Gut and oral bacterial diversity of the lizard *Diploderma splendidum* investigated using metagenomic analysis

Zhige Tian
Yibin University

xiaoliang hu
Yibin University https://orcid.org/0000-0003-4237-1195

Dandan Gou
Yibin University

Yayong Wu
Yibin University

Peng Guo (ybguop@163.com)
Yibin University

Research article

Keywords: Diploderma splendidum, microbiota, metagenomic analysis, diversity

Posted Date: December 17th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-128688/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
[Read Full License](https://creativecommons.org/licenses/by/4.0/)
Abstract

Background

Gut and oral microbial communities are complex and play a key role in their co-evolution with their hosts. However, little is understood about the bacterial community in lizards. In this study, we first investigated the gut and oral bacterial community in Diploderma splendidum from Sichuan Province, China. Metagenomic analysis of feces and oral cavity samples showed distinct differences between Diploderma splendidum and Liolaemus parvus, and L. ruibali and Phymaturus williamsi species.

Results

Bacteridetes, Firmicutes, Proteobacteria and Fusobacteria were the most abundant phyla in fecal samples. However, the composition of the gut bacterial community of insectivorous lizards (Diploderma splendidum) exhibited unique abundance of phyla Proteobacteria and Chlamydiae when compared with L. parvus, L. ruibali and P. williamsi. Furthermore, Proteobacteria were abundant in oral cavity samples, followed by Actinobacteria, Chlamydiae and Firmicutes. Most striking was that the phylum Chlamydiae was most common in the oral cavity of Diploderma splendidum, when compared with a carnivorous lizard (Varanus komodoensis). In addition, more than 26 bacterial species were detected in the gut and/or oral cavity that were identified as potential human pathogens.

Conclusions

In this study, metagenomic analysis was carried out to reveal the gut and oral microbiomes, which brought new insight into the complex bacterial community and ecology in Diploderma splendidum.

Background

Diploderma splendidum, which is also called the Chinese Tree Dragon, and is the largest species among the 17 known lizard species, is widely distributed in and endemic to China. It mainly occurs in the Yangtze River Basin of southwestern China, including Yunnan, Sichuan, Chongqing and Hubei. It is frequently found at the forest edge and shrub or beside gravel piles and is good at climbing, strongly arboreal and active. They are exclusively insectivorous [1].

Vertebrates and invertebrates maintain complex relationships with microbial communities living within their gastrointestinal tracts and oral cavities [2, 3]. These gut microbes can affect behavior [4, 5], immune training [6], nutrition [7] and reproductive isolation [8], and influence the ecology and evolution of their host. At present, there are two important issues to investigate: 1) the microbial ecology of gut bacterial diversity, and 2) the way in which diet, altitude, physiology and genetics determine microbial population
The microbes of the oral cavity also coevolve with their hosts and adapt to the diverse conditions for colonization resistance [12].

In the present study, to analyze and clarify the gut and oral bacterial diversity of Diploderma splendidum, metagenomic analysis was carried out and typical microbial community features are mentioned.

Methods

Description of samples

During the Second Tibetan Plateau Scientific Expedition and Research, one of theme is that gut and oral cavity bacterial diversity of reptiles. For this, individuals of Diploderma splendidum were collected using lassos from Quebrada, located in the Laojun mountains, 110 km from Yibin city, Sichuan province in the summer of 2020. To collect wild fecal and oral samples, animals were placed individually in sterilized tubs. Sterile swabs were placed in RNase-free tubes, and transported with dry ice to the OE Biotech Co., Ltd. (Shanghai, China). Then, the lizards were released to the wild field.

DNA isolation and library construction

Total DNA was isolated from the samples using a QIAamp® Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions. DNA concentration and integrity were assessed by a NanoDrop2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and agarose gel electrophoresis, respectively. DNA was fragmented by S220 Focused-ultrasonicators (Covaris, USA) and cleaned up by Agencourt AMPure XP beads (Beckman Coulter Co., USA). Subsequently, libraries were constructed using a TruSeq Nano DNA LT Sample Preparation Kit (Illumina, San Diego, CA, USA) according to the manufacturer's instructions. The metagenome sequencing and analysis were conducted by OE Biotech Co., Ltd. (Shanghai, China).

Bioinformatic analysis

Sequences in the FastQ file were trimmed and filtered using Trimmomatic (v0.36) [13]. The post-filtered pair-end reads were aligned against the host genome using BWA (v0.7.12) [14] and the aligned reads were discarded. Metagenome assembly was performed using SOAPdenovo2 (v2.04) [15] after getting valid reads. Gaps inside the scaffold were used as breakpoints to interrupt the scaffold into new contigs (Scaftig), and new Scaftigs with length > 200 bp (or 500 bp) were retained. Open reading frame (ORF) prediction of assembled scaffolds was performed using prodigal (v2.6.3) [16] and translated into amino acid sequences. The nonredundant gene sets were built for all predicted genes using CDHIT (v4.6.7) [17]. The clustering parameters were 95% identity and 90% coverage. The longest gene was selected as the representative sequence of each gene set. Clean reads of each sample were aligned against the nonredundant gene set (95% identity) use Bowtie2 (v2.2.9) [18], and the abundance of the gene in the corresponding sample was counted. The gene set representative sequence (amino acid sequence) was annotated with the KEGG database with an e-value of 1e−5. The taxonomy of the species was obtained
as a result of the corresponding taxonomy database of the NR Library, and the abundance of the species was calculated using the corresponding abundance of the genes. In order to construct the abundance profile on the corresponding taxonomy level, abundance statistics were calculated at each level of Domain, Kingdom, Phylum, Class, Order, Family, Genus and Species.

Results

Description of the sequencing data

Fecal (DNA12_12) and oral (S30_1) samples were collected from five *Diploderma splendidum* individuals. We retrieved 80 632 436 (DNA12_12) and 102 079 564 (S30_1) total reads, respectively. After quality-filtering, 220 828 (DNA12_12) and 253 812 (S30_1) ORF reads with an average of 867.55 bp (DNA12_12) and 365.61 bp (S30_1) in length were obtained for the following analysis (Table 1).

Gut microbial diversity and community composition

The 10 most abundant phyla, families and genera in the fecal samples are shown in Figure 1 and 3. Four bacterial phyla (99.0% of the observed phyla) and 15 bacterial genera (89.8% of the observed genera) were significantly abundant in the lizard *Diploderma splendidum*. *Bacteroides* (63.7%) was the most predominant phylum in the fecal samples, followed by *Firmicutes* (23.3%), *Fusobacteria* (1.72%) and *Proteobacteria* (1.43%).

Interestingly, given their different diet, reproductive status and physiological parameters, it should be noted that the insectivorous species (*Diploderma splendidum*) exhibited unique abundance of the phyla *Proteobacteria* and *Chlamydiae* and genera *Clostridium, Odoribacter, Alistipes, Fusobacterium, Escherichia, Hungatella, Mycobacterium, Prevotella*, and *Chlamydia* when compared with *Liolaemus parvus, L. ruibali* and *P. williamsi*.

Oral cavity microbial diversity and community composition

The bacterial composition at the phylum level is illustrated in Figure 2 and 3, which shows that *Proteobacteria* (4.43%) was the most predominant phylum in the oral samples, followed by *Actinobacteria* (1.08%), *Chlamydiae* (0.55%), *Firmicutes* (0.43%) and *Bacteroidetes* (0.13%).

Additionally, a carnivorous lizard (Komodo dragon) exhibited the phyla *Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes* and *Fusobacteria*, and genera *Abiotrophia, Alicyclobacillus, Staphylococcus, Streptococcus, Clostridium, Bacillus* (phylum *Firmicutes*), *Corynebacterium* (phylum *Actinobacteria*), *Acinetobacter, Basilea, Escherichia, Klebsiella, Proteus, Providencia, Pseudomonas, Serratia* (phylum *Proteobacteria*), *Bacteroides, Parabacteroides* (phylum *Bacteroidetes*), and *Fusobacterium* (phylum *Fusobacteria*). These findings suggested that there was considerable diversity of bacterial species between *Diploderma splendidum* and *Varanus komodoensis*.
Interestingly, there was a remarkable difference in abundance between the gut and oral cavity with regard to the microbial composition. In the gut microbiome, *Bacteroidetes, Firmicutes, Fusobacteria* and *Proteobacteria* were the dominant phyla. However, oral bacterial composition was mainly aggregated in *Proteobacteria, Actinobacteria, Chlamydiae* and *Firmicutes* (Figure 4).

Potential human pathogenic bacteria

Notably, a total of 26 species in the gut and/or oral cavity were identified as potential human pathogenic bacteria. These have not been reported previously in wild lizards (Table 2).

Clostridium perfringens, Clostridium baratii, Clostridium botulinum, Fusobacterium mortiferum, Streptococcus pneumoniae, Citrobacter freundii, Pseudomonas aeruginosa, Staphylococcus aureus, Mycobacterium tuberculosis, Listeria monocytogenes, Chlamydia trachomatis and *Mycoplasma pneumoniae* were found in both gut and oral cavity.

Fourteen kinds of pathogen, *Fusobacterium russii, Prevotella denticola, Prevotella melaninogenica, Prevotella loescheii, Enterococcus durans, Streptococcus minor, Streptobacillus moniliformis, Lactococcus garvieae, Comamonas testosterone, Enterococcus cecorum, Desulfovibrio desulfuricans, Bartonella rattaustrialian, Yersinia pseudotuberculosis* and *Yersinia enterocolitica*, were found only in the gut.

Discussion

Reptiles are an ancient group with more than 10,000 species, over 60% of which belong to the clade Sauria, also known as lizards [19]. Lizards have a variety of ecological, physiological and behavioral characteristics, which may influence the ecology of their microbial communities in the gut and oral cavity [20]. However, few investigations are conducted on the microbial community of reptiles, which has been greatly ignored [21]. In this study, the microbial community in the gut and oral cavity of a lizard (*Diploderma splendidum*) was described using metagenomic analysis.

Diploderma splendidum live in the Yangtze River Basin of southwestern China, and only exist in China; they are widely kept as pets and are insectivorous. However, there is a lack of basic research on the microbial ecology of the lizard gut and oral cavity. In order to expand our knowledge of the gut and oral cavity microbial diversity of lizards, five individual lizards (*Diploderma splendidum*) were captured in the Laojun mountains of Yibin, Sichuan province. The five fecal samples and oral swabs were collected and pooled.

Previous studies of a variety of species have shown that various factors have a significant influence on the microbiota, including the host species, sex, and season [22]. As expected, diet has a significant effect on the bacterial community, with differentiation observed between insectivores (*Diploderma splendidum*), omnivores (*L. parvus* and *L. ruibali*) and a herbivore (*P. williamsi*). Given the differences in geography,
species and diet, there were marked differences in the bacterial communities in insectivorous, omnivorous and herbivorous species [22].

In the present study, Bacteroidetes (63%) and Firmicutes (23%) were the dominant phyla in fecal samples, accounting for 86% of the sequences. However, Firmicutes (46–53%) and Bacteroidetes (35–39%) in L. parvus and L. ruibali, and Firmicutes (62–74%) and Bacteroidetes (11–15%) in P. williamsi were found in fecal samples. Bacteroidetes are abundant in many mammalian gut communities, but a low abundance of Bacteroidetes are found in insectivorous mammals such as hedgehogs and Suncus murinus [23, 24]. The reason for the high relative abundance of Bacteroidetes in the insectivorous lizard needs further investigation.

The phyla Proteobacteria and Chlamydiae were present in the insectivorous lizard (Diploderma splendidum), but absent from the omnivores (L. parvus and L. ruibali) and herbivore (P. williamsi). In addition, Oscillospira, Ruminococcus and Desulfovibrio were present in Diploderma splendidum, which suggested that these bacteria possibly contribute to fiber digestion and anaerobic fermentation [25, 26]. This suggested that insectivorous Diploderma splendidum may occasionally be herbivorous.

Diploderma splendidum and Iguana species are popular pets in China and the United States, which affords them with opportunities to interact with humans. Therefore, there is a risk of transmission of pathogenic bacteria to humans. As previously described, two pathogens, Enterobacter and Salmonella, were present in a herbivorous lizard species (P. williamsi) [27]. In this study, 26 kinds of pathogens were found in Diploderma splendidum, which were potentially pathogenic to reptiles and may undergo zoonotic transmission to humans. These observations indicated that keeping Diploderma splendidum could lead to a high risk of potential spread of emerging infectious diseases through bite wounds, or water or food contaminated with feces.

In human and rat oropharyngeal samples, Firmicutes is the most common phylum [28]. Very few researchers have investigated the bacterial composition of the oral cavity of lizards. However, previous studies have isolated bacterial clones from oral and saliva samples using aerobic and anaerobic cultures [29–31]. A few cases have been reported of lizards biting humans, resulting in Staphylococcus aureus and Serratia marcescens infections [32, 33]. This study investigated the bacterial communities of the oral cavity of Diploderma splendidum. Proteobacteria, Actinobacteria, Chlamydiae and Firmicutes were the four dominant phyla in the oral cavity. The results suggested a greater difference in oropharyngeal bacterial composition than between humans and rats, in accordance with the host tropism of microbiota. Importantly, when compared with the Varanus komodoensis, all bacterial phyla were common, except phylum Chlamydiae, which was only present in Diploderma splendidum. Chlamydiae were found in the oral cavity; they can cause human diseases and are potentially a zoonosis. Given that metagenomic analysis is more sensitive than aerobic and anaerobic cultures, a greater variety of phyla and genera of bacteria were found in this study.

In summary: 1) the composition of bacterial community of the gut of an insectivorous lizard (Diploderma splendidum) exhibited unique phyla when compared with L. parvus, L. ruibali and P. williamsi, 2) more
than twenty-six pathogenic bacteria were found in Diploderma splendidum, and 3) phylum Chlamydiae and genus Chlamydia were only present in Diploderma splendidum. All of these findings suggested that metagenomic analysis is a useful tool for revealing gut and oral microbiomes, and it has brought new insight into the complex bacterial community and ecology in Diploderma splendidum, allowing development of a basic database for further investigation.

Abbreviations

L. parvus: Liolaemus parvus; L. ruibali: Liolaemus ruibali. ORF: open reading frame

Declarations

Ethics approval and consent to participate

All applicable international, national and institutional guidelines for animal care and use were observed. All the procedures were conducted according to the Animal Ethics Procedures and Guidelines of Experiment Animals Committee affiliated to Yibin University, Yibin, China.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the Doctor Launch Project of Yibin University (No. 2019QD09 and No. 2019QD10) and partly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA 20050201) and the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK05010105)

Authors’ contributions

TZG, HXL and GP conceived the project and GP, TZG and HXL obtained the funding. TZG and HXL wrote the paper. TZG and GDD performed the experiments and data analysis. WYY performed sample collection. All authors read and approved the final manuscript.
Acknowledgements

We are grateful to WYY for his participation in the collection of samples.

References

29. Goldstein EJ, Tyrrell KL, Citron DM, Cox CR, Recchio IM, Okimoto B, Bryja J, Fry BG: **Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive Komodo dragons (Varanus...**

Tables

Table 1 Sequencing data of samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Total_reads</th>
<th>Dehost_reads</th>
<th>ORF_Num</th>
<th>Mean_Len</th>
<th>GC_Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA12_12</td>
<td>80632436</td>
<td>63351756</td>
<td>220828</td>
<td>867.55</td>
<td>44.64%</td>
</tr>
<tr>
<td>S30_1</td>
<td>102079564</td>
<td>62876978</td>
<td>253812</td>
<td>365.61</td>
<td>45.68%</td>
</tr>
</tbody>
</table>

Table 2. potential human pathogenic bacterial species in faecal and oral cavity samples
<table>
<thead>
<tr>
<th>Faecal samples</th>
<th>Oral cavity samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridium perfringens</td>
<td>Clostridium perfringens</td>
</tr>
<tr>
<td>Clostridium baratii</td>
<td>Clostridium baratii</td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td>Clostridium botulinum</td>
</tr>
<tr>
<td>Fusobacterium russii</td>
<td></td>
</tr>
<tr>
<td>Fusobacterium mortiferum</td>
<td>Fusobacterium mortiferum</td>
</tr>
<tr>
<td>Prevotella denticola</td>
<td></td>
</tr>
<tr>
<td>Prevotella melaninogenica</td>
<td></td>
</tr>
<tr>
<td>Prevotella loescheii</td>
<td></td>
</tr>
<tr>
<td>Enterococcus durans</td>
<td></td>
</tr>
<tr>
<td>Streptococcus minor</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Streptococcus pneumoniae</td>
</tr>
<tr>
<td>Streptobacillus moniliformis</td>
<td></td>
</tr>
<tr>
<td>Citrobacter frendii</td>
<td>Citrobacter frendii</td>
</tr>
<tr>
<td>Lactococcus garviae</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Comamonas testosteroni</td>
<td></td>
</tr>
<tr>
<td>Enterococcus cecorum</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Listeria monocytogenes</td>
</tr>
<tr>
<td>Chlamydia trachomatis</td>
<td>Chlamydia trachomatis</td>
</tr>
<tr>
<td>Desulfovibrio desulfuricans</td>
<td></td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>Mycoplasma pneumoniae</td>
</tr>
<tr>
<td>Bartonella rattaustriali</td>
<td></td>
</tr>
<tr>
<td>Yersinia psuedotuberculosis</td>
<td></td>
</tr>
<tr>
<td>Yersinia entercolitica</td>
<td></td>
</tr>
</tbody>
</table>

Figures
The 10 most abundant phyla, families and genera in the fecal samples are shown in Figure 1 and 3.
The bacterial composition at the phylum level is illustrated

Figure 2

Proteobacteria (4.43%) was the most predominant phylum in the oral samples, followed by Actinobacteria (1.08%), Chlamydiae (0.55%), Firmicutes (0.43%) and Bacteroidetes (0.13%).
Proteobacteria (4.43%) was the most predominant phylum in the oral samples, followed by Actinobacteria (1.08%), Chlamydiae (0.55%), Firmicutes (0.43%) and Bacteroidetes (0.13%).

Figure 4
Oral bacterial composition was mainly aggregated in Proteobacteria, Actinobacteria, Chlamydiae and Firmicutes (Figure 4).