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Abstract 20 

Background 21 

Diel cycle is of enormous biological importance in that it imposes temporal structure 22 

on ecosystem productivity. In the world oceans, microorganisms form complex communities 23 

that carry out about half of photosynthesis and the bulk of life-sustaining nutrient cycling. 24 

Within these natural microbial assemblages, photoautotrophs, such as Cyanobacteria, display 25 

diel rhythmicity in gene expression. To what extent autotrophs and heterotrophs are impacted 26 

by light and dark oscillations and how this collectively influences community structure and 27 

functionality remains poorly documented. In this study, we compared eight day/night 28 

metaproteome profiles of Cyanobacteria and both free-living and attached bacterial fractions 29 

from picoplanktonic communities sampled over two consecutive days from the surface north-30 

west Mediterranean Sea.  31 

Results 32 

Our results showed similar taxonomic structure in both free-living and particle-attached 33 

bacteria, dominated by Alphaproteobacteria and Gammaproteobacteria. Temporal 34 

rhythmicity in protein expression was observed in both Synechococcales and Rhodobacterales 35 

in light-dependent processes such as photosynthesis or UV-stress response. Other biological 36 

processes, such as phosphorus or amino acid metabolisms, were also found to cycle in 37 

phototrophs. In contrast, proteins from the ubiquitous Pelagibacterales remained stable 38 

independently of the day/night oscillations. 39 

Conclusion 40 

This work integrated for the first time diel comparative metaproteomics on both free-41 

living and particle attached bacterial fractions in coastal oligotrophic environment. Our 42 

findings demonstrated a taxa-specific response to diel cycle with a more controlled protein 43 
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regulation for phototrophs. This study provided additional evidences that timekeeping 44 

mechanisms might be widespread among bacteria, broadening our knowledge on diel microbial 45 

assemblage dynamics. 46 

Key words 47 

Diel cycle, Metaproteomics, Picoplankton Communities, Marine Microbial Ecology 48 

Background 49 

Microorganisms in marine ecosystems are extremely diverse, dominate biomass and 50 

play key roles in biogeochemical processes [1, 2]. Picoplankton (i.e. the microorganisms of a 51 

size ranging between 0.2 - 2 µm) carries out up to the half of the world ocean’s primary 52 

production and the bulk of life-sustaining nutrient cycling [3]. Marine picoplanktonic 53 

communities are composed of both free-living and particle-attached microorganisms, which 54 

can be structurally and metabolically different [4]. The 24-hours oscillation of solar radiation 55 

reaching the Earth’s surface temporally structures biological events, activities and 56 

physiological processes across all kingdoms of life [5]. Sea surface picoplanktonic 57 

communities showed diel oscillations for metabolites consumption [6, 7], viral infection [8], 58 

DNA/protein synthesis and dissolved organic carbon (DOC) distribution [9]. Diel variation in 59 

abundance, activity and structure were reported in free-living and particles-attached 60 

microorganisms [10]. To what extent picoplankton communities are collectively entrained by 61 

day and night cycles, how this influences their population structure, regulates their 62 

physiologies, and impinges on species interactions are questions of immediate urgency. 63 

Circadian rhythms consist of diel cycling biological processes governed by endogenous 64 

clock. Circadian clocks use external variable clues such as light, temperature and/or redox 65 

cycles to scale to the environment and regulate patterns of genetic expression throughout the 66 

day [11]. The model organism for bacterial circadian clock, Synechococcus elongatus, clock-67 
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regulates the expression of numerus genes via a core oscillator composed of three principal 68 

proteins (KaiA, KaiB and KaiC) [12, 13]. The existence of diel rhythmicity was reported in 69 

other bacteria such as the purple bacteria Rhodospirillum rubrum [14] and Rhodobacter 70 

sphaeroides [15]. Kai genes and their homologs have been reported in various prokaryotic 71 

groups. While kaiA gene was identified in Cyanobacteria only, KaiB genes also occurred in 72 

Proteobacteria and KaiC genes in Proteobacteria, Thermotogae and Chloroflexi [16]. This 73 

suggest that endogenous temporal programs might exist in other numerous bacteria [17]. 74 

The development of omics approaches has advanced the understanding of temporal 75 

dynamics in marine microbial assemblages. Environmental transcriptomics revealed day and 76 

night patterns in metabolic activity of naturally occurring picoplankton communities over 24h 77 

period [18, 19, 20]. Diel transcriptional rhythms were also observed over three consecutive 78 

days in marine oligotrophic bacterial community, demonstrating that temporal regulation of 79 

gene expression is likely to occur in both autotrophs and heterotrophs microorganisms [21]. 80 

Metaproteomics allows the characterization of the final product of the gene (i.e. proteins) and 81 

therefore helps to better understand of community functioning [22]. Our study is the first to 82 

assess the metaproteome dynamics under day/night cycles of picoplanktonic communities. We 83 

thus compared day and night metaproteomes of Cyanobacteria and both free-living (>0.2µm) 84 

and particle-attached (>0.8µm) bacterial fractions sampled over two consecutive days at the 85 

surface of north-western (NW) Mediterranean Sea. The resulting eight metaproteomes were 86 

quantitatively and qualitatively compared, allowing us to assess the protein regulation under 87 

diel variations.  88 

 89 

 90 
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Results 91 

Features of sampling site 92 

Sampling was performed in summer (June 2014) in the NW Mediterranean Sea. The 93 

average temperature and salinity, measured in June, were as follows: 18.7 ± 0.7 °C and 37.8 ± 94 

0.1 psu respectively (Supplementary Information 1). pH was stable over the month with an 95 

average of 8.26 ± 0.04. Nutrients concentration averaged 0.03 ± 0.01 µM NH4
+, 0.05 ± 0.03 96 

µM NO3
-, 0.01 ± 0.001 µM NO2

-, 0.02 ± 0.01 µM PO4
3- and 0.75 ± 0.09 µM Si(OH)4. 97 

Metagenomic analysis revealed that Proteobacteria was the main contributor phylum 98 

with 66.9% of the total detected bacterial reads, followed by Bacteroidetes (15.5%) and 99 

Cyanobacteria (12.2%) (Table 1). Alphaproteobacteria was the most represented class 100 

(47.3%), followed by Gammaproteobacteria (17.8%), Flavobacteriia (14.3%) and unclassified 101 

Cyanobacteria (12.3%) (Table 1). At order level, abundant Pelagibacterales reads were 102 

detected (28.9%), followed by Flavobacteriales (16.5%) and to a lesser extent, Rickettsiales 103 

(11.0%), Oceanospirillales (8.9%), Rhodobacterales (7.2%) and Cellvibrionales (6.1%) 104 

(Figure 1). 105 

Free-living versus particle-attached bacteria: contrasting diel regulation of their 106 

metaproteomes  107 

In this study, the total number of identified proteins was stable within each filter fraction 108 

(Supplementary Information 2). More proteins from free-living bacteria were identified in 109 

comparison to the particle-attached ones, with an average of 529 ± 67 and 194 ± 31 identified 110 

proteins for the 0.2 and 0.8µm pore-size filters respectively. The proportion of annotated 111 

proteins decreased with lowering taxonomic hierarchy in all samples. The total number of 112 

identified proteins was 47.9 ± 4 and 65.6 ± 1.5 at order level and 62.0 ± 2.8 and 55.2 ± 1.1 at 113 

functional level for 0.2 and 0.8µm pore-size filters respectively.  114 
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The four metaproteomes (Day 1, Day 2, Night 1, Night 2) from the 0.2µm pore-size 115 

filters were largely dominated by Proteobacteria (avg. 90.9 ± 1.1%) (Table 1). At class level, 116 

Alphaproteobacteria (avg. 69.6 ± 2.1%), Gammaproteobacteria (avg. 22.4 ± 1.2%) and 117 

Flavobacteriia (avg. 4.8 ± 0.3%) were found to be the most represented (Table 1). Regarding 118 

the 0.8µm pore-size filters, Proteobacteria were the most abundant (avg. 32.7 ± 2.7%). Classes 119 

were mainly represented by Alphaproteobacteria (avg. 20.3 ± 1.5%) and 120 

Gammaproteobacteria (avg. 10.9 ± 1.1%). Cyanobacteria were found on both 0.2 and 0.8µm 121 

pore-size filters with an abundance of 1.4 ± 0.8% and 62.0 ± 2.7% respectively (Table 1). 122 

Overall, phylum and class structures were stable over day and night periods in both 0.2 and 123 

0.8µm fractions (Tables 1). On the contrary, more diel fluctuations in protein abundance were 124 

observed at order level (Figure 1). Within the free-living bacteria, Pelagibacterales were more 125 

represented at night, while Rhodobacterales and Sphingomonadales were found in higher 126 

proportion at day. The particle-attached Bacteriovoracales, Pseudomonadales and Rhizobiales 127 

were more represented at day and Alteromonadales and Flavobacteriales at night. The 128 

Synechococcales, the most abundant cyanobacterial order, were more abundant at night. 129 

Metaproteomic analysis revealed that housekeeping-related proteins dominated both 130 

free-living and particle attached bacterial fractions (Table 2). Proteins involved in 131 

transcription/translation, protein folding, or transport processes were abundant with the 60 kDa 132 

chaperonin being the most represented (free-living bacteria: avg. 31.3 ± 1.7%, particle-133 

attached: avg. 23.0 ± 3.1%). The 50S ribosomal protein (avg. 13.1 ± 1.3%), as well as the DNA-134 

binding protein HU (avg. 7.4 ± 0.2%), the elongation factor proteins (avg. 6.2 ± 0.9%), the 135 

amino-acid ABC transporter-binding protein (avg. 5.9 ± 0.3%) and the 10 kDa chaperonin (avg. 136 

5.4 ± 0.2%) were exclusively detected in free-living bacterial metaproteomes. The ATP 137 

synthase proteins (avg. 15.0 ± 3.1%), the DNA-directed RNA polymerase (avg. 8.6 ± 2.9%), 138 

the elongation factor proteins (avg. 8.2 ± 1.3%) and the 50S ribosomal protein (avg. 6.4 ± 3.1%) 139 
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greatly contributed to the particle-attached bacterial metaproteomes. The phosphate-binding 140 

protein (avg. 30.1 ± 9.1%) was, in average, the most abundant protein characterized in 141 

Cyanobacteria, followed by the 60 kDa chaperonin (avg. 15.0 ± 2.3%), the elongation factor 142 

(avg. 12.4 ± 3.1%) and the ATP synthase (avg. 12.2 ± 3.5%). 143 

Protein expression patterns, at the order level, were visualized using heatmaps (Figure 144 

2). The taxonomic and functional clusters of the free-living bacterial fraction were stable in 145 

both day and night conditions (Figure 2a). Pelagibacterales always clustered apart from other 146 

taxa, except in Day 2 where it grouped with Rhodobacterales. Protein folding-related proteins 147 

formed a distinct functional cluster in all samples except in Night 2, where they clustered with 148 

proteins involved in translation. Taxonomic and functional patterns in particle-attached 149 

bacteria varied more across the metaproteomes (Figure 2b). During day, Rhizobiales and 150 

Rhodobacterales clustered apart. In Night 1, Pelagibacterales behaved similarly as the latter, 151 

while in Night 2, Rhizobiales only clustered apart from all other taxa. Proteins involved in 152 

protein folding and respiration processes formed a distinct functional cluster in Day 1 and Night 153 

1. Protein folding-related proteins clustered apart from other proteins in Day 2 and Night 2.  154 

Diel protein expression of the most abundant taxa: Synechococcales, Rhodobacterales and 155 

Pelagibacterales 156 

Multiple biological processes were found to be periodically impacted by day and night 157 

cycle in Synechococcales (Figure 3a). Proteins involved in carbohydrate, nitrogen and 158 

phosphorus metabolisms and photosynthesis processes were systematically more represented 159 

at day, while proteins involved in translation, protein folding, and respiration processes were 160 

predominant at night. As represented in Figure 4a, several Synechococcales proteins were 161 

found to be exclusively characterized during daytime (yellow boxes) or night time (black 162 

boxes) or consistently more abundant at day (sun symbol) or at night (moon symbol). Light-163 

dependent proteins included the light harvesting proteins, allophycocyanin, phycocyanin, 164 
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phycobiliprotein and phycoerythrin, as well as the protein FtsZ, involved in cell division 165 

process, and the Leu/Ile/Val-binding transport protein. At night, the 60 kDa and DnaK 166 

chaperonins were consistently more abundant (Figure 4a). Interestingly, proteins involved in 167 

carbohydrate metabolism showed contrasting diel expression. Glycolysis and pentose 168 

phosphate pathway were characterized by proteins exclusively detected at either day or night 169 

time, suggesting that energy production pathways were consistent over the course of the day.  170 

Rhodobacterales proteins were detected on both free-living and particle-attached 171 

fractions (Figure 1). By grouping both protein fractions, strong diel variations were observed 172 

in Rhodobacterales proteomes (Figure 3b). Two oxidoreductases, catalase-peroxidase and 173 

superoxide dismutase [Fe], both involved in oxidative stress response, were specific to day 174 

time, suggesting immediate response of Rhodobacterales to light stress (Figure 4b). Similarly, 175 

the expression of the protein folding protein 10 kDA chaperonin, was consistently more 176 

abundant at day (Figure 4b). Sunlight was also found to favor chemotaxis, as the chemotactic 177 

signal transduction system substrate-binding protein BasB was consistently more expressed in 178 

day samples (Figures 3b, 4b). Cell motility and respiration showed diurnal changes in 179 

Rhodobacterales (Figures 3b, 4b). On the contrary, amino acid and phosphorus transporters 180 

were observed at both day and night times (Figure 4b). Similarly, proteins involved in 181 

transcription/translation processes, such as the ribosome-recycling factor and the ribosomal 182 

protein S12 methylthiotransferase RimO as well as viral protein and integration host factor 183 

subunit alpha were non-rhythmically detected at either day or night (Figure 4b).  184 

On the contrary to phototrophs, Pelagibacterales proteins characterized in both free-185 

living and particle-attached combined fractions seemed less consistently regulated and 186 

therefore no major diurnal change was observed between the day and night conditions (Figure 187 

3c). Pelagibacterales expressed several transporters (Figure 4c). While the expression of sugar 188 

transporters was specific to daytime, amino-acid transporters were not impacted by diel 189 
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rhythms (Figure 4c). Similarly, proteins involved in amino acid biosynthesis were 190 

characterized during both day and night times. Indeed, the arogenate dehydratase and 191 

glutamine amidotransferase MTH_191 were specific to night sample, while the 2,3,4,5-192 

tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase was specific to day sample (Figure 193 

4c). Proteins involved in ATP production were detected at any time, during day or night, 194 

suggesting that Pelagibacterales rely on continuous energy supply (Figures 3c, 4c) with the 195 

synthesis of proteins involved in glycolysis and pyruvate metabolism (glyceraldehyde-3-196 

phosphate dehydrogenase, phosphate dikinase and the succinate-CoA) (Figure 4c). 197 

Discussion 198 

Marine oligotrophic waters present significant challenges for metaproteomics study as 199 

protein extraction is hampered by the low bacterial biomass, which requires to filter important 200 

volume of water [23, 24]. In situ physicochemical measurement confirmed the oligotrophic 201 

environmental conditions in which the studied picoplanktonic communities were sampled 202 

(Supplementary Information 1), therefore large volumes of water (60L/sample) were 203 

sequentially filtered onto both 0.8 and 0.2µm pore-size filters. A combined protein search 204 

database allowed us to maximize the number of protein identification [25]. Protein inference 205 

issue, commonly encountered in metaproteomics, was overcome in this study by using 206 

taxonomic and functional consensus protein annotation [26]. The total number of proteins 207 

identified per sample was found to be consistent with previous metaproteomics studies 208 

conducted in marine oligotrophic surface waters [27, 28, 29, 30] (Supplementary Information 209 

2). The number of proteins identified within attached bacterial fraction was significantly lower 210 

than in the free-living fraction (Supplementary information 2). In NW Mediterranean Sea, free-211 

living bacteria are generally more abundant in summer under oligotrophic conditions and 212 

contribute the most to total bacterial activity [10] as attached-bacteria rely on the availability 213 

of particulate organic carbon sources [31].  214 
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Based on relative protein abundance, the structure of the community was dominated by 215 

Proteobacteria followed by Cyanobacteria and Bacteroidetes, which was consistent with 216 

metagenome distribution (Table 1). These taxa were previously reported as numerically 217 

important in eastern Mediterranean Sea surface water [32] and in other marine oligotrophic 218 

environments [29, 30, 33, 34]. Interestingly, taxonomic similarity at phylum and class levels 219 

was observed between particles-associated and free-living bacteria with Alphaproteobacteria 220 

and Gammaproteobacteria dominating both fractions (Table 1). This suggested 221 

interconnections between both reservoirs as previously observed in taxonomic distribution 222 

within microbial assemblages of Mediterranean Sea [10, 35, 36].  223 

This day/night metaproteomics study provided valuable insights into temporal 224 

rhythmicity of gene expression in surface oligotrophic picoplankton communities. At order 225 

level, protein content of the free-living bacterial fraction was found to be more stable over day 226 

and night periods than in the particle-attached fraction (Figure 2). This can be explained by the 227 

nature of particles present in the water column at the time of sampling, which influence particle-228 

attached microbial activity and distribution [37]. Looking at specific taxa, Synechococcales 229 

showed strong diel variations in protein abundance (Figure 1). Interestingly, diel patterns were 230 

also observed in the purple photosynthetic bacteria Rhodobacterales. Even though the current 231 

data would not allow to conclude on circadian rhythms, they demonstrated diel taxa-specific 232 

regulation of total protein expression (i.e. 0.2 and 0.8µm pore-size fractions combined) 233 

(Figures 3 and 4). In Synechococcales, the cell division protein FtsZ was observed in day 234 

sample only, similar with observation in field population, where cell division occurs during the 235 

day [38]. Proteins involved in light-mediated processes such as photosynthesis were 236 

characterized during daytime in Synechococcales supporting previous (meta)-transcriptomic 237 

studies (Figures 3 and 4) [18, 21].  238 
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Our results suggested that mechanisms involved in light-damage repair might be 239 

preferably expressed at either day or night-time in phototrophs.  Interestingly, the 60 kDa and 240 

DnaK chaperonins were found to be more abundant at night in Synechococcales, which was 241 

consistent with the circadian rhythm of dnaK-reporting bioluminescent Synechococcus strain, 242 

in which dnaK expression was peaking at night [39]. The 10 kDa chaperonin and the oxidative 243 

stress response involved proteins were systematically more abundant at day in 244 

Rhodobacterales (Figures 4). In contrast, no diel regulation in chaperonin expression was 245 

observed in Pelagibacterales and DNA replication/repair and oxidative stress response 246 

involved proteins were expressed during both day and night-time (Figure 3). In the euphotic 247 

layer, bacteria are exposed to potentially harmful UV radiation, damaging both proteins and 248 

DNA. Chaperonins were shown to be abundant in marine environment (Table 2) [28, 29 40], 249 

since they are ubiquitous and vital as their main function is to prevent protein misfolding [41]. 250 

Chaperonins are essential for coping with UV-induced protein damage and maintaining proper 251 

protein function [42]. Because of UV absorbing compounds, phototrophs benefit a better 252 

protection against photolesions in DNA than heterotrophs such as Pelagibacterales, in which 253 

proteins involved in DNA repair system represented a significant part of their proteomes.  254 

Numerous amino acid (5.9 ± 0.3%) and phosphate-binding (30.1 ± 9.1%) proteins were 255 

characterized within free-living bacteria and Cyanobacteria respectively (Table 2), suggesting 256 

an adaptation to oligotrophic environment, where a strong competition for limiting nutrients 257 

such as nitrogen or phosphorus was reported [43]. Interestingly, no such transporters were 258 

identified in the attached-bacterial fraction (Table 2), which could suggest less environmental 259 

pressure for nutrient transporter expression in the microenvironment formed on particles 260 

sinking through the water column. Previous studies reported diel periodicity in bacterial 261 

activity sampled from oligotrophic surface waters [6, 9, 44]. Here, proteins involved in 262 

phosphorus or amino acid metabolisms, mainly represented by transporters, were more 263 
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abundant at day in Synechococcales and Rhodobacterales respectively, while respiration-264 

related proteins were more abundant at night (Figure 3). During daytime, when photosynthesis 265 

takes place, phototrophic organisms must compete for N and P sources with heterotrophs [6], 266 

which could lead to an overexpression of transporters. In Rhodobacterales, proteins involved 267 

in chemotaxis and amino acid (i.e. octopine) transporters were expressed and characterized 268 

during the day (Figures 3 and 4). Chemotaxis proteins are critical for nutrient competition, 269 

suggesting that Rhodobacterales have evolved strategies using both movements towards 270 

nutrients and efficient carbon/nitrogen uptake system during the day.  271 

Pelagibacterales was observed in higher abundance at night (Figure 1) and showed 272 

contrasting diel patterns compared to phototrophs (Figure 3). Regulation of protein expression 273 

was more likely sample dependent rather than governed by a day/night cycle (Figure 3c). 274 

Unlike phototrophic organisms, respiration in Pelagibacterales was not especially enhanced in 275 

the dark phase (Figure 3c). Moreover, the relative stability in carbohydrate metabolism (Figure 276 

3c) and the detection of proteins involved in glycolysis, pyruvate metabolism and electron 277 

chain transfer at both day and night periods (Figure 4c), might suggest that energy production 278 

in Pelagibacterales is not controlled by diel fluctuation. In all samples, numerous transporters 279 

were detected at both day and night periods (Figure 4c). Pelagibacterales are non-motile 280 

heterotrophs that rely on constitutive expression of transporters for efficient nutrient 281 

scavenging [43]. By consistently expressing their proteins during the day and night time, 282 

Pelagibacterales would prevent from an energetically costly diel protein turnover [45]. 283 

Regulation might also take place at transcript level as evidenced by Ottesen and colleagues 284 

[21].  285 
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Conclusion 286 

Picoplankton communities are key actors in surface marine environment, where diel 287 

fluctuation of solar radiation imposes daily temporal structure. Assessing the impact of day and 288 

night cycle on microbial assemblages is essential to better understand this complex ecosystem. 289 

This work compared diel metaproteome dynamics of free-living and particles-attached 290 

picoplanktonic fractions within coastal oligotrophic environment. Our study was conducted 291 

over two consecutive days, going one step further than previous metaproteomic efforts and 292 

allowing a better understanding of cyclic regulation of protein expression. Despite the overall 293 

stability of the community proteome profile, our results showed diel taxa-specific variation of 294 

protein expression with stronger regulation in phototrophs than in heterotrophs. The observation 295 

of diel regulations in other phototrophic taxa (Rhodobacterales) than Cyanobacteria reinforced 296 

evidences that timekeeping mechanisms might be widespread in Bacteria, raising new 297 

questions in marine microbial ecology and evolution. Therefore, studying the in situ diel 298 

variations using multi-diel omics investigations will undoubtedly broaden our knowledge on 299 

microbial assemblage dynamics and provide key elements for understanding taxa-specific diel 300 

functioning. 301 

Methods 302 

Water Sampling 303 

Seawater samples were collected in summer (June 2014) at the SOLA station, located 304 

500 m offshore of Banyuls-sur-mer, in the NW Mediterranean Sea (42° 49’ N, 3° 15’ W). 305 

Samples were collected over two days on a two samples per day basis (one at dusk and one at 306 

down). Each sample consisted of 60 liters of sea surface water, pre-filtered at 5 µm and subse-307 

quently sequentially filtered through 0.8 and 0.2 µm pore-sized filters (polyethersulfone mem-308 

brane filters, PES, 142 mm, Millipore). The eight filters were flash frozen into liquid nitrogen 309 
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before storage at – 80 °C. The physicochemical parameters were provided by the Service d’Ob-310 

servation en Milieu Littoral (SOMLIT). Temperature, salinity and nutrient (NH4
+, NO3

-, NO2
-311 

, PO4
3- and Si(OH)4) concentrations were measured in the sampling site (3 m depth) over the 312 

month of June. 313 

Protein isolation 314 

A combination of different physical (sonication/freeze–thaw) and chemical (urea/thio-315 

urea containing buffers, acetone precipitation) extraction techniques were used on the filtered 316 

seawater samples to maximize the recovery of protein extracts from the filters. The filters were 317 

removed from their storage buffer and cut into quarters using aseptic procedures. The filters 318 

were suspended in a lysis buffer containing 8 M Urea / 2 M Thiourea, 10 mM HEPES, and 10 319 

mM dithiothreitol. Filters were subjected to five freeze–thaw cycles in liquid N2 to release 320 

cells from the membrane. Cells were mechanically broken by sonication on ice (5 cycles of 1 321 

min with tubes on ice, amplitude 40 %, 0.5 pulse rate) and subsequently centrifuged at 16 000 322 

g at 4 °C for 15 min. To remove particles that did not pellet during the centrifugation step, we 323 

filtered the protein suspension through a 0.22 mm syringe filter and transferred into a 3 kDa 324 

cutoff Amicon Ultra-15 filter unit (Millipore) for protein concentration. Proteins were precip-325 

itated with cold acetone overnight at −80 °C, with an acetone/aqueous protein solution ratio of 326 

4:1. Total protein concentration was determined by a Bradford assay, using the Bio-Rad Protein 327 

Assay kit (Bio-Rad, Hertfordshire, UK) according to manufacturer's instructions, with bovine 328 

γ-globulin as a protein standard. Protein samples were reduced with 25 mM dithiothreitol 329 

(DTT) at 56 °C for 30 min and alkylated with 50 mM iodoacetamide at room temperature for 330 

30 min. For gel-free liquid chromatography tandem mass spectrometry analysis, a trypsic di-331 

gestion (sequencing grade modified trypsin, Promega) was performed overnight at 37 °C, with 332 

an enzyme/substrate ratio of 1:25.  333 
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Liquid chromatography tandem mass spectrometry analysis 334 

Purified peptides from digested protein samples were identified using a label-free strat-335 

egy on an UHPLC-HRMS platform composed of an eksigent 2D liquid chromatograph and an 336 

AB SCIEX Triple TOF 5 600. Peptides were separated on a 25 cm C18 column (Acclaim pep-337 

map 100, 3 μm, Dionex) by a linear acetonitrile (ACN) gradient [5–35 % (v/v), in 15 or 120 338 

min] in water containing 0.1 % (v/v) formic acid at a flow rate of 300 nL min-1. Mass spectra 339 

(MS) were acquired across 400–1,500 m/z in high-resolution mode (resolution > 35 000) with 340 

500 ms accumulation time. Six microliters of each fraction were loaded onto a pre-column 341 

(C18 Trap, 300 µm i.d.×5 mm, Dionex) using the Ultimate 3000 system delivering a flow rate 342 

of 20 µL/min loading solvent (5 % (v/v) acetonitrile (ACN), 0.025 % (v/v) TFA). After a 10 343 

min desalting step, the pre-column was switched online with the analytical column (75 µm 344 

i.d.×15 cm PepMap C18, Dionex) equilibrated in 96 % solvent A (0.1 % (v/v) formic acid in 345 

HPLC-grade water) and 4 % solvent B (80 % (v/v) ACN, 0.1 % (v/v) formic acid in HPLC-346 

grade water). Peptides were eluted from the pre-column to the analytical column and then to 347 

the mass spectrometer with a gradient from 4-57 % solvent B for 50 min and 57-90 % solvent 348 

B for 10 min at a flow rate of 0.2 µL min−1 delivered by the Ultimate pump. Positive ions were 349 

generated by electrospray and the instrument was operated in a data-dependent acquisition 350 

mode described as follows: MS scan range: 300 – 1 500 m/z, maximum accumulation time: 351 

200 ms, ICC target: 200 000. The top 4 most intense ions in the MS scan were selected for 352 

MS/MS in dynamic exclusion mode: ultrascan, absolute threshold: 75 000, relative threshold: 353 

1 %, excluded after spectrum count: 1, exclusion duration: 0.3 min, averaged spectra: 5, and 354 

ICC target: 200 000. Metaproteomic data were submitted to iProx [46] (Project ID: 355 

IPX0002008000).  356 
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Databases creation and protein identification 357 

Protein searches were performed with ProteinPilot (ProteinPilot Software 5.0.1; Revi-358 

sion: 4895; Paragon Algorithm: 5.0.1.0.4874; AB SCIEX, Framingham, MA) (Matrix Science, 359 

London, UK; v. 2.2). Paragon searches 34 were conducted using LC MS/MS Triple TOF 5600 360 

System instrument settings. Other parameters used for the search were as follows: Sample 361 

Type: Identification, Cys alkylation: Iodoacetamide, Digestion: Trypsin, ID Focus: Biological 362 

Modifications and Amino acid substitutions, Search effort: Thorough ID, Detected Protein 363 

Threshold [Unused ProtScore (Conf)] >: 0.05 (10.0%).  364 

Three DBs were created using the same metagenome (Project number: ERP009703, 365 

Ocean Sampling Day 2014, sample: OSD14_2014_06_2m_NPL022, run ID: ERR771073) and 366 

were generated with mPies v. 0.9 [26]. The three DBs were: (i) a non-assembled metagenome-367 

derived DB (NAM-DB), (ii) an assembled metagenome-derived DB (AM-DB) and (iii) a tax-368 

onomy-derived DB (TAX-DB). Protein search was performed for each sample against the three 369 

DBs. Subsequently to each search, each DB was restricted to the protein sequences identified 370 

in the first-round search. The resulting DBs were merged and redundant protein sequences were 371 

removed, leading to a unique combined DB per sample. Finally, protein search was performed 372 

against combined DB and the identified proteins were used for downstream analysis. A FDR 373 

threshold of 1%, calculated at the protein level was used for each protein searches. Proteins 374 

identified with one single peptide were validated by manual inspection of the MS/MS spectra, 375 

ensuring that a series of at least five consecutive sequence-specific b-and y-type ions was ob-376 

served.  377 

Protein annotation and downstream analyses 378 

Identified proteins were annotated using mPies [26]. The mPies tool used Diamonds 379 

[47] to align each identified protein sequences against the non-redundant NCBI DB and the 380 

UniProt DB (Swiss-Prot) respectively and retrieved up to 20 best hits based on alignment score. 381 
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For taxonomic annotation, mPies returned the last common ancestor (LCA) among the best 382 

NCIBI hits via MEGAN (bit score >80) [48]. For functional annotation, mPies returned the 383 

most frequent protein name, with a consensus tolerance threshold above 80% of similarity 384 

amongst the 20 best UniProt hits. Proteins annotated with a score below this threshold were 385 

manually validated. Metaproteome comparison was done using the total relative abundance of 386 

peptide detected within identical taxon or function. Taxa and functions displaying a total rela-387 

tive abundance below 1 or 2% in all samples were gathered into “Other” category in tables and 388 

figures. The heatmaps (Figure 2) were generated with R v. 3.6.0 [49] and the R package Com-389 

plexHeatmap v. 2.1.0 [50]. 390 
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Tables  562 

Table 1: Comparison of the microbial community structure. Metagenomic data consisted in relative abundance of reads of small subunit rRNA 563 

observed over the OSD14 sampling effort. Metaproteomic data consisted in relative abundance of proteins detected in each metaproteome. (This 564 

table should be placed at the end of the section “Features of sampling site”). 565 

 Metagenome Metaproteome 

 0.2µm size-fraction 0.2µm size-fraction 0.8µm size-fraction 

 OSD June 2014 Day 1 Night 1 Day 2 Night 2 Day 1 Night 1 Day 2 Night 2 

Phylum          
Proteobacteria 66,9 90,1 93,5 88,2 91,8 38 36,6 27,8 28,5 

Bacteroidetes 15,5 6,6 5 6,1 5,7 1,9 4,7 3,7 3,9 

Cyanobacteria 12,2 1 0,3 3,6 0,5 57,4 57,3 67,5 65,9 

Rhodothermaeota 1,8 1 0,1 0,8 1 0 0 0 0 

Planctomycetes 0,1 0 0 0 0 1,4 0,4 0,2 0,5 

Other (<1%) 0,5 1,3 1 1,3 1 1,4 0,9 0,8 1,2 

Class                    
Alphaproteobacteria 47,3 69,5 75,3 65 68,5 21,9 23,5 18,8 17,1 

Gammaproteobacteria 17,8 22,7 18,8 23,8 24,2 13,5 11,3 8,3 10,3 

Flavobacteriia 14,3 5,2 4,3 4,2 5,4 0 1,2 0,2 1,5 

Unclassified Cyanobacteria 12,3 1,1 0,3 3,8 0,6 56,7 56,9 65,6 62,6 

Bacteroidia 0,1 0,3 0,7 1 0,3 0,9 3,3 3,6 2 

Cryptophyta 0,0 0 0 0 0 1,4 0,7 1,6 2,4 

Deltaproteobacteria 0,0 0,1 0 0 0 0,5 0,9 0,4 0,6 

Oligoflexia 0,0 0 0,1 0 0 1,4 0 0,4 0,6 

Planctomycetia 0,0 0 0 0 0 1,4 0,5 0,2 0,5 

Other (<1%) 2,9 1,1 0,5 2,1 1,1 2,3 1,6 0,8 2,4 

566 
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Table 2: Comparison of the microbial functions. Values represent the total peptide relative abundance of function detected in each sample in free-567 

living bacteria, particle-attached bacteria and Cyanobacteria. (This table should be placed after the third paragraph of the section “Free-living 568 

versus particle-attached bacteria: contrasting diel regulation of their metaproteomes”). 569 

 Free-living bacteria Particle-attached bacteria Cyanobacteria 

 Day 1 Night 1 Day 2 Night 2 Day1 Night 1 Day 2 Night 2 Day 1 Night 1 Day 2 Night 2 

10 kDa chaperonin 5,2 6,0 5,5 5,0 2,3 5,6 4,7 3,7 0 3,1 1,9 8,7 

30S ribosomal protein 3,2 2,1 2,6 3,2 0 0 0 0 0 1,6 0,6 0,7 

50S ribosomal protein 12,5 9,7 14,4 16,0 1,1 15,5 3,5 5,3 0 7,8 5 6,7 

60 kDa chaperonin 33,3 34,1 31,6 26,4 16,1 20,6 25 30,5 8,4 18,6 17,6 15,4 

Aconitate hydratase B 0,2 0,0 0,0 0,0 0 0 3,5 0 0 0 0 0 

Amino-acid ABC transporter-binding protein 6,1 6,0 5,1 6,5 0 0 0 0 0 0 0 0 

ATP synthase 3,3 3,0 3,6 3,0 13,8 7,7 22,7 15,6 4,8 11,6 10,7 21,5 

Chaperone protein DnaK 3,3 3,3 3,3 4,2 8 4,7 3,5 3,3 2,4 0 0 3,4 

Cysteine synthase 0 0 0 0 0 0 0 0 0 0,8 0,6 2 

DNA-binding protein HU 7,2 7,2 7,1 8,1 0 0 0 0 0 0 0 0 

DNA-directed RNA polymerase 0,5 0,6 0,6 0,9 13,8 12,9 1,7 6,2 0 0 0,6 1,3 

Elongation factor 5,3 4,7 5,9 8,9 6,9 6,9 7 11,9 8,4 14,7 6,3 20,1 

Flagellin 4,0 5,6 4,5 5,1 5,7 3,9 4,1 3,3 0 0 0 0 

Fructose-1,6-bisphosphatase 0 0 0 0 0 3,4 0 0 0 0 0 0 

Glutamine synthetase 2,4 2,5 2,7 1,8 2,3 2,1 0,6 0,4 2,4 1,6 1,9 1,3 

Glyceraldehyde-3-phosphate dehydrogenase 0,2 0,1 0,2 0,1 1,1 1,3 6,4 7,4 2,4 1,6 2,5 2 

Glycine--tRNA ligase 0 0 0 0 2,3 0,9 0,6 1,6 0 0 0 0 

Histone-like protein 0,2 0,2 0,1 0,1 14,9 5,2 7,6 2,5 0 0 0 0 

Isocitrate dehydrogenase [NADP] 0 0 0 0 0 0,9 1,7 4,1 0 0 0 0 

Molybdopterin molybdenumtransferase 0 0 0 0 2,3 0 1,2 0,8 0 0 0 0 

Phosphate-binding protein 0,4 0,5 0,2 0,1 0 0 0 0 54,2 32,6 21,4 12,1 

Phycoerythrin 0 0 0 0 0 0 0 0 6 0 12,6 0,7 

Ribosomal protein S12 methylthiotransferase RimO 0 0 0 0 0 2,1 0 0 0 0 0 0 

Rubrerythrin 1,5 2,6 1,2 1,4 0 0 0 0 0 0 0 0 

Tubulin 0 0 0 0 2,3 4,7 5,2 0,4 0 0 0 0 

Other (<1%) 11,3 11,9 11,3 9,3 7,1 1,6 1,0 3,0 11,0 6,0 18,3 4,1 

570 
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Figure captions 571 

Figure 1: Comparison of the microbial community structure at order level. Metagenomic data 572 

consisted in total relative abundance of reads of small subunit rRNA observed over the OSD14 573 

sampling effort. Metaproteomic data consisted in total relative peptide abundance in each 574 

metaproteome. 575 

Figure 2: Heatmaps of the taxonomic (top clusters) and the functional (right clusters) linkages 576 

for (a) free-living bacteria and (b) particle attached bacteria. Clusters were determined using 577 

complete linkage hierarchical clustering and Euclidean distance metric. 578 

Figure 3: Comparison of the total relative peptide abundance in functions identified in 579 

Synechococcales (a) and free-living and particle-attached Rhodobacterales (b) and 580 

Pelagibacterales (c). The presence of a sun or moon symbol means that the protein was 581 

periodically more abundant at day or night respectively.  582 

Figure 4: Cellular representation of protein expression over day and night periods in (a) 583 

Synechococcales and (b) free-living and particle-attached Pelagibacterales (blue tag) and 584 

Rhodobacterales (red tag). The presence of a sun or moon symbol means that the protein was 585 

periodically more abundant at day or night respectively. Colored yellow and black boxes meant 586 

that the protein was specific to day or night respectively.  587 

Additional files 588 

Supplementary information 1: Supplementary_information1.xlsx. The physicochemical pa-589 

rameters measured by the Service d’Observation en Milieu Littoral (SOMLIT). 590 

Supplementary information 2: Supplementary_information2.xlsx. Taxonomic and functional 591 

protein annotation. Comparison of the proportion of proteins for which a consensus annotation 592 

was found in each metaproteome. 593 
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Figure 1

Comparison of the microbial community structure at order level. Metagenomic data consisted in total
relative abundance of reads of small subunit rRNA observed over the OSD14 sampling effort.
Metaproteomic data consisted in total relative peptide abundance in each metaproteome.



Figure 2

Heatmaps of the taxonomic (top clusters) and the functional (right clusters) linkages for (a) free-living
bacteria and (b) particle attached bacteria. Clusters were determined using complete linkage hierarchical
clustering and Euclidean distance metric.

Figure 3

Cellular representation of protein expression over day and night periods in (a) Synechococcales and (b)
free-living and particle-attached Pelagibacterales (blue tag) and Rhodobacterales (red tag). The presence
of a sun or moon symbol means that the protein was periodically more abundant at day or night
respectively. Colored yellow and black boxes meant that the protein was speci�c to day or night
respectively.



Figure 4

Cellular representation of protein expression over day and night periods in (a) Synechococcales and (b)
free-living and particle-attached Pelagibacterales (blue tag) and Rhodobacterales (red tag). The presence
of a sun or moon symbol means that the protein was periodically more abundant at day or night
respectively. Colored yellow and black boxes meant that the protein was speci�c to day or night
respectively.
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