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Abstract

Autonomous driving has become an important research area for road
traffic, whereas testing of autonomous driving systems to ensure a safe
and reliable operation, remains an open challenge. Substantial real-world
testing or massive driving data collection does not scale, as the poten-
tial test scenarios in real-world traffic are infinite and covering large
shares of them in test is impractical, thus critical ones have to be prior-
itized. In this study, we establish a systematic approach for critical test
scenario identification with integrated tools and a workflow, to explore
the most critical test scenarios and facilitate testing of the autonomous
driving functions. We also demonstrate the effectiveness of our approach
by using two real autonomous driving systems from the industry by
collaborating with Volvo Cars. Our main contribution in this work is
a feasible and complete tool-chain for critical test scenario identifica-
tion that is general for testing different autonomous driving systems.
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1 Introduction

While autonomous driving is expected to improve traffic capacity and reduce
road accidents, testing of autonomous driving systems is prerequisite to ensure
the reliability and safety of such systems [1]. Inadequate or ineffective testing
could fail to discover potential defects and misbehavior in the system, and
consequently lead to severe accidents in the road traffic [2]. The fatal accident
caused by Uber’s autonomous vehicle is a typical example of such failures
where a cyclist in front was not detected and subsequently hit by the vehicle
at an intersection in Arizona, US, in 2018 [3].

Current approaches for testing autonomous driving systems that rely on
substantial real-world testing, or collecting real driving data at scale, are con-
sidered both inefficient and ineffective as they take an unpractical amount of
time to complete, and may still not cover rare traffic situations [4]. The regu-
lar road traffic, most of the time, is considered non-critical [5]. Therefore, new
approaches for testing autonomous driving systems based on critical scenario
identification are increasingly demanded [2, 6]. Herein, critical scenarios are
referred to as scenarios that can lead to collision or near-collision consequences
or situations, and are of interest for testing of autonomous vehicles.

Nevertheless, existing studies mostly present parts of a complete solution
for critical test scenario identification, for example, focusing on either simula-
tion or optimization of driving scenarios [7, 8]. Also, the reported studies are in
many cases function-specific, for example, by proposing interventions based on
a particular function module, like motion-planning for the highway scenario [9].
Therefore, the feasibility of such approaches for testing different autonomous
driving functions is unclear. In addition, previous studies tend to not val-
idate their approaches on real driving functions from industry, but instead
on some basic implementations based on existing platforms like MATLAB
Simulink [10], or using publicly available driving components like DeepDriv-
ing [2, 6]. The effectiveness of those approaches for testing real autonomous
driving systems, under real traffic conditions, is not demonstrated.

To tackle the aforementioned challenges and facilitate testing of different
autonomous driving systems, we have proposed a critical test scenario iden-
tification approach in our previous short paper [11]. We extend the approach
in the current work and generate critical test scenarios for two industrial
autonomous driving functions by partnering with the automaker Volvo Cars,
which include a parking function in the low-speed maneuvering domain and
a driving function in the high-speed maneuvering domain. Qur approach uti-
lizes three existing engineering tools (requirement and verification management
tool, SPAS simulation platform, and modeFrontier—process optimization and
automation tool) and present a systematic approach for identifying critical
driving scenarios through co-simulation with system implementations. The
results of applying our approach on the two autonomous driving functions have
demonstrated the effectiveness of this approach for identifying the most crit-
ical scenarios for testing. Consequently, the identified scenarios can be used
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to substantiate test cases for autonomous vehicles in both simulated and real-
world testing. To clarify our scope, the work does not aim to find the best
optimization algorithm, but to present a systematic approach for critical test
scenario identification, and to demonstrate the effectiveness of this approach
for testing real autonomous driving functions.

Our work provides a complete solution by integrating different components
into a feasible tool-chain as a whole, for critical test scenario identification for
autonomous driving. It enables an end-to-end workflow from the initial anal-
ysis of the system specifications, until generating a set of critical scenarios
that can be used for testing. The approach is generic as the tools involved are
exchangeable, and is not subject to any particular driving function, develop-
ment technique, simulator or application tools that might be intended. Thus,
the approach can, in principle, be used for critical scenario identification for
testing any autonomous driving systems. In addition, we provide evidence
showing that the approach is effective in identifying critical scenarios for test-
ing realistic autonomous driving functions. We also want to highlight that,
due to industrial confidentiality concerns, only partial data and result analysis
are presented, where sensitive information is removed, still demonstrating the
principal outcomes.

The rest of the paper is organized as follows. Section 2 describes concepts,
based on literature on critical scenario identification for testing of autonomous
driving systems. Section 3 explains the research method and context we use
for conducting the study. Section 4 and section 5 detail the case studies that
using the proposed approach for identifying critical test scenarios for two indus-
trial driving functions. We present discussions and limitations of the study in
Section 6, and conclude the paper in Section 7.

2 Terms and Related Work

In this section, we first present the terms and concepts used in this study,
then we summarize the literature on critical test scenario identification for
autonomous driving and provide a comparison to our work.

2.1 Terms and Concepts

In this part, terms like scenario and critical scenario are introduced, and their
composition as well as differentiation to other similar terms. Besides, relevant
concepts predicated on those terms are described to form a basis of this study.
Our interpretation and discussion of these terms and concepts are still based
on the context of autonomous driving, with a particular focus on testing.

2.1.1 Scenario

According to Ulbrich et al., a scenario is defined as a temporal sequence of
scenes, with actions and events of the elements that are involved within this
sequence [12]. By actions and events, they mean, for example, maneuvers like



Springer Nature 2021 B TEX template

4 Critical Test Scenario Identification for Autonomous Driving Systems

cut-out and avoid colliding with a vehicle ahead. Given this definition, a sce-
nario consists of at least one scene with corresponding actions and events, and a
scene, in this context, is embodied as the geo-spatially stationary environment,
dynamic elements, and a self-representation of all actors and observers.

Based on the definition proposed by Ulbrich et al. [12], Menzel et al. fur-
ther refined the definition of scenario into three different abstraction levels —
functional, logical, and concrete scenarios [13]. Specifically, functional scenar-
ios usually describe the involved entities and their behaviors using a natural
language; logical scenarios specify the state space of the functional scenarios
with the relevant parameters, parameter range and distribution; concrete sce-
narios are instantiation of the logical scenarios by assigning concrete values
for the parameters within the desired value range and distribution. The rele-
vant parameters are selected for logical scenarios to describe the environmental
constitution of the function scenarios, the behavior of the elements involved,
and the physical capabilities as well as constraints of the autonomous vehi-
cle. Bagschik et al. [14], have proposed a five-layer model which defines the
required parameters for the scenarios, including road-level, traffic infrastruc-
ture, temporary manipulation of the road and traffic infrastructure, objects,
and environment. Yet, the value range and distribution of the parameters,
as well as the possible relations between the parameters, have to be further
investigated to instantiate realistic concrete scenarios.

We adopt the definition of scenario proposed by Menzel et al. [13] in our
work, where functional scenarios are retrieved from the system specifications
and analysed to derive the parameters for logical scenarios. Subsequently, con-
crete scenarios are simulated and optimized to identify the most critical ones
for testing the autonomous driving systems. We have also observed that similar
terms such as elements, entities, objects, and traffic participants are often used
in the literature to refer to the different road users in the traffic, such as pedes-
trians, cyclists, vehicles of different types etc. We stick with the framework
from Menzel et al. [13] to use entities within the definition of scenario.

2.1.2 Critical Scenario

There is no universal agreement as yet on what constitutes a critical scenario,
although different interpretations in the literature share a high similarity.
Zhang et al. describe a critical scenario as a dangerous road situation that
may lead to an unsafe decision for the autonomous vehicle, and appropriate
countermeasures must be taken immediately to avoid collision [15]. In con-
trast, Kluck et al. focus more on the concrete scenarios level, and consider a
scenario to be critical if underlying parameter values cause a malfunction of
the autonomous driving system [7]. Hallerbach et al. propose critical scenarios
as the scenarios that need to be tested, which can be derived from both func-
tional and non-functional requirements (e.g., traffic efficiency, driver comfort
etc.) [16]. Herein we take the interpretation from Kluck et al., where critical
scenarios are defined as the scenarios with parameter set that have high prob-
ability of revealing unintended and unsafe behavior of the systems, which may
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cause a collsion or near-collision consequence of the vehicle and other entities
on the road traffic [7].

An integral part entailed in critical scenarios is how we quantify and evalu-
ate a scenario to be critical or not, thus the indication of criticality of a scenario
must be represented in a quantifiable way. Different surrogate measurements
for safety evaluation of traffic conflicts are used, for example, Time-to-Collision
(TTC), Post-Enchroachment Time (PET), and Time-to-Brake etc [17]. Among
these surrogate indicators, TTC is used the most according to a review study
by Aliaksei et al. [18]. Safety metrics can also be extracted from industrial stan-
dards and used as the criticality indicators, for example ISO-15622 for adaptive
cruise control [19], ISO-26262 for general automotive development and test [20],
and Responsibility-Sensitive Safety (RSS) for autonomous vehicles [21]. A
number of performance metrics including safety, functionality, mobility, and
drivers’ comfort are used for generating test scenarios for autonomous vehicles
by Feng et al. [20], and they use a combination of the maneuver challenge and
exposure frequency as the indicator of critical scenarios. Eventually, selection
of the criticality indicators must be specific with respect to a particular driving
system and the system specifications.

Furthermore, we have to differentiate critical scenarios from other similar
terms to avoid misunderstanding. Gambi et al. use accident scenarios from
police reports as critical scenarios for testing autonomous vehicles [6], while
Klischat et al. argue that an accident by a human driver may not necessarily be
a critical scenario and can be avoidable by others or autonomous vehicles [5].
Challenging scenarios and complex scenarios are often used alternately and
one may consider they are the same as critical scenarios. Riedmaier et al. [19]
claim a scenario is critical if the behavior of the system is evaluated after the
scenario has been executed either in real-world or in simulator as well as the
criticality being measured, and scenarios are challenging or complex only if
the scenario itself is evaluated in someway and classified as being challenging
or complex. Ponn et al. point out that challenging scenarios are not necessary
always critical scenarios, but more often lead to critical scenarios when they
are executed [9]. Lastly, we also differentiate the concept of critical scenarios
from corner case scenarios (also referred as edge cases). Karunakaran et al.
define an edge case as an unknown and unsafe scenario which is hard to predict
during the test and can lead to severe result for the autonomous vehicle [21].
Since critical scenarios can either be known or unknown scenarios, we believe
the edge cases are a subset of the critical scenarios that are of high interest for
its identification and testing the autonomous driving systems.

2.1.3 Scenario-based Testing

Scenarios are commonly used to substantiate test cases for autonomous driving
systems [22]. As stated by Kluck et al., a test case is the value assignments of all
relevant parameters of the scenario, which essentially aligns with the definition
of the concrete scenarios [7]. However, a test case should entail not only a
scenario, but also a pass-fail criteria to evaluate the resulting behavior of the
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system [2, 13]. An example test case for an autonomous lane-keeping function,
as given by Gambi et al. [2], is that the vehicle must follow a navigation path
on a generated road map. The test fails if the vehicle is not able to get to the
destination or drives out of the lane.

Scenario-based testing is highly accepted and plays a key role for valida-
tion of safety of autonomous driving systems [19]. It is inherently connected
to the concept of scenario as we have presented in the previous subsections,
and it examines the resulting behavior of the autonomous vehicle in terms of
interactions with the road infrastructure, with other road entities, and com-
pliance with the functional specifications as well as the safety regulations [8].
The scenario-based testing approach aims to reduce the test effort to a man-
ageable number of scenarios, by limiting the testing to meaningful scenarios
based on the testing budget [4]. The number of concrete scenarios can be
infinite due to the combinatorial explosion of parameter values [8], and identi-
fying all possible scenarios is difficult regardless of which approach is used [16].
According to Batsch et al., scenario-based testing usually runs in simulation
with Software-in-the-Loop (SIL), but can also be carried out with Hardware-
in-the-Loop (HIL), or in real-world with proving ground (also known as test
tracks in some studies) or regular road traffic [8].

Despite the remarkable benefits of using scenario-based approaches for test-
ing autonomous vehicles, identifying relevant scenarios for the system under
test remain the prerequisite, especially those critical scenarios that violate the
desired safety requirements [19]. Open questions still challenge us in regards
to what constitutes good test scenarios and how to systematically generate
them [6]; how to define and collect realistic test scenarios [22]; and how to
identify the critical scenarios for testing [15]. Menzel et al. propose many dif-
ferent sources that can be used for deriving test scenarios, which include, but
are not limited to, functional specifications, system boundaries, operational
environment, legal requirements, and real driving data collected [13]. While
common and safe scenarios without significant actions can be easily identified
and reduced, the success of a scenario-based testing approach is highly reliant
on its ability to find more critical scenarios within a given testing budget [23].
This is the core of the current study — to establish a complete tool-chain for crit-
ical test scenario identification and to employ it for testing of real autonomous
driving systems.

2.2 Critical Test Scenario Identification

The general idea of critical test scenario identification, as described by Ponn
et al., is that a concrete scenario is selected, executed, and evaluated with
the criticality metrics [4]. There are different approaches for critical scenario
identification, as reported in the literature, ranging from using search-based
algorithms, deep learning techniques, or using expert opinions etc. We catego-
rize the literature that we surveyed based on our interpretation and compare
them with our work in the following subsections.
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For a complete literature overview, we refer to the systematic literature
reviews by Zhang et al. [24] for critical scenario identification, and Rajabli
et al. [25] for software verification and validation, as well as the survey by
Riedmaier et al. [19] for scenario-based approaches, all for assessment of safety
of autonomous vehicles.

2.2.1 Knowledge-based Approaches

The knowledge-based approaches leverage expert knowledge to generate,
extract, or select scenarios for testing. This approach is not frequently reported
in the literature due to its evident constraints. As an example Ponn et al. [9]
involve experts from the autonomous driving domain for selecting parame-
ters of scenarios and assessing weight of the parameters as well as evaluating
resulting critical scenarios, for testing the autonomous driving systems.

The advantages of using this approach include the quick creation of an
initial catalog of test scenarios [19], yet the drawbacks are non-negligible. It
requires expert involvement and is labour-intensive, and may lack the diversity
and complexity of real-world scenarios, especially those accidents that impose
complicated situations and rarely happen [15]. In addition, the generation and
selection of scenarios might be subjective, where simple scenarios are ignored
but can still cause severe consequences. As a result, the derived scenarios are
often considered lacking evidence for proof of safety in real traffic [4].

As a comparison to our approach, we do not require any expert involve-
ment, and identification of the critical scenarios is automated by integrating
the existing engineering tools. Specifically, selection of scenarios is based on
optimization of the parameter space and the completed simulation results, and
thus is not limited or biased by subjective knowledge that has been acquired.

2.2.2 Data-driven Approaches

The data-driven approaches extract critical scenarios based on available data
sets that have been collected beforehand. The data can be presented in many
different forms, for example, scenario libraries, police accident reports, or sen-
sor data collected by test vehicles. Scenario extraction and selection techniques
and tools are then used for identifying critical scenarios from the data.
Among the published studies, Gambi et al. [6] generate effective and crit-
ical test scenarios for autonomous driving by reconstructing crash accidents
from police reports in simulation, using natural language processing. Zhang et
al. [15] introduce a tookit for extracting critical scenarios based on real traf-
fic accident videos and reproducing the scenarios in simulation. The extracted
scenarios are then used for safety assessment of the autonomous vehicles. Erdo-
gan et al. [22] propose an architecture to enable test scenario generation, where
test scenarios are first extracted from a video stream that contains real-world
sensor data, and then is stored in a structured database cluster with scenario
definitions and the corresponding measurements. A user interface is imple-
mented and included in this architecture to customize and adapt the conditions
for test scenario generation based on the aforementioned scenario database.
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Deep learning has been actively used for critical test scenario identifica-
tion through the studies that we surveyed. Ding et al. [26] train a generative
model for generating safety-critical scenarios by sampling through the param-
eters and rewarding the risky scenarios. The generative model gets a higher
reward when a riskier scenario is generated. Another study that uses rein-
forcement learning is reported by Karunakaran et al. [21] for automatically
generating scenarios and optimizing the learning towards the worst-case sce-
narios with respect to the RSS safety metrics. A few other studies that employ
deep learning techniques include Batsch et al. [8] using Gaussian Processes to
train and optimize the parameter selection towards the most critical scenarios
on the performance boundary, and Jenkins et al. [27] using a recurrent neural
network to generate accident scenarios for testing the autonomous driving sys-
tems based on the in-vehicle and vehicle-to-infrastructure data generated from
simulators. In a related application domain, Porres et al. [23] experiment with
online supervised learning to train a generative model for searching and select-
ing critical scenarios for testing the autonomous maritime collision avoidance
systems through operation.

Even though diverse techniques for extracting or generating critical scenar-
ios based on real driving data have been studied, limitations can be observed
and are described in these studies as well. A prerequisite of using such tech-
niques is a data set that is comprehensive [19], whereas it is well known that
collecting real driving data at scale is both time-consuming and expensive, but
still does not guarantee to include all corner cases [21, 28]. As highlighted by
Hallerbach et al. [16], the major drawback of using recorded data is the incom-
pleteness of the data set, thus we have to understand how the data is acquired
and how representative it is. The quality of the data can be affected by var-
ious factors such as the type of sensors used and how they are installed [4],
the location where the data is collected, and the fact that rare-occurring situ-
ations are difficult to collect [26]. After all, we still have to understand how to
extract and select scenarios given massive data collected [29].

In contrast, our work does not rely on collecting data from different sources,
and thus is not subject to the quantity or diversity of the data set. Instead,
we first analyse the function and the operational design domain (ODD) of the
system based on the system specifications. ODD is a concept that defines the
operational environment of the autonomous vehicles, and is used to derive test
scenarios and safety assessment of autonomous driving systems [30]. Then we
create an optimization model using the existing engineering tools to integrate
the parameters, the objective functions, and a simulation platform that runs
the scenarios as well as to record the results. The optimization model opti-
mizes scenario generation towards the objective functions for critical scenarios
using design of experimentation (DoE) [19]. DoE is a systematic approach for
analysing the relation between input parameters and output values as well as
how the effect (output) changes over variation of the conditions (parameter
sets). The DoE generation in our work represents the selection of parameter
values and creation of new test scenarios.
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2.2.3 Search-based Approaches

The search-based approaches employ search algorithms to optimize critical
scenarios from the operational design domain of the autonomous driving sys-
tem. This approach typically requires execution of the scenarios in simulation,
and an objective function that measures the criticality of the scenarios. The
search process evolves based on the parameter space and the objective function
value of the executed scenarios. Also, it usually limits the search to a certain
number of iterations based on the testing budget and computational resources
available. In fact, our approach falls into this category.

Klischat et al. [5] use evolutionary algorithms to optimize the drivable area
of the vehicle to generate complex scenarios for testing the motion planning of
the autonomous vehicles, while similar work is reported by Althoff et al. [31] to
generate safety-critical scenarios for collision avoidance of autonomous vehicles
by optimizing the drivable area as well. Besides, Buehler et al. [32] also employ
evolutionary algorithms for generating critical scenarios for functional testing
of an autonomous parking system. Specifically, genetic algorithms is a class
of evolutionary algorithms and is commonly used for search-and-optimization
problems. Gambi et al. [2] use genetic algorithms to evolve the generation of
virtual road networks for testing the lane-keeping function, and Kluck et al. [7]
propose an approach for test parameter optimization using genetic algorithms
and have employed it for testing an autonomous emergency braking function.

The advantages of using a search-based approach for solving optimization
of critical scenarios for testing of autonomous driving systems are prominent,
since the selection of parameter values is rather difficult prior to test and cov-
ering the entire parameter space is costly [4]. In addition, this approach does
not rely on collecting substantial driving data and is easy to implement. Still,
some limitations are also stated in the existing studies, including that gen-
erated scenarios may not be realistic in the real-world traffic, simulation of
the scenarios are often computationally expensive, and only low-dimensional
scenarios can be handled effectively in optimization [26]. Thus, other studies
such as Beglerovic et al. [33] is conducted to simulate and optimize test sce-
narios based on a light-weighted surrogate model instead of the real system,
Feng et al. [20] establish a sophisticated model of relevant parameters, met-
rics, and searching process for critical scenario generation, and Hallerbach et
al. [16] create a complete tool-chain for critical test scenario identification for
autonomous driving systems.

We believe that the search-based approach can well compensate for the
scarcity of sensor data and generate critical scenarios that can be used to
substantiate test cases for autonomous driving systems. While most of the
existing studies use either a simple implementation of the autonomous driv-
ing function based on engineering tools like MATLAB Simulink (e.g. Ponn
et al. [9]), or publicly available driving components such as DeepDriving and
Beam.Al by Gambi et al. [2, 6], for validating the approaches, their effective-
ness on realistic autonomous driving functions is not demonstrated. Besides,
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Fig. 1 Overview of the critical test scenario identification approach, consisting of
interconnected tools (left) which are used in the workflow (right). The figure is a reprint
from our previous work, and we refer to Song et al. [11] for more details of the approach.
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many of them are also function-specific, which is relevant to a particular func-
tion or operational domain for, e.g. parking system [32], motion-planning [5],
or highway scenario [33], and use only a limited set of scenarios for validation
from e.g. NHTAS [15] and Euro NCAP [7]. Our approach is generic in that
the tools involved are exchangeable and are not determined by the driving
functions, so it can, in principle, be used for critical test scenario generation
for any autonomous driving systems. We demonstrate the effectiveness of this
approach by using two real autonomous driving systems from industry. As
articulated by Hallerbach et al. [16] and Ding et al. [26], there exist very few
studies that really provide a complete solution for critical test scenario identi-
fication which are generic to different autonomous driving systems. The major
contribution of our work is to address such a gap and facilitate the testing of
autonomous driving systems.

3 Research Context and Method

In this section, we describe the research context and method we use for the cur-
rent study. We conduct the work on critical test scenario identification in the
autonomous driving domain using the design science paradigm [34], in which
we formulate the problem of critical test scenario identification by looking into
the existing literature and industrial practices, then we design the solution by
integrating the existing engineering tools and a workflow, and walidate it in
the industrial context using two real autonomous driving functions by collab-
orating with Volvo Cars. Lastly, we infer the potential usage of our approach
for testing of autonomous driving systems in general.

3.1 Research Context

We base the current study on the critical test scenario identification approach
that we presented briefly in our previous work [11] for testing autonomous
driving systems. As shown in Figure 1, the approach integrates three different
engineering tools and a workflow for optimization of critical test scenarios. The
identified scenarios can then be used to substantiate test cases for testing the
autonomous driving systems.

The three engineering tools are, (1) a requirement and verification man-
agement tool that is used for storing and analysing the system specifications;
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(2) an internal simulation platform — SPAS, that is developed by Volvo Cars
and used for early verification of the active safety and autonomous driving
functions; and (3) a process automation and optimization tool — modeFron-
tier, which is a commercial tool for process and design optimization. The tools
are exchangeable, meaning that we can substitute either of them with other
similar tools to cope with different technical environment or autonomous driv-
ing functions under test. For example, we can use a different simulator like
Carla [35] or AirSim [36] to simulate the scenario execution. Other simulators
for autonomous driving are presented by Kang et al [37] and Rosique et al. [38],
and Bhat et al. [39] discuss tools as well as methodologies for autonomous
driving systems during different engineering stages.

The workflow includes two main phases, see Figure 1 (right). In the first
phase, we start by analyzing the system specifications to understand the
functionalities and the operational design domain of the system. The system
specifications can be in different forms such as functional specifications, design
documents, and related standards or regulations etc. Based on that, we select
relevant parameters that constitute a driving scenario, and the value range as
well as the distribution of each parameter. Also, we define objective functions
that measure the criticality of the executed scenarios. Lastly, we generate an
initial suite of scenarios by sampling through the parameter space based on
the intended distribution and size of the initial test suite.

In the second phase, we create an optimization model in modeFrontier to
integrate the selected parameters, objective functions, and a simulator. The
optimization model is to optimize the scenario generation with respect to the
objective functions and identify the most critical ones. It executes the scenarios
in the initial test suites in simulation, and continuously explore the parameter
space as well as evolving through the completed scenario simulation. We also
configure the number of iterations for the optimization model in modeFrontier
based on the testing budget and computational resources available.

We base our study on the collaboration with our industry partner — Volvo
Cars, where they support us by providing access to the aforementioned tools
and two autonomous driving functions, namely autonomous driving function
and autonomous parking function. We replicate our approach on these two
functions for identifying critical scenarios for testing such systems. By having
access to the real industrial systems, we set up our approach and demonstrate
the effectiveness of it for testing using realistic autonomous driving functions.

3.2 Research Method

We conduct the study under the design science paradigm [34] and have mainly
conducted four steps as enumerated below. The problems of critical test sce-
nario generation challenges are conceptualized in the industrial context [11].
We report our design of the critical test scenario identification approach (steps
1 and 2 below), and validate the approach using two autonomous driving func-
tions from Volvo Cars (steps 3 and 4) and a potential usage context (step
4).
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1. For each autonomous driving function, we analyse the system specifications
and implementation through the requirement and verification management
tool, to understand the functionality and the operational design domain of
the system. We then identify the relevant parameters with the value range
and distribution of each parameter, and define possible objective functions
as well as the criticality thresholds for the autonomous driving function.

2. We explore the tool modeFrontier and create the optimization model there
by integrating the parameters, objective functions, and the SPAS simula-
tion platform. We design and include a MATLAB script in the optimization
model to trigger the scenario simulation in SPAS and to record the execu-
tion result since the SPAS simulation platform is an external simulator to
modeFrontier. Besides, we also configure the optimization algorithm, size of
the initial test suite, and number of iterations for the optimization model.

3. We replicate the optimization model from the previous step by selecting a
different optimization algorithm in modeFrontier. The purpose is to com-
pare the results of two different optimization algorithms and show the
generality of our approach to different optimization approaches. To clarify
here, the contribution of the work is not to find the best algorithm, but
to provide a complete approach for critical test scenario identification, and
generate critical test scenarios for real autonomous driving functions from
the industry.

4. We start the optimization process in modeFrontier, and debug the errors in
case the process fails or suspends. After the optimization processes finish,
we perform further analysis on the results in modeFrontier and export the
findings in tables and figures, which we present in section IV and V. The
identified critical scenarios are provided to the related engineering teams to
test and investigate potential flaws in the autonomous driving functions.

4 CASE I: Autonomous Driving Function

This section describes the work and results for the first case that uses the
proposed approach we present in Section 3. We aim to generate critical test
scenarios for an early version of an autonomous driving function from Volvo
Cars, which in this paper is referred to as the AD function (ADF).

4.1 Analyse System Specifications

ADF offers unsupervised in-lane driving in queue situations up to a specific
speed limit vy,.x, enabling the host vehicle to keep a safe distance to the
preceding vehicle within the lane. The cardinal functionalities of ADF can
be summarized as: (1) drive in lane, and (2) proactively adapt speed. These
requirements specify that the host vehicle shall stay in lane and maintain a safe
longitudinal and lateral distance to infrastructure, other vehicles and entities
on the road. In addition, the host vehicle shall comfortably control speed to
comply with the current speed limit.
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Figure (2) shows snapshots in a scenario at different time steps. It is sim-
ulated in the SPAS platform and demonstrates the functionality of ADF. The
host vehicle equipped with ADF' is marked in red, while others are visualized
in blue. At the beginning of the scenario, the host vehicle drives with a rela-
tive high speed compared to other vehicles. When driving around the bend,
the host vehicle detects the front vehicle in the same lane, thus ADF drives
the host vehicle to gradually decrease the speed. At the end of the scenario,
the host vehicle manages to adapt its speed to follow the front vehicle.

—5_—_;: ______ <3 ="

Fig. 2 A series of visualized scenes of the autonomous driving function (ADF)

4.2 Select Relevant Parameters

With the guidance of the requirement and verification management tool, the
operational environment for ADF is characterized, where it covers all kinds
of possible influential factors on the road, including traffic, vehicle status,
environment, infrastructure, other road users, user input, and driver behavior.

This case study selects parameters in two domains: (1) movable entities,
including dynamic behaviors of the host vehicle and other road users, and
(2) road topology, including highway infrastructure and traffic conditions. In
this section, we elaborate the parameter selection of movable entities as an
example.

Road users include all kinds of vehicles, pedestrians and animals. Since
the operational environment for ADF is on the highway, pedestrians and ani-
mals rarely appear. At the current stage, only vehicle models are taken into
consideration for simplicity sake. The vehicles in the ADF function can be
divided into three categories: host vehicle, lead vehicle, and other vehicles. We
denote the vehicle set by V = {V};,,V,V1,..., Von }, N € Z, where V}, and V,
represent the host and lead vehicle, while V,1,...,V,ny are other vehicles on
the road. The simulation period of each scenario is set to 7', unless a colli-
sion happens to trigger an early termination. In addition, parameters for each
movable object are analyzed in four aspects to define a scenario: initial posi-
tion, velocity, acceleration profile, and number of vehicles. In what follows, we
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denote the position, velocity and acceleration of vehicle-i at time step-t by
p;(t) = [pF(t), pY(t)],vi(t) and a;(t). Specifically, the velocity and acceleration
are expressed as scalars since only the longitudinal information are of interests
in the case.

4.2.1 Initial position

The initial locations of vehicles are selected, including the longitudinal and
lateral positions along the road. Several constraints are defined to limit value
selections. Each vehicle should keep a safe distance to others. The two-second
rule, which a rule of thumb estimating safe distance at any speed for vehi-
cles, is set as the baseline to deduce minimal initial longitudinal distance
Ip§ (to) — pf(to)| > diy,s Vi, € V. Also, to limit the scope of a scenario, we
define a distance range between head-most vehicle and back-most vehicle in
a simulation scenario, and its upper limit is denoted by D .x. Regarding the
lateral distance, the vehicle must leave a d” . = 1.5m space when considering
regular road width for a freeway of 3.5m [40], i.e., [p] (t) —p§(t)| > d};,, Vi, €
V.

4.2.2 Velocity

ADF provides the nominal function only in situations when the host vehicle’s
velocity is lower than a specified level, i.e., vy, (t) < Umax- In order to evaluate
ADF’s performance, the host vehicle should be able to detect, catch up and
follow the lead vehicle. For this reason, the host vehicle should be in the right
level of proximity to the lead vehicle, which allows the lead vehicle to be
detected at the initial stage of a scenario. In addition, the initial velocity
of the lead vehicle should follow vy, (tg) < vy, (to), otherwise the ADF will
be deactivated and switched to human maneuver mode. Moreover, to enable
driving properly on the highway, the minimum speed for all vehicles is set to a
specified level vpin. According to Abuelenin et al. [41], the traffic velocity on
the road approximately complies to a normal distribution, and thus it is used
to define the speed in scenario generation.

4.2.3 Acceleration

We restrict the acceleration of all vehicles on the road with |a;(t)| < 3m/s%,i €
V at each time step during the simulation, based on the real-world traffic
data [42]. Besides, the longest acceleration period is restricted to 3 seconds.
Acceleration values are sampled from a uniform distribution.

4.2.4 Number of vehicles
The number of vehicles on the road is jointly decided by d®. ., Dyax and the

min>
length of a vehicle. Each scenario has |V| = N + 2 vehicles. Considering the
special scenario when there is only one lane in the road, to respect the safe
distance, the vehicles on the simulated segment of the road cannot approxi-

mately exceed 10. The upper limit on vehicle number also benefits in reducing
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the design space and accelerating the optimization process. Moreover, to make
sure there are enough vehicles on the road to formulate a critical scenario, the
minimal number of vehicles is set to 5. Thus, the number of vehicles defined
in a scenario is given as 5 < |V| < 10.

4.3 Define Objective Functions

We define the objective function from two perspectives to extract critical
scenarios, namely vehicle behavior and driver reaction. For vehicle behavior,
criticality is defined as the closeness to an accident, of which TTC is used as
an indicator. TTC is considered as an objective function which should be min-
imized. A threshold time (ATinres) i set to distinguish critical scenarios from
non-critical ones.

Regarding the driver reaction, ADF should ensure the driving comfort as
much as possible. For this reason, jerk, measured as the rate of change in
acceleration, is selected as another objective function to evaluate performance.
When the jerk value is larger than +4m/s3, it would be not acceptable for most
vehicles [43]. Thus, we try to maximize the absolute value of jerk to find the
critical scenarios and set |G¢hres| = 4m/ 53 as a threshold for the corresponding
scenario to be considered as critical.

Both TTC and jerk are evaluated at each scene and are updated by time
frames. We select the extreme values of TTC and jerk within a simulation
period to represent the criticality of a scenario. For this reason, the simulation
will not be terminated prematurely if the value of TTC or jerk has exceeded
the threshold, unless a collision is detected.

4.4 Generate Initial Test Suite

The DoE of this case study is formulated by the given parameters and con-
straints in Section 4.2. To generate a test suite, we apply MATLAB to translate
the specifications in the requirement and verification management tool, and
send the outputs to modeFrontier for DoE generation. ModeFrontier has dif-
ferent approaches for design space exploration, and in this study, the Space
filler DoE is leveraged to guide the test scenario generation. This approach
gives the most uniform filling of the design space, where the risk of missing
corner cases can be mitigated. Regarding the sampling method, Latin Hyper-
cube Sampling (LHS) is applied to generate random design configurations. In
addition, an initial test set is generated as the input for the initial evaluation.
The size of the initial tests is set to 50.

4.5 Create Optimization Models

The optimization process in modeFrontier follows the scheme as discussed in
Figure 1. First, a test scenario in the SPAS platform is specified with initial
parameters, including road, traffic, and vehicle information. These values are
initialized in MATLAB and used for the SPAS simulation. At the end of the
simulation, results of objective functions are sent to modeFrontier, where the
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Fig. 3 modeFrontier optimization model for the ADF

data is parsed and analyzed. Subsequently, it generates a new scenario with
distinct parameter values based on an optimization algorithm, which works as
the next test scenario for the SPAS platform. After the specified number of
iterations, the entire optimization process ends, with critical scenarios being
analyzed and extracted. Figure 3 shows the modeFrontier optimization model
in CASE I for the ADF. The block on top generates parameter values for a new
scenario in modeFrontier by exploring the parameter space. The sub-blocks
inside represent different aspects that need to be specified for a test scenario.
Further, the values are transferred into MATLAB in the middle block, where
the SPAS simulation is performed. In the end, the blocks in the bottom are
used to determine optimization objectives. It carries out optimization based
on the history simulation results.

Two optimization algorithms, namely Multi-Objective Simulated Anneal-
ing (MOSA) and pilOPT, are selected to perform optimization, respectively.
The optimization models for algorithms are created separately, and Figure 3
is an example of the model how it looks. The results and performance are
compared. pilOPT is an in-house developed algorithm in modeFrontier, which
can effectively handle multi-strategy searching problem and minimizing the
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amount of time and computational resources required’. It combines the advan-
tages of local and global search algorithms to get the optimum solutions. In
contrast, MOSA is a heuristic searching algorithm, which is regarded as the
benchmark algorithm to be compared with pilOPT.

4.6 Run Simulation and Optimization

After creating the optimization model and setting up the simulation environ-
ment, the optimization process is started in modeFrontier. The number of
optimization iterations is determined mainly based on computational resources
available and is set to 300 in this case. Higher intensive grid search can be
performed with more powerful computing resources, although the number of
available software licenses of commercial tools may also be limiting. After
running the simulation and optimization, the results are saved for further
analysis.

4.7 Identify Critical Scenarios

Figure 4 shows the simulation results for each test scenario during optimization
by MOSA and pilOPT, and the relationship between TTC and jerk value
are plotted. In the figure, sequence information of optimization iteration is
represented by the change of colors (i.e. blue the earlier iterations, and towards
red means the later iterations).
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Fig. 4 modeFrontier optimization results from the autonomous driving function (ADF)
with (a) MOSA and (b) pilOPT algorithms. Each dot represents a test scenario. The lines
depict the borders of the critical scenarios, while scale labels are left out for confidentiality
reasons. Colors indicate the sequence number of the iterated simulations.

For the MOSA algorithm, we observed that there is a clear boundary among
test scenarios with very low jerk values. In addition, another boundary exists
to partition test scenarios whether their TTC values exceed ATipes Or not.
For test points with low jerk values, the TTC values are mostly over ATipyes,
indicating that in those test scenarios, the host vehicle does not experience

Yhttps://engineering.esteco.com/modefrontier/
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the sharp acceleration process, thus being obvious safe cases. According to the
definition of critical scenarios, if a test scenario has |a;(t)| > |athres|,? € V, it is
considered a critical scenario. Therefore, quadrants 1, 2 and 3 in Figure 4 (a)
are critical scenarios. In the figure, points with different colors are randomly
distributed, which means no distinct region feature and difference emerge with
the optimization process.

In Figure 4 (b), there is no obvious boundary on either axis, but the figure
is divided into two groups. Test scenarios in the first group, locating on the
upper part of the figure, has remarkable high values of jerk. The number of
critical scenarios are summarized in Table 1 to compare the difference between
MOSA and pilOPT. The amount of scenarios caused by violating TTC and
jerk constraints are not summing up the total amount, since there are some
scenarios, where both criteria are critical. We conclude that, in this case study,
pilOPT has a better performance in finding critical scenarios compared to
MOSA, especially with respect to jerk. This is however not our primary focus
here, and optimization algorithms have to be further explored.

Table 1 number of critical test scenarios with respect to the objective functions

MOSA | pilOPT
jerk 33 87
TTC 18 28
total 45 95

5 CASE II: Autonomous Parking Function

In this section, we describe the work and result for the second case that uses the
proposed approach we present in Section 3 to generate critical test scenarios
for an early version of an autonomous parking function from Volvo Cars.

5.1 Analyse System Specifications

The Autonomous Parking Function (APF) aims to detect and park the vehicle
into a feasible parking slot between two stationary vehicles autonomously,
where a driver is not required. The function should be able to park the vehicle
in both parallel and perpendicular slots, either reversely or forwardly.

The case study APF version supports only the rearward parking in parallel
slots (i.e. parking slots that are parallel to the road direction) where the park-
ing manoeuvre is performed mainly in three steps. First, the vehicle drives at
a low speed and passively scans the empty slots using the ultrasonic sensors
that are deployed on the front side of the vehicle. Second, the vehicle identifies
the target slot and performs motion planning to park the vehicle in it without
colliding the vehicles around. Lastly, the vehicle starts to actuate the rear-
ward parking manoeuvre by controlling the steering wheel, propulsion, shifting
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gear and braking, and follows the trajectory that is computed in the previ-
ous step. When the vehicle reaches the final position that has been planned, it
deactivates the parking function and sets a brake torque to stop the vehicle.

Figure 5 illustrates the function and operational scenes of APF. Specifi-
cally, five vehicles (numbered 2-6 and in blue) are parked parallel to the road
direction and remain stationary. The host vehicle (i.e. numbered 1 and in red
— the vehicle with APF installed, also known as ego vehicle) first drives from
the left and passes the stationary vehicles, it scans and identifies an empty slot
between the rear vehicle (4, referred as V,.) and the front vehicle (5, referred
as V). Then APF reversely parks the host vehicle into the slot without collid-
ing with other vehicles and stops at a position that is feasible subject to the
physical constraints such as the slot length and the maximum steering angle
the vehicle can complete. In an optimal situation, the host vehicle ends at the
center of the parking slot with a sufficient distance to both V. and V, and the
vehicle stands parallel to the parking slot.

Fig. 5 A series of visualized scenes of the autonomous parking function (APF)

5.2 Select Relevant Parameters

After analysing the system specifications and current design of APF by using
the requirement and verification management tool, we identify two parameters
that are relevant for constituting a test scenario for APF, namely slot length
and angle of the stationary vehicle.

Slot length describes the actual length of the parking slot and is the primary
parameter that determines whether a parking slot is feasible or not. Buehler
et al. [32] adopted both the slot length and slot width as the two parameters
that depict the parking space, and use them to explore critical test scenarios
for an autonomous parking system. Given the current design and the opera-
tional design domain of APF, we presume a sufficient slot width in the current
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study, and thus it is not a valid parameter to optimize for critical scenario
identification.

Based on the setup in Figure 5, slot length can be quantified and adjusted
by changing the position of either V, or Vy on the coordinate system of the
simulation platform. Herein we select the position of V; (referred as PoVy) as
the derived parameter for optimizing slot length. The value range of slot length
includes both a lower bound — the minimum slot length APF should handle
without colliding the stationary vehicles, and a upper bound — an adequate slot
length that APF manages while keeping a sufficient distance to the stationary
vehicles and a considerable yaw angle to the parking slot. Due to confidentiality
concerns, we do not report the specific values here.

The angle of the stationary vehicle represents the yaw angle rate of the
stationary vehicles (i.e. V, and Vy), and is a parameter that determines the
shape of the parking slot as well as the motion planning of APF. Since we
here focus on rearward parking, and the slot length is generally larger than
the standard parking slot length, we consider the yaw angle of Vy having most
impact (referred as AnVy). The value range for this parameter is set to [—3°, 3°]
according to the ISO-16787 standard [44] which is a standard specification for
testing autonomous parking functions and is up to each nation to implement.
According to this standard, a vehicle should remain within [—3°, 3°] to the
central line of the parking slot after completing the parking maneuver. Thereby,
we take this standard specification as a reference for setting AnV;.

5.3 Define Objective Functions

The basic acceptance criterion for a parking scenario, according to ISO-16787
standard [44], includes that the host vehicle should keep a minimal 0.3 m
distance to other vehicles around and standstill with a yaw angle within £3° to
the central line of the parking slot. We consider scenarios that are beyond these
two criteria critical and should be identified as critical test scenarios for APF.
Based on these two criteria and the setup shown in Figure 5, the distance to
V, (veferred as DtV,) and Vy (referred as DtVy) should be minimized through
optimization to identify the scenarios with less than 0.3 m distance to either of
them. In addition, the yaw angle of the host vehicle (referred as AnV},) needs
to be optimized to identify the scenarios that end with an angle beyond £3°.
Nevertheless, we cannot have all aforementioned objective functions in one
optimization model due to the natural conflicts between them. For example,
minimizing DtV, is essentially maximizing DtV since these two vehicles are
located on the two end sides of the parking slot. Thus, these two objective
functions have to be separated into two different optimization models. In addi-
tion, we cannot maximize and minimize AnV} at the same time to identify
critical test scenarios that are greater than 3° and those lower than —3°. Thus,
these two objective functions have to be separated in two different optimiza-
tion models as well. The resulting set of objectives are four, hence lead to four
optimization models with two objective functions each as shown in Table 2.
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Table 2 modeFrontier optimization models and corresponding objective functions for APF

Model | Objective function 1 | Objective function 2
1 minimize DtV maximize AnVj,
2 minimize DtV minimize AnVj,
3 minimize DtVy maximize AnVj,
4 minimize DtV minimize AnV},

5.4 Generate Initial Test Suite

We generate an initial set of test scenarios in modeFrontier to enable further
optimization of the parameters towards the most critical scenarios. Based on
the two parameters we select (i.e. PoVy and AnVy) and the objective functions
we define, we first compute the size of the initial test suite using the rule of
thumb for DoE [45], as shown in Equation 1, where N, is the number of
parameters and Np; is the number of objective functions. As for APF, the
size of the initial test suite is eight, given two parameters are selected and two
objective functions are defined for each optimization model.

Initial suite size = 2% Npqr * Nop; (1)
Next, an initial suite of test scenarios can be generated by sampling through
the parameters based on the intended distribution. However, the realistic dis-
tribution for both DtV,. and AnV}, are unclear, and are difficult to model or
predict, so we generate the initial set of test scenarios with the Latin Hypercube
Sampling (LHS) strategy and a uniform distribution. In LHS, the parame-
ter space is divided into equal parts with respect to the target sampling size
(i.e. the size of the initial test suite) and the sampling position is randomly
chosen according to the parameter distribution [8]. LHS is considered supe-
rior to other sampling approaches like random sampling and ensures that the
entire parameter space is covered as evenly as possible [8]. As there is no such
real distribution for the selected parameters provided, we also use the uniform
distribution to assure every parameter value interval is equally likely.

5.5 Create Optimization Models

We create the optimization models in modeFrontier by integrating the selected
parameters, the objective functions, and the SPAS simulation platform. Similar
to Figure 3, the parameters are defined as inputs to the optimization model
and are used to generate scenarios for simulation. An initial set of values for the
parameters are sampled preliminary with LHS and are considered the initial
test suite to enable further optimization of critical test scenarios. The objective
functions are the output of the optimization model and are optimized based
on the parameter space and the completed scenario simulation.

We configure the number of optimization iterations to 80 based on the
testing budget and computational resources available. In other words, the opti-
mization model first runs the initial test scenarios (i.e. 8 scenarios) in the SPAS
simulation platform and track the value of the objective functions. Then the
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optimization model optimizes the selection of parameters for another 72 itera-
tions based on the completed simulation results. Parallelization of optimization
is possible in modeFrontier, given enough computational resources are avail-
able. Lastly, we select the optimization algorithm in modeFrontier based on
our previous experience (i.e., Section 4) where pilOPT was used. In addition,
we also replicate two optimization models (1 and 3 in Table 2) using MOSA to
compare two different optimization algorithms and demonstrate the generality
of our approach in using different optimization strategies. Thus, we create six
optimization models in total, as shown in Table 3. To clarify again, we do not
aim to find the best optimization algorithm in this study, but to integrate the
entire tool-chain and a workflow for critical test scenario identification.

Table 3 modeFrontier optimization models and results for APF. By results, we mean the
number of critical test scenarios identified with respect to the objective functions.

Model | Objective function 1 | Objective function 2 | Algorithm | Iteration | Result
1 minimize DtV maximize AnV}, pilOPT 80 41
2 minimize DtV maximize AnV}, MOSA 80 40
3 minimize DtV, minimize AnV}, pilOPT 80 35
4 minimize DtV maximize AnVj, pilOPT 80 40
5 minimize DtVy maximize AnV}, MOSA 80 29
6 minimize DtVy minimize AnV}, pilOPT 80 30

5.6 Run Simulation and Optimization

We start the optimization models in modeFrontier and the optimization pro-
cess runs automatically. For each optimization iteration, the simulation result
is recorded and optimized with respect to the objective functions. After all
iterations completed, the optimization process terminates and full results are
saved. Since scenarios are simulated in the SPAS simulation platform and
are triggered from modeFrontier, we have set a maximum time for a single
simulation session to avoid suspending the entire optimization process.

5.7 Identify Critical Scenarios

The result of the optimization models can be visualized in modeFroniter using
different charts or statistical analysis tools, and be exported in many different
formats. As mentioned earlier, we create six optimization models for APF and
each model consists 80 evaluation iterations. By filtering the results with the
criticality thresholds we define, the optimization models have identified 29 to
41 critical scenarios, as indicated by the last column (i.e. Result) in Table 3.
The critical scenarios are identified exclusively on one of the objective func-
tions — AnV}, — and no critical scenarios identified for both DtV,. and DtV}.
As shown in Figure 6 (a) — the result of optimization model 1 from Table 3
for minimizing DtV,. and maximizing AnV}, using pilOPT, no critical scenario
(i.e. < 0.3 m) is identified in the DtV, dimension as all scenarios resulted in a
sufficiently large distance for DtV,., which is considered as safe according to the
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industrial standard. This indicates the the early implementation of the func-
tion we used is conservative on the distance to other vehicles. In contrast, 41
critical scenarios are identified based on the AnV} which are greater than 3°
to the central line of the parking slot.

Furthermore, Figure 6 (b) shows the correlation between parameter AnV;
and the objective AnVj},. The result indicates that AnVy does not have a general
effect on AnV}, and it is randomly distributed regardless the value of AnVy.
In contrast, an explicit pattern is drawn on PoVy and AnV;, in Figure 6 (c),
in which AnV), keeps increasing when PoV; decreases. When PoVy is lower
than a specific value, AnV}, is over the criticality threshold 3° and scenarios
are identified as critical scenarios.

DtVr (m)
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AnVh (degree)

AnVh (degree) AnVf (degree) PoVf (m)

(a) Optimization result of critical (b) Critical scenarios optimized on (c) Critical scenarios optimized on
scenarios for both AnVh and DtVr AnVf (i.e., angle of front vehicle) PoVf (i.e., position of front vehicle)

Fig. 6 Result of minimizing DtV,. and maximizing AnV}, using pilOPT. The dash line in
the sub-figures is the criticality threshold for AnV}, and the dots are the scenarios executed
in the simulation. Scenarios on the right side of the dash line in sub-figure (a) and above the
dash line in sub-figure (b) and (c) are the critical scenarios identified on with AnV}, larger
than 3°. The scale of PoV} in sub-figure (c) is removed for confidentiality reasons.

The results are consistent when using other optimization models with dif-
ferent combination of objective functions. We identify critical scenarios on
AnV}y, only and the visualized results clearly indicate that AnVj} gets larger
and exceeds the criticality threshold when PoV} declines. The observations
suggest that adapting the slot length and angle of the stationary vehicle does
not generate critical test scenarios for APF with respect to the distance to
the stationary vehicles. However, both of them lead to critical test scenarios
where the angle of the host vehicle exceeds 3°. A clear trend is observed on the
slot length that, smaller slot length generally increases the angle of the host
vehicle, which means a bad orientation to the parking slot after the parking
maneuver is done.

Lastly, pilOPT generally identify more critical scenarios than MOSA for
APF in this case, although there are no significant differences between them
consistently. For the optimization models that minimize DtV, and maximize
AnVj,, pilOPT identifies 41 critical scenarios and MOSA identifies 40. As for
the models that minimize DtV and maximize AnVj,, pilOPT identifies 40
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critical scenarios where MOSA identifies 29. An observation is that pilOPT
performs better than MOSA according to the results, while further comparison
between these two algorithms are required. Since we do not aim to address the
best optimization algorithm in the current study, we have demonstrated that
our approach is effective in identifying critical test scenarios and is general to
different optimization algorithms or strategies as well.

6 Discussion

In this paper, we extend an approach for critical test scenario identification
for autonomous driving and have used it for testing real autonomous driving
systems. We argue that testing all possible driving scenarios in real road traffic
is impractical, as it is expensive, time-consuming, and may still not cover all
the rare-occurring traffic situations [15, 21], in contrast to Kalra et al. who
claim that millions or even billions of miles of driving test are required to
demonstrate the reliability of an autonomous vehicle [46]. Instead, testing of
autonomous driving functions must be based on a feasible number of test
scenarios and focus on the most critical ones [4, 7]. Using critical scenario
identification and simulation is considered a good alternative to address the
aforementioned gaps, and enable testing of autonomous driving functions in a
more efficient way [7, 25, 47].

In our approach, we integrate the existing engineering tools and a work-
flow as a complete solution for critical test scenario identification. In contrast,
existing studies mostly present a partial solution for critical scenario identifica-
tion, and barely provide a complete tool-chain [16]. The application of a partial
solution in practice may require additional work to integrate such an approach
with the missing components. We integrate different tools and a workflow into
a systematic approach, which is easy to use. The proposed approach relies on
optimization of the parameter selection and simulation of the scenarios. As the
tools involved are exchangeable, the approach is flexible and generic for test-
ing different autonomous driving functions that are not subject to any specific
tools, techniques, or type of sensors employed in the function or simulation.

We demonstrate the effectiveness of our approach for critical test scenario
identification, using real autonomous driving functions in both high-speed
and low-speed maneuvering domains. This is different from the most common
approach, for validating proposed solutions for critical scenario identification
in existing studies, which use a simple implementation of the autonomous driv-
ing function, or publicly available driving components like DeepDriving [2].
Besides, many studies demonstrate the effectiveness of their approaches based
on limited settings, such as a pedestrian step-out scenario [8] and certain sce-
narios from Carla Scenario Runner Library [26]. Even though the potential of
such approaches might be extended, the connection to real autonomous driving
functions and to find critical scenarios in general is not explicitly provided.

The two cases we present in Sections 4 and 5 include the actual work we
implement and the results achieved on real autonomous driving functions using
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the proposed approach. While the results are generally effective in finding the
critical test scenarios for the given autonomous driving systems, we would like
to stress that they are merely early version of the autonomous driving systems.
Thus, the results are subject to the current design and specifications of the
systems when conducting the study. The main purpose here is to demonstrate
the industrial relevance and applicability of the approach in practice.

Future improvement and extension of our approach regarding its design and
implementation are multi-fold, including, e.g. scenario composition, parameter
distribution, and optimization algorithms. First, the composition and represen-
tation of scenarios can be improved, to include different driver behavior models
and enable definition of complex spatio-temporal interactions between different
entities within the driving maneuver. As highlighted by Feng et al. [20], exist-
ing studies mostly handle only low-dimensional scenarios, whereas the actual
operational design domain for the autonomous driving functions is much more
complicated. OpenDrive and OpenScenario, as used by Zhang et al. [15] and
Erdogan et al. [22], to define static and dynamic elements in a full driving
scenario in a structured way are good references to explore.

Second, realistic distribution of the relevant parameters selected should be
investigated to improve the realism of the scenarios and realistic occurrence of
the scenarios. As articulated by Batsch et al. [8], scenario-based testing sam-
pling requires a true distribution of the parameters. A shift in the distribution
may impact the relevance and potential damage of the scenarios [19], thus dis-
tribution of parameters are important and need to be identified [26]. Different
sampling approaches such as adaptive sampling [48], importance sampling [20],
or modeling the distribution are few candidates to be further studied.

Thirdly, we also propose to evaluate different optimization algorithms to
best fit the generation of critical test scenarios for different autonomous driving
systems, and using parallelization to improve the efficiency of the simulation
and optimization [23]. They are good directions to be sorted out in future
research yet not the goals in the current study. Especially that parallelization
is already a feasible option in optimization tools like modeFrontier, it’s more
about the computational resources that can be allocated count. Our primary
focus in this work is to establish a complete approach for critical test scenario
identification for autonomous driving, and to demonstrate the effectiveness of
such an approach for realistic testing of autonomous driving systems. As a
preliminary step, tools and a workflow are integrated, and critical test scenarios
are generated for real autonomous driving systems from industry. Thus, it
constitutes a basis for further exploration and refinement of the approach in
practice.

Given the enormous challenges of testing autonomous driving systems we
face [49, 50|, the importance of using simulation and critical test scenario gen-
eration increases steeply [27]. Further, as stated by Beglerovic et al., selection
of relevant parameters, objective functions, and appropriate evaluation criteria
is a non-trivial task since each of them comes with its own challenges, and the
quality of critical test scenario generation are highly depending on them [33].
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Despite that sub-components within our approach can be further expanded
and improved, we believe our work is worth the efforts and having a huge
potential in the future in ensuring the safety and reliability of autonomous
vehicles, particularly since very few studies have been reported for presenting
a complete solution for critical test scenario identification that is general for
different autonomous driving systems, according to Hallerbach et al. [16].

7 Conclusion

Safety and reliability are indispensable properties for autonomous vehicles,
yet there is no common standard way to test the autonomous driving func-
tions systematically and efficiently. Conventional requirements-driven testing
approaches are impeded due to uncertainty of the operational environment
and complexity of the driving scenarios. Thereby, identifying the most critical
scenarios for testing the autonomous driving systems is developed.

We establish a complete approach with integrated tools and a workflow in
this study, to enable the exploration of critical test scenarios and facilitate the
testing of autonomous driving systems. As a pilot study, we implement the
approach on two autonomous driving systems from industry by partnering with
Volvo Cars, and the results suggest that our approach is effective in identifying
critical test scenarios. The identified scenarios can be used to substantiate test
cases for autonomous driving systems either in simulation, or in real world.

Future extension of the approach aims to improve the scenario representa-
tion, distribution of the parameters, and compare the effectiveness of different
optimization algorithms. Eventually, the study provides a feasible and com-
plete tool-chain for critical test scenario identification for autonomous driving,
and a basis for building sub-components further upon. Given the widespread
attention on autonomous driving and the corresponding challenges for test-
ing the enabling functions, we shed light on testing of different autonomous
driving systems in an efficient and effective way.
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