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Abstract
Objective: Cutibacterium acnes is a causative agent of inflammatory skin diseases and systemic
infections. Systemic infections caused by C. acnes are difficult to treat, and the development of a
systemic infection model for C. acnes would be useful for elucidating the mechanisms of infection and
searching for therapeutic agents. In this study, we established a silkworm infection model as a new
experimental system to evaluate the interaction between C. acnes and the host, and the efficacy of
antibacterial drugs.

Results: Silkworms infected with C. acnes died when reared at 37˚C. The dose of injected bacterial cells
required to kill half of the silkworms (LD50) was determined under rearing conditions at 37˚C. Silkworms
injected with autoclaved C. acnes cells did not die during the study period. The survival time of silkworms
injected with C. acnes was prolonged by the injection of antibacterial drugs such as tetracycline and
clindamycin. These findings suggest that the silkworm C. acnes infection model can be used to evaluate
host toxicity caused by C. acnes and the in vivo efficacy of antimicrobial drugs.

Introduction
Cutibacterium acnes (formerly Propionibacterium acnes), a common bacterium on human skin, causes
inflammatory skin diseases and systemic infections (1, 2). C. acnes is isolated as the predominant
species in 34% (3) or 36.2% (4) of intervertebral discs removed from patients with chronic low back pain,
such as disc herniation. Biofilm formation by C. acnes on implants and on intervertebral discs causes
bloodstream infections (5–7). Because C. acnes forms a biofilm and more than 50% of clinically isolated
C. acnes is resistant to typical macrolides, systemic infections caused by C. acnes are difficult to treat (8,
9). Therefore, the development of treatments for systemic infections caused by C. acnes is clinically
important. Although mammalian animal models of C. acnes infection have been established, their use for
the evaluation of antibacterial drugs is difficult due to the long duration of the infection (10, 11). Infection
experiments using a large number of mammalian animals are also difficult to perform due to animal
welfare issues (12).

Silkworms are useful animals for assessing host-pathogen interactions in systemic infections and for
evaluating the therapeutic effects of antimicrobial drugs (12, 13). Because silkworms also have
advantageous features such as easy rearing in large numbers in a small space with few ethical issues,
experiments with large numbers of silkworms can be performed (14). Moreover, quantitative drug
administration and monitoring of parameters in silkworm blood can be performed due to ease of sample
injection and blood collection (12, 15, 16). The use of a silkworm infection model based on these
advantageous features led to the discovery of virulence-related genes for pathogenic microorganisms
such as Staphylococcus aureus, Candida albicans, and Candida glabrata (17–19). Further, exploratory
studies of antimicrobial drugs using a silkworm infection model led to the identification of compounds
exhibiting therapeutic efficacy in mouse infection experiments (20–22). Therefore, the silkworm infection
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model is useful for studies aimed at elucidating the infection mechanisms of pathogenic
microorganisms and evaluating the efficacy of antimicrobial drugs.

In the present study, we attempted to establish an animal model of systemic infection by C. acnes using
silkworms. We found that injection of C. acnes cells killed silkworms. Survival times of the infected
silkworms were prolonged by injection of tetracycline and clindamycin. Our findings suggest that the
silkworm infection model with C. acnes is useful for evaluating the efficacy of antimicrobial drugs.

Materials And Methods

Reagents
Tetracycline was purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan).
Clindamycin was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). These reagents were
dissolved in physiologic saline solution (0.9% NaCl). GAM agar was purchased from Nissui
Pharmaceutical Co., Ltd. (Tokyo, Japan).

Culture of C. acnes
C. acnes ATCC6919 strain was used in this study. The C. acnes ATCC6919 strain was grown on GAM
agar plates at 37˚C under anaerobic conditions.

Silkworm infection experiments
The silkworm infection experiments were performed as previously described (23). Silkworm fifth instar
larvae were fed an artificial diet (1.5 g; Silkmate 2S; Ehime-Sanshu Co., Ltd., Ehime, Japan) overnight. C.
acnes grown on GAM agar plates was suspended in physiologic saline (0.9% NaCl). A suspension (50 µl)
of the C. acnes cells was injected into the silkworm hemolymph with a 1-ml tuberculin syringe (Terumo
Medical Corporation, Tokyo, Japan). Silkworms injected with the C. acnes cells were placed in an
incubator and survival was monitored.

Statistical analysis
The significance of differences between groups was calculated using a log-rank test based on the
Kaplan-Meier method using Prism 9 (GraphPad Software, LLC, San Diego, CA, USA,
https://www.graphpad.com/scientific-software/prism/). P < 0.05 was considered a statistically
significant difference.

Results

Pathogenicity of C. acnes against silkworms
Silkworm models of infection by various microorganisms have been established (14). The body
temperature of silkworms, which can be regulated by changing the rearing temperature, is important for
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bacterial pathogenicity against silkworms (14). C. acnes grows at approximately 32˚C on the skin and
37˚C in the human body. We therefore examined the rearing temperatures that caused death in C. acnes-
infected silkworms. Silkworms injected with C. acnes (1.6 × 109 cells) reared at 37˚C after injection died
within 40 h, whereas infected silkworms reared at 32 °C survived longer (Fig. 1a and b). The time required
for half of the infected silkworms to die (LT50) was 48 h for silkworms reared at 32˚C and 27 h for those
reared at 37˚C (Fig. 1a and b). The LD50 value, which is the bacterial number required to kill half of the

silkworms, was approximately 2 × 108 cells when infected silkworms were reared at 37˚C (Fig. 1c). These
results suggest that rearing C. acnes-infected silkworms at 37˚C decreased survival and that the
pathogenicity of C. acnes can be quantitatively assessed based on the LD50 value.

Effect of heat-killed C. acnes cells on silkworms
We next examined the heat-killed cells to evaluate whether C. acnes cells must be alive to exert
pathogenicity against silkworms. Injection of C. acnes cells killed silkworms, but injection of autoclaved
C. acnes cells did not (Fig. 2). These results suggest that the pathogenicity of C. acnes in silkworms
depends on the viability of the C. acnes cells.

Therapeutic effects of antibacterial drugs against
silkworms infected with C. acnes
We next examined the efficacy of antibacterial drugs in the silkworm C. acnes infection model.
Administration of tetracycline and clindamycin to silkworms infected with C. acnes prolonged the survival
time (Fig. 3). These results suggest that the efficacy of antibacterial drugs can be evaluated using the
silkworm C. acnes infection model.

Discussion
In this study, we demonstrated that C. acnes kills silkworms reared at 37˚C and that the silkworm
infection model can be used to evaluate the efficacy of antibacterial drugs. Our findings suggest that the
silkworm infection model is useful for assessing pathogenicity and the efficacy of antimicrobial drugs
against systemic infection by C. acnes.

Bacterial components such as peptidoglycans of Porphyromonas gingivalis lead to shock in silkworms,
resulting in their death (24). Injection of viable or heat-killed P. gingivalis cells cause silkworm death (24).
Under conditions in which shock occurs, silkworms cannot be treated with antibiotics (24). In the
silkworm C. acnes infection model established in this study, administration of heat-killed bacteria did not
kill the silkworm. Further, C. acnes-infected silkworms could be effectively treated with antibacterial drugs,
suggesting that the growth of C. acnes in the body of silkworms is important for its pathogenicity.
Silkworm infection models are useful for identifying virulence factors of pathogenic microorganisms (13)
(14). Further studies are needed to determine which factors in C. acnes are responsible for the
pathogenicity to silkworms.
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The pharmacokinetics of antimicrobial agents are similar between silkworms and mammals, and
antimicrobial drug efficacy in the silkworm infection model can be evaluated on the basis of the
pharmacokinetics (21, 25–27). Therefore, silkworm infection models are useful for the development for in
vivo screening of new antimicrobial agents (20, 22). The silkworm C. acnes infection model with may be
useful for identifying effective antibacterial compounds against systemic infection by C. acnes. Azole
antifungals exhibit antimicrobial activity against C. acnes in vitro, and ketoconazole inhibits the lipase
activity of C. acnes (28, 29). Further studies are needed to identify effective compounds against systemic
C. acnes infections from among clinically applied drugs using the silkworm infection model.

Recently, an infection model with C. acnes using a nematode, Caenorhabditis elegans, was reported (30).
C. elegans is useful for identifying host factors against C. acnes infection based on genetic approaches
(30). The differences between the silkworm system and the C. elegans system are that the silkworm
blood can be directly injected with C. acnes and its pathogenicity at 37˚C, the same temperature as the
human body, can be verified. C. elegans is difficult to inject quantitatively into body fluids and cannot
grow at 37˚C (31). The silkworm infection model might allow us to identify virulence factors of C. acnes
at the body temperature of humans.

In conclusion, we established a silkworm infection model with C. acnes and found the system to be
useful for evaluating antibacterial drug efficacy. Further studies are needed to determine the clinical
applicability of research using the silkworm C. acnes infection model.

Limitations

The results of this study are limited to one strain and only a few antibacterial drugs. Further in vivo
studies for chemical screening are required to clarify whether the silkworm infection model could be
effective for identifying candidate compounds.
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Figure 1

Toxic effects of C. acnes injected into silkworms
Silkworms were injected with saline or C. acnes cell
suspension (1.6 x 109 cells) and incubated at 32˚C (a) and 37˚C (b). Number of surviving silkworms was
measured over time. n = 10/group. c Silkworms were injected with saline or C. acnes cell suspension (2.5
x 107 – 1.6 x 109 cells) and incubated at 37˚C. Number of surviving silkworms was measured at 48 h
after injection. n = 5 / group.
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Figure 2

Effects of injecting autoclaved C. acnes cells in silkworms
a Silkworms were injected with saline, C. acnes
cell suspension (7.8 x 108 cells), or autoclaved C. acnes cell suspension and incubated at 37˚C. Number
of surviving silkworms was measured over time. n = 10 / group. b Picture at 48 h after injection is shown.
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Figure 3

Effect of antibacterial drugs in silkworms infected by C. acnes
Silkworms were injected with saline or C.
acnes cell suspension (4.9 x 108 cells (a) or 1.6 x 109 cells (b)), and then with tetracycline (100 µg /
larva) (a) or clindamycin (100 µg / larva) (b). Number of surviving silkworms under incubation at 37˚C
was measured over time. Statistically significant differences between groups were evaluated using a log-
rank test. n = 10 / group.


