Supplementary information

Maternal exposure to polystyrene nanoparticles causes brain abnormalities in progeny

Bohyeon Jeong¹,², Young-Kyoung Ryu³, Jeong Yeob Baek¹, Jahong Koo¹,², Subin Park¹, Seungjae Zhang⁴, ChiHye Chung⁴, Rumeysa Dogan⁵, Hyung-Seok Choi⁵, Dahun Um⁵, Tae-Kyung Kim⁵, Wang Sik Lee⁶, Kyoung-Shim Kim³, Jinyoung Jeong⁶, Won-Ho Shin⁷, Jae-Ran Lee¹, Nam-Soon Kim¹, and Da Yong Lee¹,²*
Supplementary Fig 1. Schematic drawing showing the overall experimental procedure and time schedules for PSNP treatment and physiological analyses.
Supplementary Table 1. Summary of the protocols used to administer PSNPs to rodents.

<table>
<thead>
<tr>
<th>Species</th>
<th>Study</th>
<th>Diameter</th>
<th>Administration</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td>Morh et al., 2014<sup>1</sup></td>
<td>100 nm</td>
<td>Single injection Sacrificed at day 4</td>
<td>IV injection</td>
</tr>
<tr>
<td></td>
<td>Deng et al., 2017<sup>2</sup></td>
<td>5–20 µm</td>
<td>Daily For 28 days</td>
<td>Oral gavage</td>
</tr>
<tr>
<td></td>
<td>Lu et al., 2018<sup>3</sup></td>
<td>0.5–50 µm</td>
<td>Continuous For 5 weeks</td>
<td>Diluted in drinking water</td>
</tr>
<tr>
<td></td>
<td>Stock et al., 2019<sup>4</sup></td>
<td>1–10 µm</td>
<td>Three times a week For 28 days</td>
<td>Oral gavage</td>
</tr>
<tr>
<td></td>
<td>Jin et al., 2019<sup>5</sup></td>
<td>5 µm</td>
<td>Continuous For 6 weeks</td>
<td>Diluted in drinking water</td>
</tr>
<tr>
<td></td>
<td>Jin et al., 2021<sup>6</sup></td>
<td>0.5–10 µm</td>
<td>Daily For 28 days</td>
<td>Oral gavage</td>
</tr>
<tr>
<td>Rats</td>
<td>Jani et al., 1989<sup>7</sup></td>
<td>100 nm–3 µm</td>
<td>Daily For 10 days</td>
<td>Oral gavage</td>
</tr>
<tr>
<td></td>
<td>Hillery et al., 1996<sup>8</sup></td>
<td>60 nm</td>
<td>Daily For 5 days</td>
<td>Oral gavage</td>
</tr>
<tr>
<td></td>
<td>Rafiee et al., 2018<sup>9</sup></td>
<td>25–50 nm</td>
<td>Daily For 35 days</td>
<td>Oral gavage</td>
</tr>
</tbody>
</table>
Supplementary Fig 2. Maternally-administered PSNPs accumulated in the brains of offspring. (a) The size distribution of the 50 nm carboxylated PSNPs was confirmed by SEM imaging. (b) White light images show the appearance of jelly cubes containing PSNPs (0–1,000 μg/cm³ cube). The YG fluorescence images show higher green fluorescence signal with higher concentrations of YG-conjugated PSNPs in the jelly cubes. (c) YG fluorescence signals were detected in various regions of the brain including olfactory bulb (ob), hippocampus (hp), hypothalamus (ht), and cerebellum (cb), but not in brainstem (bs) in the brain sagittal view of the PSNP treated group (P7; 1,000 μg/day).

Fluorescence images show higher signal intensity in the postnatal brains of the progeny given higher PSNP doses.
Supplementary Table 2. The effects of PSNPs at various doses and time points on the body weights of progeny.

<table>
<thead>
<tr>
<th>Time (µg/day)</th>
<th>1w</th>
<th>3w</th>
<th>6w</th>
<th>11w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean</td>
<td>SEM</td>
<td>n</td>
</tr>
<tr>
<td>0</td>
<td>38</td>
<td>3.57</td>
<td>0.07</td>
<td>29</td>
</tr>
<tr>
<td>0.5</td>
<td>19</td>
<td>3.43</td>
<td>0.07</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>3.80</td>
<td>0.12</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
<td>3.93</td>
<td>0.08</td>
<td>7</td>
</tr>
<tr>
<td>500</td>
<td>44</td>
<td>4.07</td>
<td>0.07</td>
<td>28</td>
</tr>
</tbody>
</table>

*<p < 0.05, **<p < 0.005 by t-test; ††<p < 0.005, †††<p < 0.0005 by ANOVA test
Supplementary Fig 3. The proliferation of NSCs in the subventricular zone (SVZ) was not altered by PSNPs. (a) No YG fluorescence signal was detected in the SVZ after PSNP exposure. (b) Immunofluorescence staining data shows no change in Ki67+ or nestin+ progenitor cells in the SVZ after PSNP treatment. Values denote mean ± SEM. Scale bars: 200 μm.
Supplementary Fig 4. PSNP reduced NSC proliferation in the brains of postnatal progeny regardless of their gender. The gender of the mouse pups used in the hippocampal Ki67 immunohistochemistry presented in Fig 3a was confirmed by genotyping with SRY primer (see inset). No correlation between the mouse gender and the number of Ki67+ cells was observed in P7 mouse brain after PSNP (500 μg/day) treatment. Values denote mean ± SEM. *p < 0.05.
Supplementary Fig 5. SEM images and DLS analysis data show that all four types of PSNPs were stably maintained as separate particles in culture conditions. (a) Carboxylated and plain spheroid PSNPs with two different diameters (50 and 500 nm) were characterized by SEM imaging. (b) DLS analysis data show that all four types of PSNP particles were well maintained for 7 days in DW and culture media for both growth and differentiation. Scale bars: 1 μm. C: carboxylated PSNP; P: plain PSNP; 50: 50 nm; 500: 500 nm.
Supplementary Fig 6. The functioning of NSCs in vitro was altered by various types of PSNPs.

(a) Immunofluorescence staining of single neurospheres shows lower Ki67+ proliferative NSCs following exposure to all three different types of PSNPs (25 µg/ml). Other staining data show that nestin was well expressed in the neurospheres of all four groups, including the control and three PSNP-exposed groups. YG fluorescence signals (green) were detected in all PSNP-exposed groups. (b) Smaller neurosphere diameters and lower total cell numbers were observed in all three PSNP-exposed groups in comparison with the controls (Ctrl). (c) NSC differentiation assay data show a shorter neurite length of Tuj1+ neurons and a higher number of GFAP+ astrocytes in 25 µg/ml PSNP-treated groups than in controls. Values denote mean ± SEM. *p < 0.05, **p < 0.005, ***p < 0.0005. Scale bars: 100 µm.

C: carboxylated PSNP; P: plain PSNP; 50: 50 nm; 500: 500 nm.
Table

<table>
<thead>
<tr>
<th>Diameters</th>
<th>Hydromdynamic size (DLS, nm)</th>
<th>SEM analysis (Average size, nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 nm</td>
<td>41.07 ± 3.74 nm</td>
<td>32.95 ± 6.95 nm</td>
</tr>
</tbody>
</table>

Figure a

- Graph showing size distribution.
- SEM analysis of size distribution.

Figure b

- Graph showing cell counts.
- Comparison of C30 concentrations.

Figure c

- Phase contrast images.
- YG images.

Figure d

- Diameter comparison.
- Cell count comparison.

Figure e

- Fluorescence images.
- Quantification of TuJ1+ and GFAP+ cells.
- Neurite length comparison.
Supplementary Fig 7. Carboxylated PSNPs of 30 nm in diameter dysregulated NSC functions in a similar manner to other types of PSNPs. (a) Carboxylated PSNPs (C30) were characterized by TEM imaging and DLS analysis. (b) Exposure to C30 reduced the proliferation of NSCs in a dose-dependent manner. (c) Phase contrast images show smaller neurosphere sizes following C30 exposure (25 μg/ml). The highest concentration of C30 (100 μg/ml) induced severe cytotoxicity. (d) The diameters of neurospheres and total cell numbers were lower after exposure to C30 (25 μg/ml). (e) Differentiation assay data show lower numbers of neurons, shorter neurite lengths, and abnormally high levels of astrocytes in the C30-exposed group. YG fluorescence signals (green) were detected in all C30-exposed groups. Values denote mean ± SEM. *p < 0.05, ***p < 0.0005. Scale bars: (a) 200 nm, (c, e) 100 μm.
Supplementary Fig 8. Carboxylated PSNPs of 50 nm in diameter caused abnormalities in synaptic plasticity and hippocampal GABA levels. (a) Four episodes of theta burst stimulation (4×TBS) successfully increased the rise slope of field excitatory postsynaptic potentials (fEPSPs) in both control and PSNP-exposed mice, whereas LFS decreased the rise slope of fEPSPs in the control group but not in the PSNP-exposed group. (b) The HPLC results show higher GABA levels in the hippocampus of progeny exposed to PSNPs. Values denote mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
Supplementary Fig 9. Carboxylated PSNPs of 50 nm in diameter caused cognitive deficit. The graphs show lower Y-maze alternation and NOT exploration time in the progeny exposed to PSNPs, indicating that they showed cognitive deficit. Values denote mean ± SEM. *p < 0.05.
Supplementary materials and methods

Electron microscopy

The C30 particles were characterized by TEM imaging. PSNPs (50, 500 nm) used in this study were characterized by scanning electron microscope (SEM) imaging\(^1\).

Dynamic light scattering (DLS) analysis

Dynamic light scattering (DLS) analysis was performed as previously described\(^1\). To confirm the stability of NPs in the culture media used in the current study, the NPs were subjected to DLS analysis in the condition equivalent to NSC cultures in vitro at day 1, 3 and 7.

Sex genotyping of P7 mice

Total DNA was extracted from the brain tissues using an Exgene Tissue SV mini kit (GeneAll, Korea). SRY primers were used for genotyping to determine the gender of the P7 mice. The primer sequences were as follows: forward 5'-TTG TCT AGA GAG CAT GGA GGG CCA TGT CAA-3' and reverse 5'-CCA CTC TGT GAC ACT TTA GCC CTC CGA-3'.

Yellow-Green fluorescence-labeled 30 nm carboxylated PSNPs

Yellow-Green fluorescence (YG)-labeled 30 nm carboxylated PSNPs (C30) were purchased from MilliporeSigma (Cat# L5155; St. Louis, MO). These PSNPs (2.5% w/v aqueous suspensions) have a negatively charged carboxyl (COOH-) group and YG conjugated to their surface.
Supplementary references

