.5 or 3 times the interquartile distance, or lower than the value
of the 25th percentile minus 1.5 or 3 times the interquartile distance, respectively.



Figure 3

Box plots of BV as function of sphere ID (a), ESD (b), AC (c) and W (d). Outliers and extremes are points
higher than the value of the 75th percentile plus 1.5 or 3 times the interquartile distance, or lower than the
value of the 25th percentile minus 1.5 or 3 times the interquartile distance, respectively.



Figure 4

CNR as a function of AC (a), ESD (b), W (c) and TBR (d). Points represent least square averages; vertical
bars represent 95% con�dence intervals. The results of the Scheffè test are displayed for the adjacent
levels of the predictor variables.



Figure 5

Results of the visual detection of the spheres for NEMA-IQ (a) and b-NEMA-IQ (b) phantoms for different
TBR, AC and ESD and sphereID. Grey and white boxes indicate a detectable/undetectable sphere.



Figure 6

(a) IEC (upper row) and b-IEC (lower row) images of TBR=9 for increasing AC (from left to right) for
ESD=60s. (b) IEC (upper row) and b-IEC (lower row) images of TBR=9 for increasing ESD (from left to
right) for AC=2.0 kBq/ml. The impact of increasing ESD or AC is evident on both the reduction of noise in
the background and in the greater visibility of the 10mm sphere.


