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Hypergraphs o�er an explicit formalism to describe multibody interactions in complex systems. To connect8

dynamics and function in systems with these higher-order interactions, network scientists have generalised9

random walk models to hypergraphs and studied the multibody e�ects on �ow-based centrality measures.10

But mapping the large-scale structure of those �ows requires e�ective community detection methods. We11

derive unipartite, bipartite, and multilayer network representations of hypergraph �ows and explore how they12

and the underlying random walk model change the number, size, depth, and overlap of identi�ed multilevel13

communities. These results help researchers choose the appropriate modelling approach when mapping14

�ows on hypergraphs.15

Researchers model and map �ows on networks to identify impor-16

tant nodes and detect signi�cant communities1,2,3,4. From small to17

large system scales, random walk-based methods help to uncover18

the inner workings of the systems the networks represent5,6. When19

standard network models fail to adequately represent a system's20

interactions, researchers turn to higher-order models of complex21

systems7,8, including multilayer networks9,10,11for multitype inter-22

actions, non-Markovian networks12,13,14for multistep interactions,23

and combinatorial models such as simplicial complexes15,16,17,18
24

and hypergraphs19,20,21,22with nodes in hyperedges for multibody25

interactions.26

While several methods can identify �ow-based communities in27

multilayer9,23,24and memory12,13,14networks with non-Markovian28

dynamics, researchers have just begun to unravel the large-scale29

systemic e�ects of multibody interactions captured by hyper-30

graphs22. However, di�erent systems and research questions call31

for di�erent random walk and hypergraph models: Random walks32

can be lazy and able to visit the same node multiple times in a33

row or non-lazy and forced to move on. Hyperedges can have arbi-34

trary weights, and nodes can have hyperedge-dependent weights.35

Because these and other models can be represented with di�erent36

network types � bipartite, unipartite, and multilayer networks �37

the questions multiply: How do di�erent hypergraph random walk38

models combined with di�erent network representations change39

the �ow dynamics at scales captured by communities?40

For example, random walks on hypergraphs can model �ows41

of ideas in co-authorship networks. A node represents an author,42

and a hyperedge connects all authors of a paper. In the simplest43

dynamics, a random walker on a node picks a random hyperedge44

among those that contain the node and steps to a random node of45

the picked hyperedge. Then repeats. Excluding author self-links46

for non-lazy walks or including hyperedge weights from paper47

citations or using hyperedge-dependent node weights for varying48

author contributions are natural model variations that generate49

� anton.eriksson@umu.se

di�erent dynamics20,21. How does the organisation of authors in50

nested communities from research groups to research areas change51

with random-walk model and representation?52

For lazy random walks on hypergraphs with self-links and53

hyperedge-independent node weights, random walks on weighted,54

undirected networks generate equivalent dynamics20. Each hyper-55

edge becomes a clique with properly adjusted link weights. This56

projection enables standard �ow-based methods developed for57

weighted networks to identify communities where random walks58

stay for a long time. Non-lazy walks or walks with hyperedge-59

dependent node weights require directed networks20. A bipartite60

representation provides hyperedge assignments, and a multilayer61

representation enables overlapping communities.62

Representing hypergraphs with bipartite networks requires63

weighted, directed links between two sets of nodes: one for the64

nodes and one for the hyperedges. Picking a random hyperedge65

becomes an explicit step to a hyperedge node. Non-lazy walks on66

the hypergraph require non-backtracking walks on the bipartite67

network25. With proper normalisation, the node-visit rates stay68

the same. Though unipartite and bipartite representations give69

identical node �ows, the bipartite representation's link �ows from70

nodes to hyperedge nodes and back to nodes can induce more71

�ows between communities and alter the optimal community com-72

position. The community-detection algorithm must also assign73

more nodes, which implies more degrees of freedom and a larger74

search space.75

Multilayernetworks represent the hyperedges as layers with fully76

connected groups of nodes. Each node is present in each of its77

hyperedge layers. Hyperedge weights become layer weights, and78

hyperedge-dependent node weights become layer-dependent node79

weights. Though the node visit rates aggregated over layers remain80

the same, multilayer networks multiply the degrees of freedom81

and enable new models. Reducing the inter-layer link weights82

increases the time a random walker spends within a hyperedge83

before moving to another. Reducing the inter-layer link weights84

only between dissimilar layers reinforces �ows within similar85

layers. The search space expands when nodes can belong to86

multiple overlapping communities.87
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Fig. 1. A schematic hypergraph represented with three types of networks. (a) The schematic hypergraph with weighted hyperedges and hyperedge-
dependent node weights. Thin borders for weight 1 and thick borders for weight 3. A lazy random walk on the schematic hypergraph represented on: (b) a
bipartite network, (c) a unipartite network, and (d) a multilevel network. The colours indicate optimised module assignments, in (d) for hyperedge-similarity
walks.

The many combinations of random walk models and represen-88

tations available to address speci�c research problems call for89

the question: For di�erent data and questions, which model and90

representation is best?91

To address which combination of model and representation is92

best for answering di�erent questions about various hypergraph93

data, we derive unipartite, bipartite, and multilayer network repre-94

sentations of hypergraph �ows with identical node-visit rates for95

the same random-walk model. For unique node-visit rates when96

a representation requires directed links, we apply an unrecorded97

teleportation scheme robust to changes in the teleportation rate98

and that preserves the node-visit rates when teleportation is super-99

�uous in undirected networks26. The information-theoretic and100

�ow-based community detection method Infomap27 allow us to101

explore how di�erent hypergraph random walk models and net-102

work representation change the number, size, depth, and overlap103

of identi�ed multilevel communities.104

By analysing schematic and real hypergraphs, we �nd that105

the bipartite network representation requires the fewest links and106

enables the fastest community detection. A multilayer network107

representation that reinforces �ows within similar layers give the108

deepest modular structures with most overlapping communities but109

at a high computational cost. The unipartite network representation110

provides a trade-o� with intermediate compactness, speed, and111

detectable modular regularities.112

Results and Discussion113

Modelling �ows on hypergraphs. We model �ows on hyper-114

graphs with random walks. We use hypergraphs with nodes+ ,115

hyperedges� with weights l , and hyperedge-dependent node116

weightsW. Each hyperedge4 has a weightl ¹4º. Each nodeD117

with incident hyperedges� ¹Dº = f 4 2 � : D 2 4g has a weight118

W4¹Dº for each incident hyperedge4. To simplify the notation119

when normalising weights into probabilities, we denote nodeD's120

total incident hyperedge weight3¹Dº =
Í

42� ¹Dº l ¹4º and hy-121

peredge4' total node weightX¹4º =
Í

D24 W4¹Dº20. With these122

weights, a lazy random walker moves from nodeDat timeCto123

nodeEat timeÇ 1 in three steps by20:124

1. Picking hyperedge4among nodeD's hyperedges� ¹Dº with125

probability l ¹4º
3 ¹Dº .126

2. Picking one of the hyperedge4's nodesEwith probability127

W4 ¹Eº
X¹4º .128

3. Moving to nodeE.129

Variations include non-lazy walks, which never visit the same130

node twice in a row with a modi�ed second step131

2. Picking one of the hyperedge4's nodesE< Dwith proba-132

bility W4 ¹Eº
X¹4º� W4 ¹Dº ,133

and teleporting walks, which jump to a random node at some134

rate to ensure that all nodes can be reached from any node in a135

�nite number of moves, so-called ergodic walks. We pick the136

next hyperedge based on the similarity with the previously picked137

hyperedge in hyperedge-similarity walks, which are useful for138

modelling �ows that tend to stay among similar hyperedges such139

as among research papers with similarauthor lists and likely similar140

topics. These walks require memory and correspond to a higher-141

order Markov chain model because they depend on the previously142

picked hyperedge.143

The bipartite, unipartite, and multilayer network representations144

have di�erent advantages and limitations (Fig. 1). A weighted,145

undirected network su�ces for memoryless lazy random walks146

without hyperedge-dependent node weights, hyperedge-dependent147

node weights require directed networks, and hyperedge-similarity148

walks require multilayer networks.149

Bipartite networks o�er the most direct representation of the150

three-step random walk process above. We represent the hyper-151

edges with hyperedge nodes, and the three steps become a two-step152

walk between the nodes at the bottom and the hyperedge nodes at153

the top in Fig. 1b. For simplicity, we refer to them as nodes and154

hyperedge nodes. First a step from a nodeDto a hyperedge node4,155

%D4 =
l ¹4º
3¹Dº

– (1)

and then a step from the hyperedge node to a nodeE,156

%4E =
W4¹Eº
X¹4º

• (2)
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By starting the random walk on the nodes and taking two steps at157

a time, corresponding to Markov time two28, hyperedge nodes are158

only intermediate stops with zero �ow when the random walk is159

back on the nodes after two steps. The stationary distribution of160

the random walk is concentrated to the nodes. For non-lazy walks161

represented with bipartite networks, we use so-called state nodes27
162

in the hyperedge nodes. One state node for each incoming link163

has out-links to all nodes in the hyperedge except the incoming164

link's source ensures that the walks are not backtracking (Fig. 2).165

a b c d fe jhg i

Fig. 2. Bipartite network with state nodes for non-lazy random walks. To
prevent random walks on bipartite networks to visit the same node at the
bottom twice in a row by backtracking from the hyperedge node at the top,
we use state nodes in the hyperedge nodes. Each hyperedge node requires
one state node for each node in the hyperedge. The state nodes have one
incoming link from its source node and outgoing links to all other nodes in
the hyperedge. Colours indicate the optimised partition in Fig. 3(b).

To represent the random walk on a unipartite network, we166

project the three-step random walk process down to a one-step167

process between the nodes and describe it with the transition rate168

matrix169

%DE =
Õ

42� ¹D–Eº

%D4%4E =
Õ

42� ¹D–Eº

l ¹4º
3¹Dº

W4¹Eº
X¹4º

– (3)

where� ¹D– Eº = f 4 2 � : D2 4– E2 4g is the set of hyperedges170

incident to both nodesD andE. Each hyperedge forms a fully171

connected group of nodes (Fig. 1c). Unipartite networks for172

non-lazy walks have no self-links. Compared with the bipartite173

representation, the unipartite representation with fully connected174

groups of nodes requires more links.175

To represent the random walk on a multilayer network, we176

project the three-step random walk process down to a one-step177

process on state nodes in separate layersU for each hyperedge4.178

A state nodeDU representsDin each layerU 2 � ¹Dº that contains179

the node. All state nodes in the same layer form a fully connected180

set (Fig. 1d). The transition rate between state nodeDU in layerU181

and state nodeEV in layerV is182

%UV
DE =

l ¹Vº
3¹Dº

WV¹Eº
X¹Vº

for V 2 � ¹D– Eº• (4)

NodeD's state node visit rates in di�erent layers sum toD's visit183

rate in the unipartite and bipartite representations. With one state184

node per hyperedge layer that contains the node, the multilayer185

representation requires the most nodes and links to describe the186

walk. But this cost comes with bene�ts. The multilayer representa-187

tion can describe higher-order Markov chains, which can capture188

more regularities in the data.189

For example, a useful variant of the basic hypergraph random190

walk is to pick a hyperedge not only proportional to its weight but191

also proportional to how similar it is to the hyperedge picked in192

the previous step. To include hyperedge-dependent node weight193

information in the similarity measure, we use one minus the Jensen-194

Shannon divergence (JSD) between the transition rate vectorsPUE195

andPVE to nodes at layersU and V as the hyperedge coupling196

strength,197

� UV
D = l ¹Vº »1 � �(� ¹U– Vº¼

= l ¹Vº
�
1 � �

�
1
2

PUE ¸
1
2

PVE

�

¸
1
2

� ¹PUEº ¸
1
2

�
�
PVE

�
�

(5)

for V 2 � ¹D– Eº. With nodeD's total incident hyperedge weight198

in layerU199

( U
D =

Õ

V2� ¹Dº

� UV
D – (6)

the hyperedge-similarity walk has the transition rates200

%UV
DE =

� UV
D

( U
D

WV¹Eº
X¹Vº

for V 2 � ¹D– Eº• (7)

Because the transition rates at a node depend on the current201

layer, the random walks generate non-Markovian dynamics that a202

unipartite or bipartite network representation cannot capture.203

To ensure ergodic node-visit rates, we derived an unrecorded204

teleportation scheme that leaves the node-visit rates unchanged205

when teleportation is super�uous for hypergraphs with hyperedge-206

independent node weights, robust to changes in the teleportation207

rate when teleportation is needed26, and independent of the repre-208

sentation (see Methods).209

Mapping �ows on hypergraphs. To identify �ow-based commu-210

nities or modules in hypergraphs, we seek to compress a modular211

description of random walks on the network representations guided212

by their links. We cast the problem of �nding �ow-based commu-213

nities in hypergraphs as a minimum-description length problem214

with the map equation framework3. With this compression-based215

framework, we can compare how much the di�erent representa-216

tions compress modular �ows.217

When detecting communities, the representation matters be-218

cause bipartite, unipartite, and multilayer networks provide the219

community-detection algorithm Infomap with di�erent degrees of220

freedom27. Infomap assigns only nodes to communities in a uni-221

partite network, but also hyperedge nodes in a bipartite network.222

The multilayer network, with a state node for each hyperedge a223
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Table I. Optimal flow-based communities of the schematic hypergraph in
Fig. 1 represented with different networks. The number of nodes includes
state nodes for the multilevel representations and the bipartite non-lazy
representation. We measure the overlap as the perplexity of the optimal
solutions (see Methods).

Representation Nodes Links Modules Codelength Overlap
(bits)

Lazy
Bipartite 15 32 2 2.90 �
Unipartite 10 40 3 2.35 �
Multilayer 16 98 3 2.35 1.00
Multilayer h-sa 16 98 4 2.28 1.09

Non-lazy
Bipartite 26 52 2 3.00 �
Unipartite 10 30 3 2.63 �
Multilayer 16 68 3 2.62 1.10
Multilayer h-sa 16 68 4 2.32 1.29

a hyperedge-similarity

node belongs to, implies even more node assignments and possibly224

overlapping communities.225

When mapping �ows modelled by lazy and non-lazy random226

walks on the schematic network in Fig. 1, the optimal partitions227

of the bipartite networks have two communities, whereas the228

unipartite and multilayer networks have three communities (Table I229

and Fig. 3). The bipartite network favours fewer modules � using230

the optimal three-module partition of the unipartite network on the231

bipartite network gives code length 3.29 bits instead of 2.90 bits232

for two modules �� because the random walker transitions more233

frequently between modules when they include hyperedges: Even234

if a hyperedge node contains no �ows at the end of each two-step235

walk from node through hyperedge node to node, assigning it to a236

module costs extra bits when it has nodes in multiple modules. For237

example, if nodes0, 1, and2 in the bipartite network in Fig. 1(b)238

would belong to a third green module as in the optimal unipartite239

solution, and the random walker at node2 would return to the240

hyperedge it comes from before revisiting node2, it would �rst241

need to exit the green module andenter the orange module, then exit242

the orange module and enter the green module. The corresponding243

walk on the unipartite network stays within the green module. As a244

result, the unipartite network representation favours more, smaller245

modules than the bipartite network representation for lazy and246

non-lazy walks (Table I).247

Multilayer networks enable further compression with overlap-248

ping modules. But for this small network, only non-lazy walks give249

overlapping modules with 0.01 bits compression gain (Table I).250

With walks that preferentially move to similar hyperedges, the251

optimal partitions of the multilayer hyperedge-similarity network252

representations for lazy and non-lazy random walks both have253

more overlap in four modules (Table I and Fig. 3). The hyperedge-254

similarity walks favour these overlapping modules because they255

stay longer within them than the regular walks.256

For a given random-walk model, the representations give equiv-257

alent node-visit rates but alter the link �ows. And with di�erent258

link �ows, the optimal partition can change. The bipartite network259

Multilayer h-saMultilayerUnipartiteBipartite

(a)

(b)
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g

d, e, f

a, b, c

a, b, c

c, f, g

d, e, f
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Fig. 3. Alluvial diagrams of optimal partitions for the schematic hypergraph
in Fig. 1. (a) Optimal partitions for lazy walks represented with the networks
in Fig. 1(b-d). (b) Optimal partitions for non-lazy walks.

representation favours partitions with fewer modules than the uni-260

partite network representation because hyperedge nodes assigned261

to modules implies encoding more transitions between modules.262

Multilayer representations, especially with walks that spend longer263

time among similar hyperedges, favour more overlapping modules.264

The random-walk model determines how much the multilayer net-265

work modules overlap. Non-lazy and hyper-edge similarity walks266

favour overlap because they lead to longer persistence times among267

nodes in possibly overlapping groups.268

Experiments. To illustrate how the network representation a�ects269

detected communities in real hypergraphs, we generated a collab-270

oration hypergraph from the 734 references inNetworks beyond271

pairwise interactions: Structure and dynamicsby F. Battiston272

et al.8 We modelled the referenced articles as hyperedges and their273

authors as nodes. Authors with multiple articles form connections274

between the hyperedges. We analysed the largest connected com-275

ponent withj+ j = 361 author nodes inj� j = 220 hyperedges.276

The median number of authors in a hyperedge is 3, and the authors277

have contributed to 2.2 articles on average though most have only278

contributed to one.279

We assigned the relative importance of references by their num-280

ber of citations2 in December 2020. Some references had no281

citations and some were highly cited. One such example isDi�u-282

sion of innovationsby Everett M. Rogers, with more than120–000283

citations. To avoid disproportionally large or small hyperedge284

weightsl ¹4º, we weighed the edges by the logarithm of the num-285

ber of citations and added unit constants to avoid the zero citation286
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Table II. Optimised flow-based multilevel communities of the collabo-
ration hypergraph represented with different networks. The number of
nodes includes state nodes for the multilevel representations and the bi-
partite non-lazy representation. Shortest codelength of 100 trials with the
variance in parenthesis. We measure the overlap as the perplexity of the
optimised solutions (see Methods).

Representation Nodes Links Modules Codelength
Top Leaf Levels Overlap (bits)

Lazy
Bipartite 581 1,560 4 23 3 � 5.178(1)
Unipartite 361 2,607 9 69 4 � 3.82557(2)
Multilayer 780 17,193 9 76 4 1.003 3.82730(2)
Multilayer h-sa 780 17,193 8 90 4 1.127 3.54939(3)

Non-lazy
Bipartite 1,141 3,548 5 25 3 � 5.1733(2)
Unipartite 361 2,246 7 49 4 � 4.25104(8)
Multilayer 780 12,843 7 54 4 1.098 4.16349(8)
Multilayer h-sa 780 12,843 9 66 4 1.181 3.70432(1)

a hyperedge-similarity

problem,287

l ¹4º = ln ¹2 ¸ 1º ¸ 1• (8)

We modelled the authors' di�erent contributions to articles by288

assigning higher weights to the �rst and last author20. We used289

the edge-dependent node weights290

W4¹Eº =

(
2 if nodeEis �rst or last author,

1 otherwise.
(9)

We assumed equal contribution for alphabetically sorted authors,291

and assigned all of them weightW¹Eº = 1. This model ranks292

co-correspondingauthor's contributions lower than corresponding293

authors.294

To study how hypergraph representations and random walk295

models a�ect the community structure, we generated bipartite,296

unipartite, and multilayer representations for lazy and non-lazy297

random walks on the collaboration network. We identi�ed nested298

hierarchical partitions in each network with Infomap, using 100299

independent searches for each network. Infomap's running time300

depends on the number of nodes, links, and solution levels: The301

bipartite and unipartite representations �nished 3�7 times faster302

than the multilayer representations. The non-lazy bipartite repre-303

sentation with many state nodes ran almost as long.304

The optimised partitions for the lazy and non-lazy representa-305

tions behave like the schematic example: The bipartite representa-306

tions have the fewest leaf modules and highest codelengths, and307

the multilayer hyperedge-similarity representations have the most308

leaf modules and shortest codelengths with the unipartite and the309

regular multilayer representations in between (Table II). Except310

for the non-lazy bipartite representation with its many state nodes,311

the lazy representations have more leaf modules and shorter code312

lengths than their corresponding non-lazy representations because313

the lazy random walk is more con�ned than the non-lazy random314

walk.315

Multilayer h-saMultilayerUnipartiteBipartite
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Fig. 4. Alluvial diagrams of optimised partitions for different representa-
tions of the collaboration hypergraph . Lazy walks in (a) and non-lazy walks
in (b). Module names from the top-ranked author within each module.

With more nodes than in the schematic example, the solutions316

have more depth. The bipartite solutions have three, and the uni-317

partite and multilayer solutions have four hierarchical levels. The318

unipartite and multilayer solutions also have more top modules.319

With non-lazy dynamics, they split the largest top module, and320

in the lazy dynamics, they split the two largest top modules. But321

the second-largest top module reunites in the hyperedge-similarity322

representation with stronger connections between similar hyper-323

edges (Fig. 4 and Fig. 7 in Appendix A). The unipartite and324

multilayer solutions are also most similar at the leaf level (Fig. 8325

in Appendix A).326

In this larger example, the multilayer hyperedge-similarity rep-327

resentations give more overlap. The non-lazy representations328

result in higher average overlap because random walkers visit-329

ing a node must continue to other nodes, often in the same or a330

similar hyperedge layer. When random walkers from dissimilar331

hyperedges come together at a node, they tend to return to where332

they came from and favour overlapping modules. The non-lazy333

representations also result in higher max overlap with the same334

authors topping all representations (Fig. 5).335

In line with the information-theoretic duality between �nding336

regularities in data and compressing those data, representations337

that enable deeper solutions with more modules have shorter338

codelengths (Table II). The lazy multilayer representation is an339

exception. Its optimised codelength is bound above by the lazy340

unipartite representation's codelength � they have the same code-341

length for the same hard partition � and overlapping modules can342

potentially reduce the codelength. Infomap's best codelength was343
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Fig. 5. Authors in the collaboration hypergraph with the highest average
effective number of assignments in the lazy and non-lazy multilayer rep-
resentations (see Methods).

instead 0.05 percent longer than for the lazy unipartite representa-344

tion. Multilayer representations with their many state nodes and345

links aggravate the search problem, and Infomap could not �nd a346

better solution with 100 attempts. But the gain from overlapping347

modules is higher for the non-lazy multilayer representation and348

Infomap �nds a solution with a signi�cantly shorter codelength.349

A case study on fossil data. Palaeontologists classify major350

groups of marine animals archived in the fossil record into global-351

scale faunas that change over time29. They have used di�erent352

network representations to understand the macroevolutionary pat-353

tern of marine biodiversity30,31. However, it is still unclear how354

such an organisation of marine animals into modules represent-355

ing global faunas changes with random-walk model and network356

representation. To illustrate how the network representation of357

the underlying paleontological data a�ects empirical estimates of358

this macroevolutionary pattern, we generated a hypergraph from359

genus-level fossil occurrences presented in ref.30 and retrieved360

from the PaleoDB32. We restricted our analysis to fossil occur-361

rences from the Cambrian (541 MY) to the Cretaceous period (66362

MY) and modelled 77 geological stages as hyperedges and 13,276363

genera as nodes. Genera occurring in multiple geological stages364

form connections between hyperedges. We weighted the hyper-365

edges by dividing the number of samples where a genus occurs in366

a given geological stage by the total number of samples recorded367

at the stage, a procedure modi�ed from ref.33. We generated bi-368

partite, unipartite, and multilayer network representations for lazy369

and non-lazy random walks from the underlying palaeontology370

data and identi�ed optimised partitions in the assembled networks371

using Infomap.372

Multilayer h-saMultilayerUnipartiteBipartite

(a)

(b)

Cambrian Cambrian

Ordovician Ordovician

Silurian-
Devonian

Silurian

Carboniferous-
Permian

Cambrian

Ordovician

Silurian-
Devonian

Carboniferous-
Permian

Carboniferous-
Permian

Mesozoic

Cretaceous

Jurassic

Triassic

Cretaceous

Jurassic

Triassic

Devonian

Cambrian

Ordovician

Silurian

Carboniferous-
Permian

Cretaceous

Jurassic

Triassic

Devonian

Fig. 6. Alluvial diagrams of optimised partitions for the fossil hypergraph
represented with different networks. Lazy walks in (a) and non-lazy walks
in (b). We show top modules when a partition lacks deeper levels and leaf
modules marked with dashed lines when they exist. Module names from
the geological period or era represented by the fauna assemblage.

For lazy random walks, Infomap partitioned only the multilayer373

representations into multilevel communities: three modules at the374

�rst hierarchical level [Fig. 6(a)]. Similar to the schematic example375

and the collaboration hypergraph, the bipartite representation for376

the lazy random walks has the fewest leaf modules and the highest377

codelength. The multilayer hyperedge-similarity representation378

has the most leaf modules and the shortest codelength (Table III).379

For non-lazy random walks, Infomap partitioned the bipartite380

representation into a multilevel solution with shorter codelength381

than the unipartite representation and the standard multilevel rep-382

resentation [Fig. 6(b)]. The multilayer hyperedge-similarity repre-383

sentation once more provides the most leaf modules and highest384

overlap.385

The multilayer network representations, including lazy and386

non-lazy random walks, reproduce modules reminiscent of the387

Cambrian, Paleozoic, and modern evolutionary faunas widely388

used in macroevolutionary research29. Also, leaf modules in the389

multilayer representations capture subfaunas from speci�c geolog-390

ical periods as nested modules such as Silurian, Triassic, Jurassic,391

and Cretaceous. Infomap applied to the bipartite representation of392

the non-lazy random walks identi�ed similar subfaunas but com-393

bined Cambrian and Paleozoic faunas into a single top module,394

obscuring the large-scale pattern. Overall, our results indicate395

some advantages of using multilayer over bipartite and unipartite396

representations of fossil occurrence data to quantify the marine397

biodiversity's macroevolutionary patterns, with lazy and non-lazy398

random walks providing similar solutions.399
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Table III. Optimised flow-based multilevel communities of the fossil hypergraph represented with different networks. The number of nodes includes state
nodes for the multilevel representations and the bipartite non-lazy representation. The number of non-trivial top and leaf modules. Average number of
levels weighted by the flow volume. We measure the overlap as the perplexity of the optimised solutions (see Methods). Shortest codelength of 20 trials
with the variance in parenthesis.

Representation Nodes Links Modules Codelength Time
¹� 103º ¹� 103º Top Leaf Levels Overlap (bits) (hh:mm:ss)

Lazy
Bipartite 13 79 5 8 2.02 � 10.50927(5) 00:00:06
Unipartite 13 16,155 6 13 2.02 � 10.3953503(1) 00:13:24
Multilayer 40 174,490 3 17 3.00 1.011 10.39819(1) 09:08:43
Multilayer h-sa 40 174,490 3 19 3.28 1.135 9.84170(1) 14:19:39

Non-lazy
Bipartite 53 25,937 2 15 3.02 � 10.34889(3) 01:14:25
Unipartite 13 16,141 6 12 2.02 � 10.4031798(6) 00:13:04
Multilayer 40 174,209 3 15 3.00 1.010 10.406141(9) 08:55:03
Multilayer h-sa 40 174,209 3 16 3.00 1.135 9.84912(1) 13:23:13

a hyperedge-similarity

Conclusions400

We have derived unipartite, bipartite, and multilayer network rep-401

resentations of hypergraph �ows with di�erent advantages. We402

used the information-theoretic and �ow-based community detec-403

tion method Infomap to explore how di�erent hypergraph random404

walk models and network representation change the number, size,405

depth, and overlap of identi�ed multilevel communities. By identi-406

fying �ow-based communities in a schematic and real hypergraphs407

� a small collaboration hypergraph of researchers working on net-408

works beyond pairwise interactions and a large faunal hypergraph409

of sampled species across geological stages � we found that the410

bipartite network representation is most compact and enables the411

fastest community detection. A multilayer network representation412

that reinforces �ows within similar layers � one for each hyperedge413

� gave the deepest modular structures with most module overlap.414

But the modular detection gain comes at a high computational cost:415

Combining fully connected layers with other layers requires many416

more nodes and links than the bipartite network representation. If417

the research question does not require hyperedge assignments or418

overlapping modules, the unipartite network representation pro-419

vides a trade-o� with intermediate compactness, speed, and ability420

to reveal modular regularities. Among the random-walk models,421

lazy walks typically give more modules in deeper nested struc-422

tures, and non-lazy walks higher modular overlap. Our methods423

and results help researchers model and map �ows on hypergraphs424

to study the e�ects of multibody interactions in complex systems.425

Methods426

Unrecorded teleportation. With hyperedge-independent node427

weights whereW4¹Dº = W¹Dº for all hyperedges4 2 � ¹Dº, undi-428

rected weighted networks can represent the dynamics, and the429

stationary distribution of the random walkcD is proportional to430

the product of nodeD's total incident hyperedge weight3¹Dº and431

weightW¹Dº. With normalised node-visit rates20,432

cD =
3¹DºW¹Dº

Í
E2+ 3¹EºW¹Eº

• (10)

For the multilayer network representation, the node-visit rates433

split between layers based on the nodeD's incident hyperedge434

weight per layer state node435

c U
D =

l ¹UºW¹Dº
Í

E2+ 3¹EºW¹Eº
• (11)

With hyperedge-dependent node weightsW4¹Dº, only directed436

weighted networks can represent the dynamics. We use random437

teleportation to ensure ergodic walks when deriving the node-visit438

rates with the power-iteration method. Unrecorded teleportation439

to links minimises the distortion26: In each iteration of the power-440

iteration method, we distribute a fractiong = 0•15 of each node's441

�ow volume among all nodes proportional to their out-link weights.442

The remaining �ow volume moves on the links proportional to443

their weights. In the last iteration, we move all �ows on the444

links proportional to their weights and record all �ows on links445

and nodes to obtain the ergodic node- and link-visit rates with446

unrecorded teleportation. This procedure gives equivalent visit447

rates as simulating a random walker that only records moves on448

links: With probability1 � g, the random walker moves to a node449

by following the links proportional to their weights and records the450

link and the target node. With probabilityg, the random walker451

teleports without recording to the link's source node proportional452

to the link weight. The normalised number of recordings of each453

node and link gives the visit rates.454

We want teleportation applied to undirected networks � where it455

is unnecessary � to leave the node- and link-visit rates unchanged.456

We achieve this smooth teleportation by scaling the transition rates457

from nodes by the node-visit rates: Then unrecorded teleportation458

proportional to nodes' total out-link weights followed by recorded459

moves on the links proportional to their weights distribute on the460
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nodes according to the ergodic visit rates on undirected networks26.461

For the general case when the node weights can depend on the462

hyperedge, and the network may be directed, we use Eq. 10 without463

assumingW4¹Dº = W¹Dº as an approximation of the node-visit464

rates:465

~cD =

Í
42� ¹Dº l ¹4ºW4¹Dº

Í
E2+–42� ¹Eº l ¹4ºW4¹Eº

(12)

for nodes and466

~c U
D =

l ¹UºWU¹Dº
Í

E2+–42� ¹Eº l ¹4ºW4¹Eº
for U 2 � ¹Dº (13)

for state nodes. With exact node-visit rates, we would obtain the467

stationary �ow volumes on links by multiplying the transition rates468

by the source nodes' visit rates. With approximate node-visit rates,469

instead, we obtain the link weights470

FD4 = ~cD%D4 (14)

for bipartite networks,471

FDE = ~cD%DE (15)

for unipartite networks, and472

F UV
DE = ~c U

D %UV
DE for V 2 � ¹D– Eº (16)

for multilayer networks. With unrecorded teleportation propor-473

tional to these link weights, modelling �ows on hypergraphs give474

node-visit rates robust to changes in the teleportation rate and475

independent of the representation.476

Overlap metric. Modules overlap when Infomap assigns a node's477

state nodes in the multilayer network representations to di�erent478

modules. Measuring the overlap through the absolute number of479

assignments is misleading because the overlap is 2 regardless of480

the number of state nodes assigned to a di�erent module than the481

rest. Instead, we used the e�ective number of assignments. If a482

fraction 5of nodeD's state nodes is assigned to the< th module in483

D's module assignment set, the< th element ofD's assignment vec-484

tor is 0D
< = 5 and the e�ective number of assignments measured485

by the perplexity ofD's module assignments is486

>D = 2� ¹aDº• (17)

The e�ective number of assignments is one if allD's state nodes are487

in one module, and it is equal to the number of assignments when488

the state nodes are divided evenly amongD's module assignments.489

We averaged over all nodes for the partition overlap.490

Data and code availability491

All data and source code are available on GitHub:http://github.492

com/mapequation/mapping-hypergraphs.493
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Fig. 7. Hierarchical maps of the collaboration hypergraph using (a) the bipartite representation and (b) the multilayer hyperedge-similarity representation.
Module colours are the same as in Fig. 4(a). Aggregated inter-module links with sizes proportional to the exiting flow volume and length inversely propor-
tional to the flow volume. White sub-modules are labelled with the top-ranked author. The largest blue top module in (a) contains ten sub-modules. In (b),
the partition assigns those nodes to five top modules containing more sub-modules. S. Boccaletti, one of the most overlapping authors and highlighted
in red, is assigned to one module in (a) and three top modules and six sub-modules in (b).



11

La
zy

N
on

-la
zy

Lazy Non-lazy

Bipartite

Unipartite

Multilayer

Multilayer h-s

Bipartite

Unipartite

Multilayer

Multilayer h-s

B
ip

ar
tit

e

U
ni

pa
rt

ite

M
ul

til
ay

er

M
ul

til
ay

er
 h

-s

B
ip

ar
tit

e

U
ni

pa
rt

ite

M
ul

til
ay

er

M
ul

til
ay

er
 h

-s

1.00

0.95

0.90

0.85

0.80

0.75

Fig. 8. Leaf module assignments' adjusted mutual information for different random walk dynamics and hypergraph representations. The bipartite repre-
sentations differ the most from the other representations, and the unipartite and multilayer representations are most similar at the leaf level.



�*�M�K�Y�V�I�W

�*�M�K�Y�V�I����

�%���W�G�L�I�Q�E�X�M�G���L�]�T�I�V�K�V�E�T�L���V�I�T�V�I�W�I�R�X�I�H���[�M�X�L���X�L�V�I�I���X�]�T�I�W���S�J���R�I�X�[�S�V�O�W�������E����8�L�I���W�G�L�I�Q�E�X�M�G���L�]�T�I�V�K�V�E�T�L���[�M�X�L

�[�I�M�K�L�X�I�H���L�]�T�I�V�I�H�K�I�W���E�R�H���L�]�T�I�V�I�H�K�I�H�I�T�I�R�H�I�R�X�Á�R�S�H�I���[�I�M�K�L�X�W�����8�L�M�R���F�S�V�H�I�V�W���J�S�V���[�I�M�K�L�X�������E�R�H���X�L�M�G�O���F�S�V�H�I�V�W

�J�S�V���[�I�M�K�L�X���������%���P�E�^�]���V�E�R�H�S�Q���[�E�P�O���S�R���X�L�I���W�G�L�I�Q�E�X�M�G���L�]�T�I�V�K�V�E�T�L���V�I�T�V�I�W�I�R�X�I�H���S�R�������F����E�Á�F�M�T�E�V�X�M�X�I���R�I�X�[�S�V�O�������G�

�E���Y�R�M�T�E�V�X�M�X�I���R�I�X�[�S�V�O�����E�R�H�����H����E���Q�Y�P�X�M�P�I�Z�I�P���R�I�X�[�S�V�O�����8�L�I���G�S�P�S�Y�V�W���M�R�H�M�G�E�X�I���S�T�X�M�Q�M�W�I�H���Q�S�H�Y�P�I���E�W�W�M�K�R�Q�I�R�X�W�����M�R

���H����J�S�V���L�]�T�I�V�I�H�K�I���W�M�Q�M�P�E�V�M�X�]�Á�[�E�P�O�W��

�*�M�K�Y�V�I����

�&�M�T�E�V�X�M�X�I���R�I�X�[�S�V�O���[�M�X�L���W�X�E�X�I���R�S�H�I�W���J�S�V���R�S�R���P�E�^�]���V�E�R�H�S�Q���[�E�P�O�W�����8�S�Á�T�V�I�Z�I�R�X���V�E�R�H�S�Q���[�E�P�O�W���S�R���F�M�T�E�V�X�M�X�I

�R�I�X�[�S�V�O�W���X�S���Z�M�W�M�X���X�L�I���W�E�Q�I���R�S�H�I���E�X���X�L�I�Á�F�S�X�X�S�Q���X�[�M�G�I���M�R���E���V�S�[���F�]���F�E�G�O�X�V�E�G�O�M�R�K���J�V�S�Q���X�L�I���L�]�T�I�V�I�H�K�I���R�S�H�I���E�X

�X�L�I���X�S�T���Á�[�I���Y�W�I���W�X�E�X�I���R�S�H�I�W���M�R���X�L�I���L�]�T�I�V�I�H�K�I���R�S�H�I�W�����)�E�G�L���L�]�T�I�V�I�H�K�I���R�S�H�I���V�I�U�Y�M�V�I�W�Á�S�R�I���W�X�E�X�I���R�S�H�I���J�S�V

�I�E�G�L���R�S�H�I���M�R���X�L�I���L�]�T�I�V�I�H�K�I�����8�L�I���W�X�E�X�I���R�S�H�I�W���L�E�Z�I���S�R�I���M�R�G�S�Q�M�R�K���P�M�R�O���J�V�S�Q���M�X�W���W�S�Y�V�G�I���R�S�H�I���E�R�H���S�Y�X�K�S�M�R�K

�P�M�R�O�W���X�S���E�P�P���S�X�L�I�V���R�S�H�I�W���M�R�Á�X�L�I���L�]�T�I�V�I�H�K�I�����'�S�P�S�Y�V�W���M�R�H�M�G�E�X�I���X�L�I���S�T�X�M�Q�M�W�I�H���T�E�V�X�M�X�M�S�R���M�R���*�M�K���������F���



�*�M�K�Y�V�I����

�%�P�P�Y�Z�M�E�P���H�M�E�K�V�E�Q�W���S�J���S�T�X�M�Q�E�P���T�E�V�X�M�X�M�S�R�W���J�S�V���X�L�I���W�G�L�I�Q�E�X�M�G���L�]�T�I�V�K�V�E�T�L�Á�M�R���*�M�K�������������E��3�T�X�M�Q�E�P���T�E�V�X�M�X�M�S�R�W���J�S�V

�P�E�^�]���[�E�P�O�W���V�I�T�V�I�W�I�R�X�I�H���[�M�X�L���X�L�I���R�I�X�[�S�V�O�W�Á�M�R���*�M�K���������F���H��������F����3�T�X�M�Q�E�P���T�E�V�X�M�X�M�S�R�W���J�S�V���R�S�R���P�E�^�]���[�E�P�O�W��



�*�M�K�Y�V�I����

�%�P�P�Y�Z�M�E�P���H�M�E�K�V�E�Q�W���S�J���S�T�X�M�Q�M�W�I�H���T�E�V�X�M�X�M�S�R�W���J�S�V���H�M�J�J�I�V�I�R�X���V�I�T�V�I�W�I�R�X�E�X�M�S�R�W�Á�S�J���X�L�I���G�S�P�P�E�F�S�V�E�X�M�S�R���L�]�T�I�V�K�V�E�T�L����

�0�E�^�]�[�E�P�O�W���M�R�����E����E�R�H���R�S�R���P�E�^�]�[�E�P�O�W�Á�M�R�����F������1�S�H�Y�P�I���R�E�Q�I�W���J�V�S�Q���X�L�I���X�S�T���V�E�R�O�I�H���E�Y�X�L�S�V���[�M�X�L�M�R���I�E�G�L

�Q�S�H�Y�P�I��



�*�M�K�Y�V�I����

�%�Y�X�L�S�V�W���M�R���X�L�I���G�S�P�P�E�F�S�V�E�X�M�S�R���L�]�T�I�V�K�V�E�T�L���[�M�X�L���X�L�I���L�M�K�L�I�W�X���E�Z�I�V�E�K�I�Á�I�J�J�I�G�X�M�Z�I���R�Y�Q�F�I�V���S�J���E�W�W�M�K�R�Q�I�R�X�W���M�R���X�L�I

�P�E�^�]���E�R�H���R�S�R���P�E�^�]���Q�Y�P�X�M�P�E�]�I�V���V�I�T�V�I�W�I�R�X�E�X�M�S�R�W�Á���W�I�I���1�I�X�L�S�H�W����Á



�*�M�K�Y�V�I����

�%�P�P�Y�Z�M�E�P���H�M�E�K�V�E�Q�W���S�J���S�T�X�M�Q�M�W�I�H���T�E�V�X�M�X�M�S�R�W���J�S�V���X�L�I���J�S�W�W�M�P���L�]�T�I�V�K�V�E�T�L�Á�V�I�T�V�I�W�I�R�X�I�H���[�M�X�L���H�M�J�J�I�V�I�R�X���R�I�X�[�S�V�O�W��

�0�E�^�]���[�E�P�O�W���M�R�����E����E�R�H���R�S�R���P�E�^�]���[�E�P�O�W�Á�M�R�����F����;�I���W�L�S�[���X�S�T���Q�S�H�Y�P�I�W���[�L�I�R���E���T�E�V�X�M�X�M�S�R���P�E�G�O�W���H�I�I�T�I�V���P�I�Z�I�P�W

�E�R�H���P�I�E�J�Á�Q�S�H�Y�P�I�W���Q�E�V�O�I�H���[�M�X�L���H�E�W�L�I�H���P�M�R�I�W���[�L�I�R���X�L�I�]���I�\�M�W�X�����1�S�H�Y�P�I���R�E�Q�I�W���J�V�S�Q�Á�X�L�I���K�I�S�P�S�K�M�G�E�P���T�I�V�M�S�H���S�V

�I�V�E���V�I�T�V�I�W�I�R�X�I�H���F�]���X�L�I���J�E�Y�R�E���E�W�W�I�Q�F�P�E�K�I��



�*�M�K�Y�V�I����

�,�M�I�V�E�V�G�L�M�G�E�P���Q�E�T�W���S�J���X�L�I���G�S�P�P�E�F�S�V�E�X�M�S�R���L�]�T�I�V�K�V�E�T�L���Y�W�M�R�K�����E����X�L�I���F�M�T�E�V�X�M�X�I���V�I�T�V�I�W�I�R�X�E�X�M�S�R���E�R�H�����F����X�L�I

�Q�Y�P�X�M�P�E�]�I�V���L�]�T�I�V�I�H�K�I���W�M�Q�M�P�E�V�M�X�]���V�I�T�V�I�W�I�R�X�E�X�M�S�R���Á�1�S�H�Y�P�I���G�S�P�S�Y�V�W���E�V�I���X�L�I���W�E�Q�I���E�W���M�R���*�M�K���������E������%�K�K�V�I�K�E�X�I�H

�M�R�X�I�V���Q�S�H�Y�P�I���P�M�R�O�W���[�M�X�L���W�M�^�I�W���T�V�S�T�S�V�X�M�S�R�E�P���X�S���X�L�I���I�\�M�X�M�R�K���§�S�[���Z�S�P�Y�Q�I���E�R�H���P�I�R�K�X�L���M�R�Z�I�V�W�I�P�]���T�V�S�T�S�V�X�M�S�R�E�P�Á�X�S

�X�L�I���§�S�[���Z�S�P�Y�Q�I�����;�L�M�X�I���W�Y�F���Q�S�H�Y�P�I�W���E�V�I���P�E�F�I�P�P�I�H���[�M�X�L���X�L�I���X�S�T���V�E�R�O�I�H���E�Y�X�L�S�V�����8�L�I���P�E�V�K�I�W�X���F�P�Y�I���X�S�T���Q�S�H�Y�P�I

�M�R�����E����G�S�R�X�E�M�R�W���X�I�R���W�Y�F���Q�S�H�Y�P�I�W�����-�R�����F����Á�X�L�I���T�E�V�X�M�X�M�S�R���E�W�W�M�K�R�W���X�L�S�W�I���R�S�H�I�W���X�S���¦�Z�I���X�S�T���Q�S�H�Y�P�I�W���G�S�R�X�E�M�R�M�R�K



�Q�S�V�I���W�Y�F���Q�S�H�Y�P�I�W�����7�����&�S�G�G�E�P�I�X�X�M�����S�R�I���S�J���X�L�I���Q�S�W�X���S�Z�I�V�P�E�T�T�M�R�K���E�Y�X�L�S�V�W���E�R�H���L�M�K�L�P�M�K�L�X�I�H�Á�M�R���V�I�H�����M�W���E�W�W�M�K�R�I�H

�X�S���S�R�I���Q�S�H�Y�P�I���M�R�����E����E�R�H���X�L�V�I�I���X�S�T���Q�S�H�Y�P�I�W���E�R�H���W�M�\���W�Y�F���Q�S�H�Y�P�I�W���M�R�����F���

�*�M�K�Y�V�I����

�0�I�E�J���Q�S�H�Y�P�I���E�W�W�M�K�R�Q�I�R�X�W�˜���E�H�N�Y�W�X�I�H���Q�Y�X�Y�E�P���M�R�J�S�V�Q�E�X�M�S�R���J�S�V���H�M�J�J�I�V�I�R�X���V�E�R�H�S�Q���[�E�P�O���H�]�R�E�Q�M�G�W���E�R�H

�L�]�T�I�V�K�V�E�T�L���V�I�T�V�I�W�I�R�X�E�X�M�S�R�W�����8�L�I���F�M�T�E�V�X�M�X�I���V�I�T�V�I�W�I�R�X�E�X�M�S�R�W���H�M�J�J�I�V���X�L�I���Q�S�W�X���J�V�S�Q���X�L�I���S�X�L�I�V���V�I�T�V�I�W�I�R�X�E�X�M�S�R�W��

�E�R�H���X�L�I���Y�R�M�T�E�V�X�M�X�I���E�R�H���Q�Y�P�X�M�P�E�]�I�V���V�I�T�V�I�W�I�R�X�E�X�M�S�R�W���E�V�I���Q�S�W�X���W�M�Q�M�P�E�V���E�X���X�L�I���P�I�E�J���P�I�Z�I�P��


