Genetic Mapping and Physiological Analysis of Chlorophyll Deficient Mutant in Brassica Napus L.

Na Lin
Southwest University

Yu min Gao
Southwest University

Xiao ke Ping
Southwest University

Qing yuan Zhou
Southwest University

Lie zhao Liu
Southwest University

Jia na Li
Southwest University

Jia ming Yin (✉️ yinjm700828@swu.edu.cn)
Southwest University

Research Article

Keywords: Brassica napus, Leaf colour, Mutant, Genetic mapping, Transcriptome

Posted Date: February 11th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1285843/v1

License: 📘 This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Leaf colour mutants have reduced photosynthetic efficiency, which has a severely negative impact on crop growth and economic product yield. There are different chlorophyll mutants in *Arabidopsis* and crops that can be used for genetic control and molecular mechanism studies of Chl biosynthesis, chloroplast development and photoefficiency. Chlorophyll mutants in *Brassica napus* are mostly used for mapping and location research but rarely used for physiological research. The chlorophyll deficient mutants in this experiment were both genetically mapped and physiologically analyzed.

Results: In this study, yellow leaf mutants of *Brassica napus* L. mutated by ethyl methyl sulfone (EMS) had significantly lower chlorophyll a, b and carotenoid contents than the wild type, and the net photosynthetic efficiency, stomatal conductance and transpiration rate were all significantly reduced. The mutants had sparse chloroplast distribution and weak autofluorescence. The granule stacks were reduced, and the shape was extremely irregular, with more broken stromal lamella. Transcriptome data analysis enriched the differentially expressed genes mainly in phenylpropane and sugar metabolism. The mutants were mapped to a 2.72 Mb region on A01 by using BSA-Seq and the region was validated by SSR markers.

Conclusions: The mutant chlorophyll content and photosynthetic efficiency were significantly reduced compared with those of the wild type. Abnormal chloroplasts and thylakoids less connected to the stroma lamella appeared in the mutant. This work on the mutant will facilitate the process of cloning the *BnaA01.cd* gene and provide more genetic and physiological information concerning chloroplast development in *Brassica napus*.

Introduction

Photosynthesis is crucial in crop production and provides energy and carbohydrates for plant vegetative and productive growth. Pigments capture light energy and convert it into the chemical energy ATP and NADPH, which are used for CO$_2$ fixation to synthesize carbohydrates. The primary photosynthetic pigment chlorophyll (Chl) in plants is responsible for light harvesting and drives electron transport in reaction centres [1]. Chl biosynthesis begins with glutamate to Chl a and Chl b and includes 20 different enzyme reactions [2]. Most Chl biosynthetic genes have been cloned and validated in plants [2, 3]. Furthermore, the expression of key plant Chl biosynthetic genes is tightly and coordinately controlled by transcription factors, which respond to environmental factors, including light signals, hormonal levels and nutritional supplies [4]. Mutation of biosynthetic genes or associated transcription factors introduces Chl content variation and malformed chloroplasts and impairs photosynthetic efficiency.

There are different chlorophyll mutants in *Arabidopsis* and crops that can be used for genetic control and molecular mechanism studies of Chl biosynthesis, chloroplast development and photoefficiency. In *Arabidopsis*, more than 27 genes responsible for Chl b synthesis starting from glutamyl-tRNA have been identified [2, 5]. More than 70 chlorophyll mutants exhibiting albino, chlorina, stripe, virescent, yellow–
green and zebra leaves were identified in rice [6]. Jung et al. established T-DNA pools for rice mutants, and 189 lines showed a chlorophyll-deficient phenotype that segregated as a single recessive locus in the T₂ generation[7]. Zhao et al. identified that HD domain-containing protein affects chlorophyll biosynthesis and chloroplast development from the white-stripe leaf3 mutant [8]. Zhang et al. identified an incompletely dominant gene located on chromosome 2BS flanked by the simple sequence repeat marker Xwmc25 responsible for yellow leaf colour [9]. Transcriptome analysis of yellow leaf colour in wheat indicated that DEGs were involved in Chl biosynthesis, carotenoid biosynthesis, photosynthesis, and carbon fixation [10]. Chlorophyll deficiency was also found in barley and wheat [11-13], maize [14-17], soybean [18-22] and cucumber [23, 24].

Oilseed rape, *Brassica napus* L., an amphidiploid species formed by natural hybridization of two diploid progenitors, *Brassica rapa* (AA, 2n=20) and *Brassica oleracea* (CC, 2n=18), provides 13%–16% of vegetable oil for food and biofuel globally [25, 26]. Different locus mutations leading to chlorophyll deficiency in *B. napus* were identified. Zhu et al. mapped a chlorophyll-deficient mutant to C06, and 18 markers cosegregated with the mutant locus [27]. A dominant chlorophyll-deficient locus was mapped on chromosome C08 spanning a 0.9 cM interval with 22 genes in *B. napus* [28]. Chu et al., using "iTRAQ-based quantitative proteomics analysis, identified 443 proteins related to photosynthesis, porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites, and carbon fixation [29]. The Fv/Fm ratio, qP and electron transport rate in the chlorophyll b-deficient mutant was higher than that in the wild type according to chlorophyll fluorescence and thermoluminescence tests in the chlorophyll b-deficient mutant in *B. napus* [30]. A spontaneous mutant from Qingyou 10 caused by 2 recessive loci and one locus was mapped to A01 in *B. napus* [27]. The chlorophyll-deficient mutant *Cr* was introduced into male sterile lines, and the yellowish colour was used as a phenotype marker to produce hybrid seeds [31].

In our research, we identified a chlorophyll-deficient mutant with yellow leaves by using ethyl methanesulfonate (EMS) treatment. The phenotype, photosynthetic character, chloroplast anatomy and expression profile were investigated. Furthermore, the mutant locus was mapped on Chr. A01 by using BSA-Seq.

Materials And Methods

2.1 Plant materials

A chlorophyll-deficient mutant (*B. napus* chlorophyll deficient, *BnaA01.cd*) was screened from the EMS-mutated population. The mutant population was constructed from the inbreed line Zhongshuang11 (ZS11), and seeds were soaked in 1% EMS solution for 12 hours. A mutant with yellow leaves was identified in the M2 generation and selfed for phenotype validation and crossing in the next generation. The inbreed lines ZS11 and *BnaA01.cd* were used for phenotype comparison and crossing with *Bna.cd*, respectively. Field growth was the same as usual.

2.2 Kinetic chlorophyll fluorescence imaging
Plants grown in climate chambers until the 7-leaf stage were used for fluorescence imaging. Chlorophyll fluorescence imaging was performed using a FluorCam PlantScreenTM phenotyping system (Photon Systems Instruments, Czech). Actinic light at 150 μmol of photons·m$^{-2}$·s$^{-1}$ and saturating pulse intensity at 100% were applied to 16-hour dark-adapted plants. The chlorophyll fluorescence of the wild and mutant plants was imaged based on the parameters F_0, Fm, Fv/Fm, PSII, ETR and Rfd.

2.3 Transmission electron microscopy

Leaf samples of wild-type ZS11 and mutant Bna.cd from the bolting stage were prepared by transmission electron microscopy. Leaves were cut into 0.5×0.5 cm sections and fixed in 2.5% (w/v) glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) at 4°C for 4 hours. Samples were further fixed in 1% OsO4 using the same buffer for 12 hours. Ultrathin sections of the samples and transmission electron microscopy observations were performed according to Yi et al. [32].

2.4 Chlorophyll and precursor content determination

Fresh leaves of ZS11 and Bna.cd mutant plants were sampled from the bolting stage used to measure chlorophyll content according to the method described by Wu et al. [33]. The same leaf was used for the 5 precursor content determination. The precursor δ-aminolevulinic acid (ALA) content was extracted and measured following Dei [34]. The determination of bilirubin (PBG) was performed according to [35]. The precursors of Proto IX, Mg-Proto IX, and Pchlide were extracted and measured according to the methods described by Rebeiz et al. [36].

2.5 Photosynthetic performance test

The leaves from the bolting stage were used for net photosynthetic efficiency, stomatal conductance, transpiration rate and intercellular CO$_2$ concentration tests using LI-6400 (LI-6400, Li-Cor, Lincoln, NE) according to the manual. Measurement was conducted at a saturating light intensity of 1,500 μmol photons m$^{-2}$ s$^{-1}$, with an air flow of 500 μmol air s$^{-1}$ and a fixed flux of 400 μmol CO$_2$ mol$^{-1}$ air. Each genotype with 10 plants and 3 fully expanded leaves was measured for each plant on a sunny day at noon, and the mean value was used for data analysis.

2.6 BSA-Seq and SSR mapping

The F$_2$ population was selfed from the cross of Bna.cd crossed with Z300. The yellow and green leaf bulks were prepared from the segregated F$_2$ population, each containing 15 plants with distinctive leaf colour. The two parents and two DNA bulks were sent to GENOSEQ (Wuhan, China) for BSA-Seq. Sequence library construction and SNP calling were performed as described by Zhao et al.[37].

Based on the BSA-Seq interval, SSR primers were developed to confirm the BSA-Seq-mapped region. The SSR loci were searched by the Tandem repeats finder [38] with a maximum of 6-bp motifs and a
minimum of 3 repeats. The test was performed by standard PCR with primer pair-specific annealing temperature followed by PAGE gel electrophoresis.

2. RNA extraction and transcriptome analysis

The yellow and green leaves from mutant and wild-type plants at the bolting stage were sampled for RNA extraction and cDNA library construction, with two biological repeats. The leaves were kept in liquid nitrogen for immediate RNA extraction. Total RNA was extracted using TRIzol Reagent and treated with RNase-free DNase I. cDNA library construction and sequencing on the Illumina HiSeq 4000 platform were performed by Biomarker Technologies (Beijing, China). After the removal of low-quality reads, the clean reads were aligned to the *B. napus* reference genome. Fragments per kilobase million (FPKM) values were calculated to estimate gene expression levels. FDR < 0.001 and fold change ≥ 4 were used to assess the significance of differences in gene expression. qRT–PCR primers were designed using Primer Premier 5 and synthesized by Sangon Biotech (Shanghai) Co. qRT–PCR was performed using a Bio–Rad CFX96 Real-time System with SYBR® Green PCR Supermix (CA, USA) in triplicate. BnActin7 was used as a control. Each reaction included 10 µl SYBR® Green PCR Supermix, 0.4 µL primer F, 0.4 µL primer R, 7.2 µL ddH2O, and 2 µL cDNA model.

Results

3.1 Mutant showed reduced chlorophyll content and weak florescence

Compared with the wild type, the mutant leaf displayed a yellow colour for the whole growth period (Figure 1 A, B). The mutant plants and seeds were smaller than the wild plants because of the reduced photosynthetic efficiency. Furthermore, only one-third of the mutant seeds germinated under the usual treatment. The F1 plants displayed a green leaf colour, but the segregation did not fit 3:1 because of the impaired germination of the mutant seeds. The pigment content of the mutant was significantly lower than that of the wild type in fully expanded leaves (Table 1). Chlorophyll fluorescence kinetic tests indicated that the F0 and Fm in the mutant were weaker than those in the wild type, especially in the fully expanded leaf (Figure 1 C, D). There were no large differences in the remaining florescence characteristics between the mutant and wild type (Figure 1 E-H).

Table 1 Photosynthetic pigments content in fully expanded leaves at five-leaf stage between mutant type (Mut.) and wild type (WT)

<table>
<thead>
<tr>
<th>Lines</th>
<th>Chl.a</th>
<th>Chl.b</th>
<th>Total Chl.</th>
<th>Car.</th>
<th>Chl.a/Chl.b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mut.</td>
<td>0.45±0.13**</td>
<td>0.08±0.02**</td>
<td>0.528±0.14**</td>
<td>0.119±0.045*</td>
<td>5.667±1.086**</td>
</tr>
<tr>
<td>WT</td>
<td>1.11±0.22</td>
<td>0.28±0.07</td>
<td>1.38±0.25</td>
<td>0.276±0.054</td>
<td>4.125±0.875</td>
</tr>
</tbody>
</table>

* Indicates significant difference at P <0.05 level. ** indicates a significant difference at the level of P <0.01.
3.2 Mutant had impaired chloroplast development

There were significant morphological and structural differences between the WT and mutant. The chloroplasts in the WT were smooth and spindly in shape, with abundant and well-ordered thylakoids. The thylakoids were obviously connected by stromal lamella (Figure 2 A, C). Compared with the WT, the chloroplast shape was less irregular and less connected between thylakoids (Figure 2 B, D). Furthermore, there were more osmiophilic granules and smaller starch grains in the mutant than in the WT.

3.3 Chlorophyll and chlorophyll precursors were reduced in the mutant

The spectrophotometer method was used to determine the content of chlorophyll and chlorophyll synthetic precursors in mutant and WT leaves. The mutant plant had significantly lower chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid contents than the wild type (Table 1). The contents of δ-aminolevulinic acid (ALA) and porphobilinogen (PBG) of chlorophyll synthetic precursors in the mutant were not significantly different from those in the WT. The contents of tetrapyrroles, such as protoporphyrin IX (Proto IX), magnesium protoporphyrin IX (Mg-proto IX), and prophytophyte chlorophyll (Pchlide), were significantly higher in the mutant than in the WT (Figure 3). ALA and pchlide were the early and later precursors in chlorophyll synthesis, respectively, suggesting that chlorophyll synthesis was impaired at the later step of pchlide conversion into chlorophyll a.

3.4 Mutant had reduced photosynthetic ability

The net photosynthetic efficiency, stomatal conductance and transpiration rate were significantly reduced in the mutant, but the intercellular CO$_2$ concentration was similar. The results indicate that the cause of the decrease in net photosynthetic efficiency was not the stomatal flaw, such as the decrease in stomatal conductance and insufficient supply of CO$_2$, but was because of the poor development of chloroplasts inside the mesophyll cells (Figure 4).

3.6 Mutant locus was mapped on the A01 chromosome

BSA-Seq mapped the candidate gene at 2.72 Mb intervals between 3.36 and 6.07 Mb of chromosome A01 (Figure 5A). A total of 502 genes were located in the candidate region, of which 277 genes contained mutated SNP sites that could cause changes in the protein sequence. SSR markers from 2.72 Mb were designed, and the mutant locus was mapped close to marker bna108 (Figure 5 B).

3.7 Transcriptome revealed DEGs related to the photosynthetic system

A total of 1273 differentially expressed genes were identified, of which 624 were upregulated and 649 were downregulated. Through KEGG analysis, it was found that the differentially expressed genes were mainly enriched in phenylpropane metabolism and sugar metabolism (Figure 6). Among the differentially expressed genes related to the photosynthetic system, the expression level of the BnaAnng22920D gene was severely reduced, and the expression levels of the BnaC02g42890D and BnaCnng19490D genes were both reduced to zero (Table 2). They encode the apoprotein Lhcb that binds to photosynthetic system I
(PSI I), important constituent subunits of photosystem I reaction centre subunit N (PSAN) and photosystem I reaction centre subunit F (PSAF), respectively. The qRT-PCR of DEG is shown in Figure 7. The up-regulated and down-regulated genes were provided in supplementary file 1 and supplementary file 2.

Table 2 Genes related to photosynthesis system in DEGs

<table>
<thead>
<tr>
<th>DEGs in RNA-Seq</th>
<th>TAIR ID</th>
<th>Gene annotation</th>
<th>FPKM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>WT</td>
<td>MUT</td>
</tr>
<tr>
<td>BnaAnng22920D</td>
<td>AT1G29930</td>
<td>chlorophyll A/B binding protein 1 (CAB1)</td>
<td>2098.33</td>
<td>469.501</td>
</tr>
<tr>
<td>BnaC02g42890D</td>
<td>AT5G64040</td>
<td>PSAN</td>
<td>958.068</td>
<td>0</td>
</tr>
<tr>
<td>BnaCnng19490D</td>
<td>AT1G31330</td>
<td>photosystem I subunit F (PSAF)</td>
<td>12.5111</td>
<td>0</td>
</tr>
<tr>
<td>BnaA06g13830D</td>
<td>AT1G19670</td>
<td>chlorophyllase 1 (CLH1)</td>
<td>21.4366</td>
<td>3.33526</td>
</tr>
<tr>
<td>BnaA09g26450D</td>
<td>AT1G30100</td>
<td>nine-cis-epoxycarotenoid dioxygenase 5 (NCED5)</td>
<td>1.35018</td>
<td>0.139216</td>
</tr>
<tr>
<td>BnaC04g52060D</td>
<td>AT2G46970</td>
<td>phytochrome interacting factor 3-like 1 (PIL1)</td>
<td>16.09779</td>
<td>0.840105</td>
</tr>
<tr>
<td>BnaA05g00920D</td>
<td>AT2G46970</td>
<td>phytochrome interacting factor 3-like 1 (PIL1)</td>
<td>42.0175</td>
<td>2.2501</td>
</tr>
</tbody>
</table>

Discussion

In our study, we mapped the mutant locus in Chr. A01, and the plant leaf remained yellow throughout the growth stage. *BnaC.ygl* had yellow green leaves but changed to green at later stages, and the mutant locus was mapped to Chr. C06 [27]. A single dominant leaf colour mutant was mapped to Chr. C08 [28]. A yellow-virescent gene regulating chlorophyll biosynthesis was mapped to A03, which was controlled by a single recessive nuclear gene [39]. *BnChd1*-1, one of the two recessive loci involved in chlorophyll biosynthesis in *B. napus*, was mapped to A01 [40]. Compared with the former mapped leaf colour mutant in *B. napus*, our mutant was mapped to A01, the same chromosome of *BnChd1*-1, but the *BnaA01.cd* leaf colour was more obvious compared with WT and there was no curl up for the adult leaf. *Brassica napus* is an allotetraploid, and it is difficult to derive the phenotype mutant because there are more gene family members compared with diploid crops. Currently, there are fewer leaf colour mutants in *B. napus* than in rice, and our mutant line and work will enrich leaf mutant resources, which will facilitate chloroplast development research.

Chlorosis is the phenotype of yellowish or light green leaf colour, which can be a genetic mutation or nutritional deficiency. The genetic mutation causing chlorosis in *B. napus* might only occur at the seedling stage or for the whole growth stage. All chlorosis was reduced in Chl content and impaired light
energy absorption during photosynthesis. Chlorophyll synthesis starts from the precursor glutamyl-tRNA, branched at protoIX. Magnesium chelatase, the key enzyme in this pathway, inserts magnesium atoms into protoIX synthesis, the direct precursor of Chl a and Chl b. In our chlorophyll synthetic precursor test, the contents of δ-aminolevulinic acid (ALA) and porphobilinogen (PBG) showed no significant difference between the mutant and WT, but the contents of Proto IX, Mg-proto IX, and Pchlide were significantly higher in the mutant. The accumulation of Proto IX, Mg-proto IX, and Pchlide not only impairs chlorophyll synthesis but might also increase ROS production under light illumination, which would be toxic for chlorophyll development [41, 42]. In the mutant, the chloroplast structure was dramatically changed, included an oval shape, fewer stromal lamellae and thylakoids, and more osmiophilic granules. These changes occurred in senescent leaves. The artificial chlorosis induced by treatment with thiourazi [43] and the yellowish xantha-3 mutants of barley [44] increased the appearance of osmiophilic granules. Young chloroplasts are actually free of osmiophilic granules, and with increasing age of the chloroplasts, osmiophilic granules either appear frequently at a small diameter or appear in a lower number with rather large size [45]. The SEM observations indicate that the mutant chloroplasts from young leaves might be in the senescence state.

BSA-Seq mapped BnaA01.cd in A01, spanning a 2.72 Mb region, and there were approximately 277 genes with SNPs. For candidate gene identification, we need more study for large population construction, as the germination of the mutant is lower than that of the wild one. The transcriptome data provide information about the leaf expression profile, which explains the phenotype and functional change in the mutant. The DEGs were enriched in phenylpropane metabolism and sugar synthetic system. The gene BnaAnng22920D, homologous to AT1G29930, encoding chlorophyll A/B-binding protein 1 (CAB1), was significantly downregulated. CAB1 binds chlorophyll from the LCHP complex [46], and CAB1 reduction leads to free chlorophyll degradation [47]. Furthermore, a reduction in the LCHP complex will indirectly influence thylakoid membrane structure and state transition (Pietrzykowska 2014). Two strongly downregulated genes, BnaC02g42890D and BnaCnng19490D, homologous to AT5G64040 and AT1G31330, code proteins PSAN and PSAF, respectively. PSAN functions in mediating the binding of the antenna complexes to the PSI reaction centre and core antenna, docking plastocyanin to the PSI complex [48]. PSAF participates in the efficiency of electron transfer from plastocyanin to P700 [49]. The above protein reduction will impair electron transfer and energy transition.

Conclusion

A mutant showing chlorophyll deficiency was identified in B. napus, and the mutant locus was mapped on A01 in the 2.72 Mb region. The mutant chlorophyll content and photosynthetic efficiency were significantly reduced compared with those of the wild type. Abnormal chloroplasts and thylakoids less connected to the stroma lamella appeared in the mutant. This work on the mutant will provide more genetic and physiological information concerning chloroplast development in Brassica napus.

Declarations
Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data are presented in the main manuscript and additional supporting file. Zhongshuang11 (ZS11) is a rapeseed variety selected by the breeding unit: Institute of oil crops, Chinese Academy of Agricultural Sciences, with variety (Zhongshuang 9 / 2F10) / / 26102. It was approved at the second meeting of the second national crop variety Approval Committee on December 2, 2008, with the approval number of guoshenyou 2008030. BnaA01. CD is mutated by ZS11.

Domestic individuals and units engaged in agricultural research may purchase approved varieties and conduct relevant research.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was supported by the National Natural Science Foundation of China (31971902, 32001509).

Author information

NA Lin and GAO Yu-min contributed equally to the work

Contributions

Liezhao Liu and Jiaming Yin designed this research. Na Lin, Yumin Gao, and Xiaoke Ping performed the experiments, analyzed the data. Na Lin wrote the main manuscript. Jiana Li provided experimental materials. Jiaming Yin provided experimental conditions. Qingyuan Zhou provided suggestions for the article. All authors reviewed the manuscript.

Acknowledgement

Not applicable.

References

30. Guo JW, Gu JK, Zhao YR, Du LF: Changes of photosystem II electron transport in the chlorophyll-deficient oilseed rape mutant studied by chlorophyll fluorescence and thermoluminescence. *J Integr...

Figures

Figure 1

Phenotypic and Chlorophyll fluorescence kinetics observation between mutant type (Mut) and wild type (WT) at the seedling stage.

Note: A, plants; B, leaf. C to H shows the fluorescence kinetics of Fo/Fm/Fv/Fm/ΦPSII/ETR/Rfd, respectively. Top: WT, Bottom: Mut.; Fo, initial fluorescence; Fm, maximum fluorescence; Fv/Fm, PSII maximum light energy conversion efficiency; Φ PSII, actual photochemical efficiency of PSII; ETR, apparent electron transfer efficiency; Rfd, fluorescence decay rate.
Figure 2

Comparison of chloroplast ultrastructure of WT and Mut.

Note: A and C are wild type; B and D are mutants; G: chloroplast grana lamella; S: starch grain; OG: Osmiophilic granules
Figure 3

Comparison of chlorophyll synthesis precursor content in wild-type and mutant.

Note: ALA, δ-aminolevulinic acid; PBG, bilirubin; Proto IX, protoporphyrin IX; Mg-proto IX, magnesium protoporphyrin IX; Pchlide, prophytophyte chlorophyll
Figure 4

4 Photosynthetic indexes between wild type (WT) and mutant type (Mut)

Note: Pn – Photosynthetic rate; Ci – Intercellular CO₂ concentration; Tt – Stomatal conductance; Gs – Transpiration rate.

Values are means ± standard error (n=5), **: significantly different at P < 0.01 level.
Figure 5

Distribution of G values on each chromosome (A) ($p = 10^{-12}$) and SSR bna108 marker pattern in the yellow and green plants (B).
Figure 6

Scatter plot of KEGG pathway enrichment for DEGs
Figure 7

The relative expression levels of DEGs related to photosynthesis system test by qRT-PCR in WT and Mut.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplementaryfile1.xls
- supplementaryfile2.xls