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8 Hypergraphs o er an explicit formalism to describe multibody interactions in complex systems. To connect
9 dynamics and function in systems with these higher-order interactions, network scientists have generalised
10 random walk models to hypergraphs and studied the multibody e ects on ow-based centrality measures.
11 But mapping the large-scale structure of those ows requires e ective community detection methods. We
12 derive unipartite, bipartite, and multilayer network representations of hypergraph ows and explore how they
13 and the underlying random walk model change the number, size, depth, and overlap of identi ed multilevel
14 communities. These results help researchers choose the appropriate modelling approach when mapping
15 ows on hypergraphs.

1 Researchers modelandmap ows on networks to identify imperdi erent dynamic$%?1. How does the organisation of authors in
1 tant nodes and detect signi cant communitiés$“ From small to s: nested communities from research groups to research areas change
18 large system scales, random walk-based methods help to unceweith random-walk model and representation?
10 the inner workings of the systems the networks repréeivhen s For lazy random walks on hypergraphs with self-links and
20 standard network models fail to adequately represent a systemig/peredge-independent node weights, random walks on weighted,
2 interactions, researchers turn to higher-order models of complexndirected networks generate equivalent dynaffidsach hyper-
2 systemé8, including multilayer network!%for multitype inter- ss edge becomes a clique with properly adjusted link weights. This
2 actions, non-Markovian networké!314for multistep interactions,s; projection enables standard ow-based methods developed for
2 and combinatorial models such as simplicial compl&&st718 o weighted networks to identify communities where random walks
s and hypergrapi82°21:24yith nodes in hyperedges for multibody, stay for a long time. Non-lazy walks or walks with hyperedge-
26 interactions. s« dependent node weights require directed netwrigs bipartite
2z While several methods can identify ow-based communities inrepresentation provides hyperedge assignments, and a multilayer
s multilayer®2324and memory?134networks with non-Markovian s. representation enables overlapping communities.
20 dynamics, researchers have just begun to unravel the large-s¢aleRepresenting hypergraphs with bipartite networks requires
o systemic e ects of multibody interactions captured by hyperweighted, directed links between two sets of nodes: one for the
2 graph$?. However, di erent systems and research questions Galhodes and one for the hyperedges. Picking a random hyperedge
= for di erent random walk and hypergraph models: Random walkshecomes an explicit step to a hyperedge node. Non-lazy walks on
s can be lazy and able to visit the same node multiple times ig @&e hypergraph require non-backtracking walks on the bipartite
s+ row or non-lazy and forced to move on. Hyperedges can have afliretworlk®. With proper normalisation, the node-visit rates stay
s trary weights, and nodes can have hyperedge-dependent weightse same. Though unipartite and bipartite representations give
s Because these and other models can be represented with di esejfentical node ows, the bipartite representation's link ows from
s network types bipartite, unipartite, and multilayer networks -, nodes to hyperedge nodes and back to nodes can induce more
ss the questions multiply: How do di erent hypergraph random wajk ows between communities and alter the optimal community com-
» models combined with di erent network representations changeosition. The community-detection algorithm must also assign
w0 the ow dynamics at scales captured by communities? 72 more nodes, which implies more degrees of freedom and a larger
a  For example, random walks on hypergraphs can model owssearch space.
« of ideas in co-authorship networks. A node represents an author, Multilayer networks represent the hyperedges as layers with fully
2 and a hyperedge connects all authors of a paper. In the simplesénnected groups of nodes. Each node is present in each of its
s+ dynamics, a random walker on a node picks a random hyperegdgg/peredge layers. Hyperedge weights become layer weights, and
s among those that contain the node and steps to a random nodetgfperedge-dependent node weights become layer-dependent node
s the picked hyperedge. Then repeats. Excluding author self-ligk@eights. Though the node visit rates aggregated over layers remain
« for non-lazy walks or including hyperedge weights from papgrthe same, multilayer networks multiply the degrees of freedom
48 citations or using hyperedge-dependent node weights for varyingind enable new models. Reducing the inter-layer link weights
49 author contributions are natural model variations that genetatgicreases the time a random walker spends within a hyperedge
s« before moving to another. Reducing the inter-layer link weights
s only between dissimilar layers reinforces ows within similar
s layers. The search space expands when nodes can belong to
anton.eriksson@umu.se s multiple overlapping communities.

N

w



@) (b) (© (d)

Fig. 1. A schematic hypergraph represented with three types of networks. (a) The schematic hypergraph with weighted hyperedges and hyperedge-
dependent node weights. Thin borders for weight 1 and thick borders for weight 3. A lazy random walk on the schematic hypergraph represented on: (b) a
bipartite network, (c) a unipartite network, and (d) a multilevel network. The colours indicate optimised module assignments, in (d) for hyperedge-similarity
walks.

s The many combinations of random walk models and represen- 2. Picking one of the hyperedgks nodesEwith probability

s tations available to address speci ¢ research problems callfor %_
%0 the question: For di erent data and questions, which model and _
o representation is best? re 3. Moving to nodeE

2 Toaddress WhiCh .Combinationlof model and representatiolgo i§/ariations include non-lazy walks, which never visit the same
93 best for answering di erent questions about various hypergra}glh

o« data, we derive unipartite, bipartite, and multilayer network repre-

o5 sentations of hypergraph ows with identical node-visit rates far 2. Picking one of the hyperedgks nodeskE < Dwith proba-

9 the same random-walk model. For unique node-visit rates when bility %,

o7 @ representation requires directed links, we apply an unrecorded ] o

% teleportation scheme robust to changes in the teleportationfafé'd teleporting walks, which jump to a random node at some
% and that preserves the node-visit rates when teleportation is stip&ii€ to ensure that all nodes can be reached from any node in a
w0 UoUs in undirected networkE. The information-theoretic and® Nité number of moves, so-called ergodic walks. We pick the
101 ow-based community detection method Infonfagllow us to 7 next hypernge based on the .S|m.|Iar|ty with thg previously picked
.02 explore how di erent hypergraph random walk models and rigyPeredge in hyperedge-similarity walks, which are useful for
10s work representation change the number, size, depth, and ovéfidpedelling ows that tend to stay among similar hyperedges such
10s of identi ed multilevel communities. 10 @S among research papers with similar author lists and likely similar
s By analysing schematic and real hypergraphs, we nd tpafopics. These wa_lks require memory and correspond to a h_igher-
.06 the bipartite network representation requires the fewest links ¥h@rder Markov chain model because they depend on the previously
w07 enables the fastest community detection. A multilayer netwitiPicked hyperedge. . _

.08 representation that reinforces ows within similar layers give e 1€ bipartite, unipartite, and multilayer network representations
100 deepest modular structures with most overlapping communitiesftave di erent advantages and limitations (Fig. 1). A weighted,
.10 ata high computational cost. The unipartite network representafoHndirected network su ces for memoryless lazy random walks
.uprovides a trade-o with intermediate compactness, speed, ¥hfithouthyperedge-dependent node weights, hyperedge-dependent

ode twice in a row with a modi ed second step

.1 detectable modular regularities. 148 Node weights require directed networks, and hyperedge-similarity
149 Walks require multilayer networks.
13 Results and Discussion 150 Bipartite networks o er the most direct representation of the

usModelling ows on hypergraphs. We model ows on hyper-1s: three-step random walk process above. We represent the hyper-
usgraphs with random walks. We use hypergraphs with nades- edges with hyperedge nodes, and the three steps become a two-step
us hyperedges with weights| , and hyperedge-dependent node walk between the nodes at the bottom and the hyperedge nodes at
urweightsW Each hyperedgd has a weight 14°. Each nodeéD s« the top in Fig. 1b. For simplicity, we refer to them as nodes and
uswith incident hyperedges :[* = f4 2 : D2 4ghas a weight:ss hyperedge nodes. First a step from a nbde a hyperedge nodé

19 WDP for each incident hyperedgé To simplify the notation

120 When normalising weights into probabi’ities, we denote nbDde | 140

iz total incident hyperedge weigBeD =~ 4, 1| 24° and hy- Y4 = 3D (1)
122 peredged’ total node weightXt4® = ., W1DP?°. With these

123 Weights, a lazy random walker moves from nddat time Cto s and then a step from the hyperedge node to a fode

122 nodeEat timeC, 1in three steps &:

s 1. Picking hyperedgd among nod®s hyperedges P with Yo = wWe, @

126 probability%. x40



157 By starting the random walk on the nodes and taking two steps-atalk. But this cost comes with bene ts. The multilayer representa-
155 a time, corresponding to Markov time t6#% hyperedge nodes ares tion can describe higher-order Markov chains, which can capture
15s only intermediate stops with zero ow when the random walkiis more regularities in the data.
160 back on the nodes after two steps. The stationary distributionoof For example, a useful variant of the basic hypergraph random
161 the random walk is concentrated to the nodes. For non-lazy walkaalk is to pick a hyperedge not only proportional to its weight but
162 represented with bipartite networks, we use so-called state flodesalso proportional to how similar it is to the hyperedge picked in
163 iN the hyperedge nodes. One state node for each incoming.dinthe previous step. To include hyperedge-dependent node weight
164 has out-links to all nodes in the hyperedge except the incominghformation in the similarity measure, we use one minus the Jensen-
165 link's source ensures that the walks are not backtracking (Figs2 5hannon divergence (JSD) between the transition rate védters

196 and Py g to nodes at layert) and V as the hyperedge coupling
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Fig. 2. Bipartite network with state nodes for non-lazy random walks. To

prevent random walks on bipartite networks to visit the same node at the

bottom twice in a row by backtracking from the hyperedge node at the top, *® for V2
we use state nodes in the hyperedge nodes. Each hyperedge node requirege in layerU
one state node for each node in the hyperedge. The state nodes have one

incoming link from its source node and outgoing links to all other nodes in 0]
the hyperedge. Colours indicate the optimised partition in Fig. 3(b). ( ILDJ - Uv (6)

1D-E With nodeDs total incident hyperedge weight

V2 iDP

s TO represent the random walk on a unipartite network, we h imilari Ik has th .
167 project the three-step random walk process down to a onez‘gtéBe yperedge-similarity walk has the transition rates
168 process between the nodes and describe it with the transition rate

160 Matrix v WP
Yop = —2- for V2 1D-% 7
@] 0] | 140 WP .
Y= Y Y = - (3) 21 Because the transition rates at a node depend on the current

42 1D_E 42 1D_E 3D x4 202 layer, the random walks generate non-Markovian dynamics that a

203 UNipartite or bipartite network representation cannot capture.

i where D-E=f42 D2 4-R 4gisthe set of hyperedges:  To ensure ergodic node-visit rates, we derived an unrecorded

wmincident to both node® andE Each hyperedge forms a fullys teleportation scheme that leaves the node-visit rates unchanged

172 connected group of nodes (Fig. 1c). Unipartite networks:fomwhen teleportation is super uous for hypergraphs with hyperedge-

173 non-lazy walks have no self-links. Compared with the bipartiteindependent node weights, robust to changes in the teleportation

1 representation, the unipartite representation with fully conneetedate when teleportation is need€dand independent of the repre-

175 groups of nodes requires more links. 200 Sentation (see Methods).

17 To represent the random walk on a multilayer network, we

177 project the three-step random walk process down to a one-step . )

176 Process on state nodes in separate layfts each hyperedgéd. 2 Mapping ows on hypergraphs. To identify ow-based commu-

179 A state nodd represent®in each layet) 2 10 that contains 2 nities or modules in hypergraphs, we seek to compress a modular

150 the node. All state nodes in the same layer form a fully connectedescription of random walks on the network representations guided

w1 set (Fig. 1d). The transition rate between state riddin layerU 22 by their links. We cast the problem of nding ow-based commu-
&> and state nodEY in layer Vis 214 Nities in hypergraphs as a minimum-description length problem

215 with the map equation framewotkWith this compression-based
216 framework, we can compare how much the di erent representa-
ouv _ | VWP L 217 tions compress modular ows.

e = 3D X\ forV2 *D-g ) . When detecting communities, the representation matters be-

210 Cause bipartite, unipartite, and multilayer networks provide the

183 NodeDs state node visit rates in di erent layers sumis visit 220 community-detection algorithm Infomap with di erent degrees of
1+ rate in the unipartite and bipartite representations. With one statiteedon?’. Infomap assigns only nodes to communities in a uni-
185 Node per hyperedge layer that contains the node, the multilaygrartite network, but also hyperedge nodes in a bipartite network.
186 Fepresentation requires the most nodes and links to describestfidne multilayer network, with a state node for each hyperedge a



Table I. Optimal flow-based communities of the schematic hypergraph in (a)
Fig. 1 represented with different networks. The number of nodes includes
state nodes for the multilevel representations and the bipartite non-lazy

representation. We measure the overlap as the perplexity of the optimal ab,c
solutions (see Methods).

d,e f

|
|
]
|

Representation Nodes Links Modules Codelength Overlap

(bits)
g.hij g hij

Lazy

Bipartite 15 32 2 2.90

Unipartite 10 40 3 2.35

Multilayer 16 98 3 2.35 1.00

Multlayer h-€¢ 16 98 4 2.28 1.09 () e
Non-lazy ab,c ab,c

Bipartite 26 52 2 3.00 def

Unipartite 10 30 3 2.63

Multilayer 16 68 3 2.62 1.10 ohe

Multilayer h-& 16 68 4 2.32 1.29

@ hyperedge-similarity

g hij g, hij

224 node belongs to, implies even more node assignments and possibly
225 overlapping communities.

25 \When mapping OW_S mOde”ed_ by _IaZy and non_'IaZy ra”_‘?'om Fig. 3. Alluvial diagrams of optimal partitions for the schematic hypergraph

27 walks on the schematic network in Fig. 1, the optimal partitionsin Fig. 1. (a) Optimal partitions for lazy walks represented with the networks

228 Of the bipartite networks have two communities, whereas thén Fig. 1(b-d). (b) Optimal partitions for non-lazy walks.

220 Unipartite and multilayer networks have three communities (Table |

230 and Fig. 3). The bipartite network favours fewer modules using

231 the optimal three-module partition of the unipartite network on therepresentation favours partitions with fewer modules than the uni-
232 bipartite network gives code length 3.29 bits instead of 2.90 hitpartite network representation because hyperedge nodes assigned
233 for two modules  because the random walker transitions ma¢eto modules implies encoding more transitions between modules.
23 frequently between modules when they include hyperedges: Exedultilayer representations, especially with walks that spend longer
235 if @ hyperedge node contains no ows at the end of each two-stefime among similar hyperedges, favour more overlapping modules.
235 Walk from node through hyperedge node to node, assigning it &ahe random-walk model determines how much the multilayer net-
237 module costs extra bits when it has nodes in multiple modules 2&arork modules overlap. Non-lazy and hyper-edge similarity walks
238 example, if node§, 1, and2 in the bipartite network in Fig. 1(b}e favour overlap because they lead to longer persistence times among
239 would belong to a third green module as in the optimal unipartitenodes in possibly overlapping groups.

220 Solution, and the random walker at nodevould return to the

201 hyperedge it comes from before revisiting ndjet would rst

22 needto exitthe green module and enterthe orange module, thep ey periments. To illustrate how the network representation a ects

2 the orange module and enter the green module. The correspongiggtected communities in real hypergraphs, we generated a collab-
2.4 Walk on the unipartite network stays within the green module. As&ration hypergraph from the 734 reference®atworks beyond

205 result, the unipartite network representation favours more, Smé'ﬂ%airwise interactions: Structure and dynamibg F. Battiston

=6 modules than the bipartite network representation for lazy andt a18 \We modelled the referenced articles as hyperedges and their
247 non-lazy walks (Table I). 2 authors as nodes. Authors with multiple articles form connections
28 Multilayer networks enable further compression with overlap-between the hyperedges. We analysed the largest connected com-
20 ping modules. Butfor this small network, only non-lazy walks give ponent withj+j = 361 author nodes iy j = 220 hyperedges.

20 overlapping modules with 0.01 bits compression gain (Table.4)The median number of authors in a hyperedge is 3, and the authors
251 With walks that preferentially move to similar hyperedges, thehave contributed to 2.2 articles on average though most have only
252 optimal partitions of the multilayer hyperedge-similarity netwosk contributed to one.

253 representations for lazy and non-lazy random walks both have e assigned the relative importance of references by their num-
25« more overlap in four modules (Table I and Fig. 3). The hyperedgeper of citations2 in December 2020. Some references had no
25 similarity walks favour these overlapping modules because theitations and some were highly cited. One such exampl is

256 stay longer within them than the regular walks. 263 sion of innovation®y Everett M. Rogers, with more thd:20-000

257 For a given random-walk model, the representations give equicitations. To avoid disproportionally large or small hyperedge
258 alent node-visit rates but alter the link ows. And with di erents weightsl 14°, we weighed the edges by the logarithm of the num-
250 link ows, the optimal partition can change. The bipartite netwosk ber of citations and added unit constants to avoid the zero citation

Bipartite Unipartite Multilayer Multilayer h-s?
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Table II. Optimised flow-based multilevel communities of the collabo- (a)

ration hypergraph represented with different networks. The number of Newman Newman

nodes includes state nodes for the multilevel representations and the bi-

partite non-lazy representation. Shortest codelength of 100 trials with the Petri Petri

variance in parenthesis. We measure the overlap as the perplexity of the

optimised solutions (see Methods). Bianconi Bianconi
Sigmund
Latora

Representation Nodes Links Modules Codelength Pikovsky

Top Leaf Levels Overlap  (bits)

Moreno Perc

LaZy Moreno
Bipartite 581 1560 4 23 3 5.178(1)
Unipartite 361 2,607 9 69 4 3.82557(2) b
Multilayer 780 17,193 9 76 4  1.003 3.82730(2) ©
Multilayer h-€ 780 17,193 8 90 4  1.127 3.54939(3) Mo Newman
Non-lazy Petri peri
Bipartite 1,141 3548 5 25 3 5.1733(2) S Bianconi
Unipartite 361 2246 7 49 4 4.25104(8)  BRneon »
Multilayer 780 12,843 7 54 4  1.098 4.16349(8) Bick Pievsky
Multilayer h-& 780 12,843 9 66 4 1.181 3.70432(1) gig?;trmd
Fanelli
2 hyperedge-similarity Perc
Perc
pmblem’ Bipartite Unipartite Multilayer Multilayer h-s2
| 14°=1In12, 1°, 1. (8)

Fig. 4. Alluvial diagrams of optimised partitions for different representa-

. . . tions of the collaboration hypergraph . Lazy walks in (a) and non-lazy walks
We modelled the authors' di erent contributions to articles by jn (). Module names from the top-ranked author within each module.

assigning higher weights to the rst and last auflfowe used
the edge-dependent node weights

> ifnodeEis rstor last author a6 With more nodes than in the schematic example, the solutions
WP = . ' (9) =17 have more depth. The bipartite solutions have three, and the uni-
1 otherwise. a3 partite and multilayer solutions have four hierarchical levels. The

g'nipartite and multilayer solutions also have more top modules.
and assigned all of them weigh#E = 1. This model ranks® With non-lazy dyqamics, they split the largest top module, and
co-correspondinguthor's contributions lower than correspondirig !N the 1azy dynamics, they split the two largest top modules. But
authors. 322 the second-largest top module reunites in the hyperedge-similarity

To study how hypergraph representations and random Wémepresentation with s_trong_er connect_ions between '_s,imilgr hyper-
models a ect the community structure, we generated bipartite2d9€S (Fig. 4 and Fig. 7 in Appendix A). The unipartite and
unipartite, and multilayer representations for lazy and non_@i)?nultllayer §o|utlons are also most similar at the leaf level (Fig. 8
random walks on the collaboration network. We identi ed nestéd!" APPENdIX A).
hierarchical partitions in each network with Infomap, using 1@0 In this larger example, the multilayer hyperedge-similarity rep-
independent searches for each network. Infomap's running timéesentations give more overlap. The non-lazy representations
depends on the number of nodes, links, and solution levels: Fheesult in higher average overlap because random walkers visit-
bipartite and unipartite representations nished 3 7 times fastering @ node must continue to other nodes, often in the same or a
than the multilayer representations. The non-lazy bipartite repr&imilar hyperedge layer. When random walkers from dissimilar
sentation with many state nodes ran almost as long. 332 hyperedges come together at a node, they tend to return to where

The optimised partitions for the lazy and non-lazy representdhey came from and favour overlapping modules. The non-lazy
tions behave like the schematic example: The bipartite representgpresentations also result in higher max overlap with the same
tions have the fewest leaf modules and highest codelengthszagdithors topping all representations (Fig. 5).
the multilayer hyperedge-similarity representations have the mest In line with the information-theoretic duality between nding
leaf modules and shortest codelengths with the unipartite andstheegularities in data and compressing those data, representations
regular multilayer representations in between (Table Il). Excepthat enable deeper solutions with more modules have shorter

au for the non-lazy bipartite representation with its many state nodesodelengths (Table II). The lazy multilayer representation is an
312 the lazy representations have more leaf modules and shortersgodgception. Its optimised codelength is bound above by the lazy
a3 lengths than their corresponding non-lazy representations becausaipartite representation's codelength they have the same code-
a14 the lazy random walk is more con ned than the non-lazy randemlength for the same hard partition and overlapping modules can
as walk. a3 potentially reduce the codelength. Infomap's best codelength was
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Fig. 5. Authors in the collaboration hypergraph with the highest average Bipartite Unipartite Multilayer Multilayer h-s*
effective number of assignments in the lazy and non-lazy multilayer rep-
resentations (see Methods). Fig. 6. Alluvial diagrams of optimised partitions for the fossil hypergraph

represented with different networks. Lazy walks in (a) and non-lazy walks
in (b). We show top modules when a partition lacks deeper levels and leaf

s instead 0.05 percent longer than for the lazy unipartite represent3idules marked with dashed lines when they exist. Module names from
as tion. Multilayer representations with their many state nodes ang] @ geological period or era represented by the fauna assemblage.

a6 links aggravate the search problem, and Infomap could not nd a B .

a7 better solution with 100 attempts. But the gain from overlappifig For lazy random walks, Infomap partitioned only the multilayer

s modules is higher for the non-lazy multilayer representation #hdePresentations into multilevel communities: three modules at the
«s Infomap nds a solution with a signi cantly shorter codelengtt™ rsthierarchical level [Fig. 6(a)]. Similar to the schematic example
376 and the collaboration hypergraph, the bipartite representation for

a7 the lazy random walks has the fewest leaf modules and the highest
0 A case study on fossil data Palaeontologists classify majars codelength. The multilayer hyperedge-similarity representation
351 groups of marine animals archived in the fossil record into globalhas the most leaf modules and the shortest codelength (Table I11).
32 scale faunas that change over tftheThey have used di erentss ~ For non-lazy random walks, Infomap partitioned the bipartite
353 network representations to understand the macroevolutionargpaepresentation into a multilevel solution with shorter codelength
s tern of marine biodiversiif3L. However, it is still unclear hows: than the unipartite representation and the standard multilevel rep-
355 such an organisation of marine animals into modules represenesentation [Fig. 6(b)]. The multilayer hyperedge-similarity repre-
ss6 iNg global faunas changes with random-walk model and netwarlksentation once more provides the most leaf modules and highest
357 representation. To illustrate how the network representatiossobverlap.
3ss the underlying paleontological data a ects empirical estimatessof The multilayer network representations, including lazy and
350 this macroevolutionary pattern, we generated a hypergraph fsemon-lazy random walks, reproduce modules reminiscent of the
30 genus-level fossil occurrences presented in3@fand retrievedsss Cambrian, Paleozoic, and modern evolutionary faunas widely
s from the PaleoDB?. We restricted our analysis to fossil occus used in macroevolutionary reseat¢hAlso, leaf modules in the
362 rences from the Cambrian (541 MY) to the Cretaceous periots{Génultilayer representations capture subfaunas from speci ¢ geolog-
33 MY) and modelled 77 geological stages as hyperedges and 1&27€al periods as nested modules such as Silurian, Triassic, Jurassic,
364 genera as nodes. Genera occurring in multiple geological stagesid Cretaceous. Infomap applied to the bipartite representation of
365 form connections between hyperedges. We weighted the hypedhe non-lazy random walks identi ed similar subfaunas but com-
366 edges by dividing the number of samples where a genus occuss llined Cambrian and Paleozoic faunas into a single top module,
37 a given geological stage by the total number of samples recosdenbscuring the large-scale pattern. Overall, our results indicate
ses at the stage, a procedure modi ed from r88 We generated bisss some advantages of using multilayer over bipartite and unipartite
360 partite, unipartite, and multilayer network representations for lazyrepresentations of fossil occurrence data to quantify the marine
370 and non-lazy random walks from the underlying palaeontolegybiodiversity's macroevolutionary patterns, with lazy and non-lazy
a1 data and identi ed optimised partitions in the assembled netwasksandom walks providing similar solutions.

a



Table Ill. Optimised flow-based multilevel communities of the fossil hypergraph represented with different networks. The number of nodes includes state
nodes for the multilevel representations and the bipartite non-lazy representation. The number of non-trivial top and leaf modules. Average number of
levels weighted by the flow volume. We measure the overlap as the perplexity of the optimised solutions (see Methods). Shortest codelength of 20 trials
with the variance in parenthesis.

Representation Nodes Links Modules Codelength Time
110% 1 10% Top Leaf Levels Overlap (bits) (hh:mm:ss)
Lazy
Bipartite 13 79 5 8 2.02 10.50927(5) 00:00:06
Unipartite 13 16,155 6 13 2.02 10.3953503(1) 00:13:24
Multilayer 40 174,490 3 17 3.00 1.011 10.39819(1) 09:08:43
Multilayer h-€ 40 174,490 3 19 3.28 1.135 9.84170(1) 14:19:39
Non-lazy
Bipartite 53 25,937 2 15 3.02 10.34889(3) 01:14:25
Unipartite 13 16,141 6 12 2.02 10.4031798(6) 00:13:04
Multilayer 40 174,209 3 15 3.00 1.010 10.406141(9) 08:55:03
Multilayer h-€ 40 174,209 3 16 3.00 1.135 9.84912(1) 13:23:13
2 hyperedge-similarity
w0 Conclusions
1
a1 We have derived unipartite, bipartite, and multilayer network rep- cp=# 3 D’\I\?D’ . (10)
402 resentations of hypergraph ows with di erent advantages. We 2+ 3'EWE

408 gsed the information-theoretic and oyv-based community defec- o the multilayer network representation, the node-visit rates
404 tion method Infomap to explore how dl_ erent hypergraph rand%rpsp”t between layers based on the ndd incident hyperedge

105 walk models and netv_vork represen_tatlon change _the numper,&weight per layer state node

a6 depth, and overlap of identi ed multilevel communities. By identi-

407 fying ow-based communities in a schematic and real hypergraphs

w8 asmall collaboration hypergraph of researchers working on net- U= | WD (11)
a0 Works beyond pairwise interactions and a large faunal hypergraph D g2+ EPWE

410 of sampled species across geological stages we found that the ) )
a1 bipartite network representation is most compact and enable§the With hyperedge-dependent node weighfD?, only directed
«12 fastest community detection. A multilayer network representatiorveighted networks can represent the dynamics. We use random
«s that reinforces ows within similar layers one for each hyperedé teleportation to ensure ergodic walks when deriving the node-visit
s gave the deepest modular structures with most module oveftates With the power-iteration method. Unrecorded teleportation
a5 Butthe modular detection gain comes at a high computational ‘t‘fbéf? I|nl.<s minimises the Q|st.ort|c?ﬁ: In egch iteration of the power-
s Combining fully connected layers with other layers requires mafyteration method, we distribute a fractigr= 0+15 of each node's
7 more nodes and links than the bipartite network representatiot? 1P volume among all nodes proportional to their out-link weights.
as the research question does not require hyperedge assignmefitss € 'emaining ow volume moves on the links proportional to
a10 overlapping modules, the unipartite network representation “b‘i’&_he'r Welghts_. In the Ia_st Iteration, we move all ows on the
420 Vvides atrade-o with intermediate compactness, speed, and ab‘iﬁtynks proportional to their Welghts and record.all ows on I|nk§
«1 10 reveal modular regularities. Among the random-walk mod#is2nd nodes to obtain the ergodic node- and link-visit rates with
« lazy walks typically give more modules in deeper nested Sﬁﬁégnrecordgd teleportatlon. This procedure gives equivalent visit
«s tures, and non-lazy walks higher modular overlap. Our mettgg&2tes as simulating a random walker that only records moves on
w2 and results help researchers model and map ows on hypergriphigks: With probabilityl g, the random walker moves to a node
a5 10 study the e ects of multibody interactions in complex systef‘??s.t_’y following the links proportl_onal to the_lrwe|ghts andrecords the
s link and the target node. With probabiligy the random walker
452 teleports without recording to the link's source node proportional
426 Methods 4s3 to the link weight. The normalised number of recordings of each
44 node and link gives the visit rates.
427 Unrecorded teleportation. With hyperedge-independent node = We want teleportation applied to undirected networks where it
428 weights whera\*[? = WD for all hyperedgedl 2 [P, undi- 46 is unnecessary to leave the node- and link-visit rates unchanged.
429 rected weighted networks can represent the dynamics, aneiee achieve this smooth teleportation by scaling the transition rates
430 stationary distribution of the random watlg is proportional to.ss from nodes by the node-visit rates: Then unrecorded teleportation
431 the product of nod®s total incident hyperedge weigBe[P and 49 proportional to nodes' total out-link weights followed by recorded

422 Weight WDP. With normalised node-visit rat&% 40 moves on the links proportional to their weights distribute on the
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a0 We averaged over all nodes for the partition overlap.

491
492
493

nodes according to the ergodic visit rates on undirected netdforks References

For the general case when the node weights can depend omsthe
hyperedge, and the network may be directed, we use Eq. 10 wittfout
assuming® = WD’ as an approximation of the node-visit

498
rates:
499

i 50 3

) i | LAOWIDP 501

42 1P

ep =1 (12) sz
E2+-42 1E"’I e = s03 4

for nodes and 504

505
506 D

. | 1LP\M1D> 507

Y= forU2 1D 13

T e e WE P

for state nodes. With exact node-visit rates, we would obtain®the
stationary ow volumes on links by multiplying the transition rate‘r’é1

by the source nodes' visit rates. With approximate node-visit rastigs

instead, we obtain the link weights 54 8.
515

516 9.
Fpa=ep%a4 (14) s
518

for bipartite networks, s19 10.
520

s21 11.
Fpe= ep%E (15) sz
523

for unipartite networks, and s 12.
525
526
For=es%pyfor V2 1D-E (16) s

528 13.

for multilayer networks. With unrecorded teleportation propgy-
tional to these link weights, modelling ows on hypergraphs give

node-visit rates robust to changes in the teleportation rate santf.

532

independent of the representation.
533

s34 15.

Overlap metric. Modules overlap when Infomap assigns a nod&%s
state nodes in the multilayer network representations to di ersen

6.
modules. Measuring the overlap through the absolute number 0

assignments is misleading because the overlap is 2 regardlg§sp;f.

the number of state nodes assigned to a di erent module thar.she

rest. Instead, we used the e ective number of assignments. sk &8.

fraction 5of nodeDs state nodes is assigned to téh module in 54
Ds module assignment set, theh element oDs assignment vec®*®

tor is02 = 5and the e ective number of assignments measufé
545

by the perplexity oDs module assignments is

546

1aDo'

>p = 2 (17)

548

The e ective number of assignments is one ifi2# state nodes aré”

in one module, and it is equal to the number of assignments wj;e@l
the state nodes are divided evenly am@isgmodule assignments;,

554
Data and code availability
All data and source code are available on GitHutip://github.
com/mapequation/mapping-hypergraphs
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Fig. 7. Hierarchical maps of the collaboration hypergraph using (a) the bipartite representation and (b) the multilayer hyperedge-similarity representation.
Module colours are the same as in Fig. 4(a). Aggregated inter-module links with sizes proportional to the exiting flow volume and length inversepqr
tional to the flow volume. White sub-modules are labelled with the top-ranked author. The largest blue top module in (a) contains ten sub-modules. In (b),
the partition assigns those nodes to five top modules containing more sub-modules. S. Boccaletti, one of the most overlapping authors and highlighted
in red, is assigned to one module in (a) and three top modules and six sub-modules in (b).
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