Asymmetric Three-Component Olefin Dicarbofunctionalization Enabled by Photoredox and Copper Dual Catalysis

Wen-Jing Xiao (wxiao@mail.ccnu.edu.cn)
Central China Normal University

Peng-Zi Wang
Central China Normal University

Yuan Gao
Central China Normal University

Xiao-Die Huan
Central China Normal University

Jun Chen
Central China Normal University

Jia-Rong Chen
Central China Normal University

Article

Keywords: copper dual catalysis, photoredox, dicarbofunctionalization

Posted Date: December 15th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-124676/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Nature Communications on March 22nd, 2021. See the published version at https://doi.org/10.1038/s41467-021-22127-x.
Abstract

An intermolecular, enantioselective three-component radical vicinal dicarbofunctionalization reaction of olefins enabled by merger of radical addition and cross-coupling using photoredox and copper dual catalysis is presented here. Key to the success of this protocol relies on chemoselective addition of acyl and cyanoalkyl radicals, generated in situ from the redox-active oxime esters by a photo-catalytic N-centered iminyl radical-triggered C-C bond cleavage event, onto the alkenes to form new carbon radicals. Single electron metalation of such newly formed carbon radicals to TMSCN-derived L1Cu(II)(CN)2 complex leads to asymmetric cross-coupling. This three-component process proceeds under mild conditions, and tolerates a diverse range of functionalities and synthetic handles, leading to valuable optically active β-cyano ketones and alkyldinitriles, respectively, in a highly enantioselective manner (> 60 examples, up to 97% ee).

Introduction

Alkenes are arguably one of the most privileged and versatile chemicals in organic synthesis because a diverse range of functional groups could be readily introduced across the C = C π system by many classic vicinal difunctionalization reactions\(^1\)–\(^4\). In this context, one of the most investigated and fundamental transformations is the intermolecular three-component alkene vicinal dicarbofunctionalization (DCF) reaction, which allows installation of two different carbon fragments. While these reactions have been extensively explored in ionic chemistry, radical-mediated, especially the enantioselective versions of such reaction class remain largely unexplored\(^5\)–\(^10\). Given the unique reactivity modes of radical species, the development of radical-mediated alkene vicinal DCF reactions would enable a wider variety of functional groups and synthetic handles to be incorporated, and hence produce valuable target molecules\(^11\)–\(^15\). While particularly promising, controlling the stereoselectivity in radical alkene vicinal dicarbofunctionalization reactions is a long-standing and fundamental challenge due to the intrinsically high reactivity and instability of radical intermediates\(^16\)–\(^18\). In recent years, owing to their unique single-electron transfer ability and good coordination with chiral ligands, chiral copper catalysis opened a new and robust platform for development of asymmetric radical-mediated alkene vicinal DCF reactions (Fig. 1a)\(^19\)–\(^21\). For example, the Liu group disclosed that carbon-centered radicals, which are formed in situ upon addition of CF\(_3\) and (fluoro)alkyl\(^22\)–\(^27\) or aryl radicals\(^28\) to alkenes or enamides, could couple with TMSCN, boronic acid, or alkyne-derived chiral copper(II) complexes, leading to alkene vicinal DCF products with excellent enantiomeric excess. Recently, Zhang\(^29\) and Liu\(^30\)–\(^32\) reported elegant examples of copper-catalyzed highly enantioselective radical alkene 1,2-dicarbofunctionalization with diaryliodonium salts and alkyl halides as radical sources, respectively. Despite the broad synthetic applicability of these methods, however, the intrinsic redox potential window of copper catalysts, which is critical to the generation of radicals, still results in significant limitations on the scope of radical precursors.
In recent years, visible-light photoredox catalysis has emerged as a powerful tool for organic chemists to develop many elusive radical-mediated chemical transformations with high levels of functional group tolerance33–36. This activation mode also provides a promising approach for development of radical multicomponent reactions (in some cases with excellent stereoselectivity)37–42. For example, the Studer group recently developed an asymmetric three-component cascade reaction of quinolines or pyridines with enamides using \textit{α}-bromo carbonyl compounds as radical precursors under photoredox and phosphoric acid dual catalysis43. Using this strategy, a range of chiral \textit{γ}–amino-acid derivatives could be achieved with high chemo-, regio-, and enantioselectivity. Recently, our group44–47 and others48–54 introduced readily accessible redox-active oxime derivatives as precursors to generate iminyl radicals under single-electron transfer (SET) reduction or oxidation conditions (Fig. 1b). The resultant iminyl radicals further triggered smooth formation of sp3 cyanoalkyl and sp2 acyl55–57 radicals via a C-C bond cleavage process. Despite extensive synthetic utility of these carbon radicals, to our knowledge, their engagement in asymmetric multicomponent alkene vicinal DCF reactions is still challenging and unexplored58–59. As a result, we aimed at developing a catalytic asymmetric three-component radical vicinal DCF reaction of alkenes with oximes and TMSCN (Fig. 1b). This protocol would provide an efficient and general approach for preparation of valuable optically active \textit{β}–cyano ketones and alkyldinitriles60–62.

Results

Optimization of reaction conditions. Our optimization began by reacting 2-vinylnaphthalene 1\textit{a} with oxime ester 3\textit{a} and TMSCN in a ratio of 1:3:3 in DMA under the dual photoredox and copper catalysis (Table 1). After some experimentation63, we found that the target three-component reaction indeed occurred to give a moderate yield of desired product 6\textit{aa} with 88% ee, when using photocatalyst \textit{fac}-Ir(ppy)\textsubscript{3} (1 mol\%) and a combination of Cu(CH\textsubscript{3}CN)\textsubscript{4}PF\textsubscript{6} (0.5 mol\%) and Box-type ligand \textbf{L1} (0.6 mol\%) under irradiation of purple LEDs (Table 1, entry 1). However, several competing processes were also involved. For example, in addition to 6\textit{aa}, a significant amount of side products \textbf{sp-1}, \textbf{sp-2}, and \textbf{sp-3} were also detected, which might result from acyl radical 3\textit{a-II}–mediated two-component cross-coupling with 1\textit{a} and TMSCN, or its own dimerization. A brief screening of typical solvents such as DMF, CH\textsubscript{3}CN, and THF showed that DMA was still the best of choice in terms of reaction efficiency (Table 1, entry 1 vs 2–5). Notably, when the catalyst loading of \textit{fac}-Ir(ppy)\textsubscript{3} was decreased to 0.8 mol\%, a cleaner reaction was observed, and a 64% yield of 6\textit{aa} was obtained without effect on the enantioselectivity (Table 1, entry 6). An extensive survey of other commonly used copper salts and chiral ligands established that the combination of Cu(CH\textsubscript{3}CN)\textsubscript{4}PF\textsubscript{6} and Box-type ligand \textbf{L1} were superior to others (Table 1, entries 6–8). Further optimization studies with respect to the loading of copper salt and concentration confirmed that a combination of 1.5 mol\% of Cu(CH\textsubscript{3}CN)\textsubscript{4}PF\textsubscript{6} and 2.25 mol\% of ligand \textbf{L1} with 0.8 mol\% of \textit{fac}-Ir(ppy)\textsubscript{3} at a concentration of 0.04 M gave the best results, with 6\textit{aa} being isolated with 74% yield and 90% ee (Table 1, entry 11). It was postulated that rational tuning of catalyst loading can help regulate the concentration of the reactive radical species, thus suppressing the competing side reaction pathways. As
expected, a series of control experimental results established that each component (light, photocatalyst, and copper salt) is critical to this asymmetric alkene vicinal dicarbofunctionalization reaction.

Substrate scope. With optimized reaction conditions established, we first investigated the substrate scope of alkenes by reacting with 3a and TMSCN (Fig. 2). Notably, most of these alkenes are inexpensive and commercially available feedstock chemicals. As shown in Fig. 2A, aside from 1a, simple neutral styrene 1b and a range of styrene derivatives 1cj with electron-donating (e.g., Me, tBu, Ph) or electron-withdrawing (e.g., F, Cl, Br, OAc, Bpin) functional groups at the para-position of the aromatic ring are well tolerated, furnishing the corresponding products 6ba-ja in 64–79% yields with 86–90% ee. Notably, halide substituents, F, Cl, and Br, as well as Bpin moiety remained intact after the reaction, thereby facilitating further modifications at their positions (e.g., products 6fa-ha and 6ja). A 1.0 mmol scale reaction of 1b also proceeded smoothly to give comparable results (6ba, 74% yield, 90% ee), demonstrating the scalability of this process. Moreover, the reactions with alkenes 1k-o bearing common substituents such as methoxy, methyl, fluoro, and bromo at the meta- or ortho-positions also worked well; and the expected products 6ka-oa were isolated in 61–81% yields with 89–90% ee. 2-Vinylnaphthalene 1p having a methoxy group and heterocycle-containing alkenes 1q-s all proved to be suitable coupling partners, leading to 6pa-sa with good yields and 86–93% ee. Remarkably, this protocol can also be successfully extended to biologically relevant molecule and pharmaceutical-derived styrene analogues (Fig. 2B). For instance, estrone, febuxostat-, and simple amino acid-derived alkenes 1t-v reacted well to give the desired acylcyanation products 6ta, 6ua, and 6va with good stereoselectivity, respectively. As a result, our protocol should be of potential use for late-stage structural modification of drug and complex compounds. Unfortunately, the current catalytic system is not applicable to simple unactivated or electron-deficient alkenes.

Then, we continued to evaluate the generality of this asymmetric three-component reaction by using a representative set of oxime esters, which can be easily prepared in two steps from the relevant ketone precursors. As shown in Fig. 3A, a range of aryl ketone-derived oxime esters 3b-g with electronically diverse functional groups (e.g., Me, OMe, tBu, F, Cl, or Br) at the para-position of the phenyl ring reacted well with 1b and TMSCN. And the expected alkene acylcyanation products 6bb-bg were obtained with good yields (70–86%) and excellent enantiomeric excess (83–92% ee). As shown in the cases of 3h-k, the change of the substitution pattern and steric hindrance of their phenyl ring has deleterious effect on the reaction efficiency or enantioselectivity, with the corresponding products 6bh-bk being obtained with 67–85% yields and 89–92% ee. Single crystals of product 6bj were obtained, and the absolute stereochemistry was determined to be S by X-ray crystallographic analysis, and all other coupling products were tentatively assigned by analogy with 6bj. Remarkably, oxime esters 3m-p derived from aliphatic ketone with various lengths of alkyl chains also reacted well with 2-vinylnaphthalene 1a and TMSCN (Fig. 3B). The relative products 6am-ap were isolated with 61–70% yields and 86–90% ee.

Encouraged by these results, we further attempted to extend the current dual photoredox and copper catalysis strategy to the asymmetric three-component vicinal DCF reaction of cycloketone-derived oxime esters, alkenes, and TMSCN (Fig. 4). Minor modification of the reaction conditions identified that a
combination of organic photocatalyst Ph-PTZ (1.25 mol%) and Cu(CH$_3$CN)$_4$PF$_6$ (0.5 mol%)/ligand L1 (0.6 mol%) enabled the desired reaction to proceed smoothly under irradiation of 2 × 3 W purple LEDs at room temperature63. This process also exhibited broad substrate scope and good functional tolerance with respect to both alkenes and oxime esters. As shown in Fig. 4A, a wide variety of commercially available styrenes containing neutral (2a), alkyl (2b-c), electron-withdrawing (2e-h), or aryl (2i-j) groups at the para-position of the phenyl ring could react well with oxime ester 4a. The corresponding dinitrile products 7aa-ja were obtained in 51–75% yields with 83–96% ee. The absolute stereochemistry of 7ja was also confirmed to be S-configuration by X-ray diffraction64. Again, as shown in the reactions of alkenes 2k-n, variation of the substitution pattern and steric hindrance of the aromatic ring could be well tolerated, leading to formation of products 7ka-na with 51–78% yields and 82–97% ee. Moreover, the reactions of 2-vinylnaphthalene 2o and substrates containing heterocycle-fused ring (2p) or heteroaryl groups (e.g., 2q, 2r) all proceeded well to give products 7oa-ra with moderate to good yields and excellent enantioselectivity (84–90% ee). Notably, styrenes (e.g., 2 s and 2t) derived from dihydroartemisinin and gibberellic acid could also participate in the reaction with good stereoselectivity, suggesting that the method can potentially be used in the late-stage modification of pharmaceutically relevant compounds.

Finally, we turned our attention to study the substrate scope of cyclobutanone oxime esters by reacting with styrene 2i and TMSCN (Fig. 4B). Both oxetan-3-one and 1-Cbz-3-azetidinone derived oxime esters 4b and 4c reacted well to afford 7ib and 7ic in moderate to good yields with excellent enantioselectivity (87–89% ee). Mono-substituted oxime ester 4d could participate in the reaction smoothly to deliver product 7id as a mixture of diastereomers with good yield and high enantioselectivity. Note that sterically demanding oxime esters 4e-g also proved to be compatible with the reaction, giving the expected products 7ie-ig in good yields with 85–92% ee.

Synthetic applications. To showcase the potential synthetic utility of this asymmetric method in the construction of valuable skeletons, we performed diverse further transformations with the chiral β-cyano ketones and alkyl dinitriles (Fig. 5)65–66. For example, the cyano group of 6ba and 7ia could be easily converted to amide group by Pd-catalyzed hydrolysis using stoichiometric acetaldoxime in refluxing aqueous EtOH, giving the corresponding products 8 and 9 with good yields, respectively (Fig. 5a). Moreover, treatment of 7ia with NiCl$_2$/NaBH$_4$ and Boc$_2$O in MeOH allowed efficient sequential reduction and protection of both cyano groups, with aliphatic chiral amine 10 being obtained with 66% yield and 90% ee (Fig. 5b). The synthesis of chiral ester 11 can also be achieved by treatment of 7ia with alcoholysis. Notably, no notable loss of optical purity was detected in these manipulations.

Mechanistic studies. To gain some insight into the mechanism, we carried out several control experiments by using the substrates 1b, 3a, and TMSCN (Fig. 6). The target three-component reaction was completely inhibited, when stoichiometric radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was introduced (Fig. 6a). Instead, the relevant TEMPO-adduct 12 was obtained in 76% yield, suggesting the possible involvement of acyl radical 3a-i in this process. Moreover, the reaction of radical clock substrate 13 having a cyclopropyl moiety also proceeded smoothly to give ring-opening product 14.
in 64% yield with good stereoselectivity (Fig. 6b). These results indicated the intermediacy of radical species 13-A and 13-B, as well as the radical property of the reaction. Similar control experimental results were also observed in the case of cycloketone oxime ester-based asymmetric three-component reaction.

On the basis of these mechanistic studies and related literature, we proposed a dual photoredox and copper-catalyzed mechanism for the present asymmetric three-component reaction as depicted in Fig. 7. The reaction starts with SET reduction of redox-active oxime esters 3a and 4a by the excited state photocatalyst to give iminyl radicals 3a-I and 4a-I, with release of carboxylic anion (RCO$_2$⁻). Then, 3a-I and 4a-I undergoes C-C bond β-cleavage to form acyl and cyanoalkyl radicals 3a-II and 4a-II. Further facile trap of these carbon radicals by styrene derivatives 1 and 2 forms relatively more stable benzylic radicals III. On the other hand, the initially formed carboxylic anion (RCO$_2$⁻) could also facilitate the ligand exchange between L1/copper(I) complex and TMSCN to form L1Cu(I)CN species. Such L1Cu(I)CN complex can further be oxidized by the oxidizing photocatalyst (PC•+) via a SET process, and undergoes another ligand exchange with TMSCN to form L1Cu(II)(CN)$_2$ complex, regenerating ground-state photocatalyst to close the photoredox catalysis cycle. Finally, L1Cu(II)(CN)$_2$ traps the prochiral benzylic radical III to form a chiral high-valent Cu(III) complex IV, which undergoes reductive elimination to afford the coupled product 6 or 7, with regeneration of L1Cu(I)CN species to complete the copper catalysis cycle. It should be noted that an alternative process involving direct cyano transfer from the L1Cu(II)(CN)$_2$ complex to the benzylic radical III through an outer-sphere pathway is also possible. Notably, the whole process is redox-neutral and does not need any external stoichiometric oxidants or reductants.

Discussion

In summary, we have developed an intermolecular, highly enantioselective three-component radical vicinal DCF reaction of alkenes for the first time using oxime esters and TMSCN by dual photoredox and copper catalysis. Key to the success of this protocol relies on chemoselective addition of acyl and cyanoalkyl radicals, generated in situ from the redox-active oxime esters by a photocatalytic N-centered iminyl radical-triggered C-C bond cleavage event, onto the alkenes to form new carbon radicals. Single electron metalation of such carbon radicals to TMSCN-derived L1Cu(II)(CN)$_2$ complex leads to asymmetric cross-coupling. This three-component reaction proceeds under mild conditions, and demonstrates broad substrate scope and high functional group tolerance, providing a general approach to optically active β-cyano ketones and alkylidinitriles. Many exciting extensions of this strategy to other radical precursors and nucleophiles can be envisaged; current investigations into these subjects are ongoing in our laboratory.

Methods
General procedure for the synthesis of products 6. In a flame-dried 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged sequentially with Cu(CH$_3$CN)$_4$PF$_6$ (0.56 mg, 0.0015 mmol) and chiral ligand L1 (0.80 mg, 0.00225 mmol), followed by the addition of DMA (2.5 mL). Then the mixture was stirred at room temperature for 30 min. To the resulting mixture were added 3 (0.30 mmol), 1 (0.10 mmol), fac-Ir(ppy)$_3$ (0.53 mg, 0.0008 mmol). Then, the resulting mixture was degassed (3 times) under argon atmosphere. After that, TMSCN (0.3 mmol) was added into the mixture. At last, the mixture was stirred at a distance of ~1 cm from a 2 × 3 W purple LEDs at room temperature for 24 h until the reaction was completed, as monitored by TLC analysis. The reaction mixture was quenched with water (10 mL), diluted with EtOAc (3 × 10 mL), washed with NaCl (aq.) and dried over with anhydrous Na$_2$SO$_4$. After filtration and concentration, the residue was purified by silica gel chromatography afford the final products.

General procedure for the synthesis of products 7. In a flame-dried 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged sequentially with Cu(CH$_3$CN)$_4$PF$_6$ (0.001 mmol), chiral ligand L1 (0.0012 mmol) and organo-photocatalyst Ph-PTZ (0.0025 mmol), followed by the addition of DMA (4 mL). Then the mixture was stirred at room temperature for 30 min. To the resulting mixture were added 2 (0.20 mmol) and 4 (0.60 mmol). Then, the resulting mixture was degassed (3 times) under argon atmosphere. After that, TMSCN (0.60 mmol) was added into the mixture. At last, the mixture was stirred at a distance of ~1 cm from a 2 × 3 W purple LEDs at room temperature 6 h until the reaction was completed, as monitored by TLC analysis. The reaction mixture was diluted with water (10 mL). The mixture was firstly extracted with EtOAc (3 × 10 mL), then washed with NaHCO$_3$ (aq.) (15 mL), and finally washed with NaCl (aq.), dried over with anhydrous Na$_2$SO$_4$. After filtration and concentration, the residue was purified by silica gel chromatography afford the final products. Full experimental details and characterization of new compounds can be found in the Supplementary Methods.

Declarations

Data availability

The authors declare that the main data supporting the findings of this study, including experimental procedures and compound characterization, are available within the article and its Supplementary Information files. X-ray structural data of compounds 6bj and 7ja are available free of charge from the Cambridge Crystallographic Data Center under the deposition number CCDC 2047031 (6bj) and 2047032 (7ja). These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Author contributions

P.-Z.W., Y. G., J. C. and X.-D.H. are responsible for the plan and implementation of the experimental work. J.-R.C. and W.-J.X. supervised the project and wrote the manuscript. All authors discussed the results and commented on the manuscript.
Competing interests

The authors declare no competing interests.

Acknowledgements

We are grateful to the financial support from the National Natural Science Foundation of China (No. 21971081, 91856119, 21772053, 21820102003, and 91956201), and the Program of Introducing Talents of Discipline to Universities of China (111 Program, B17019).

References

63. See supporting information for more details.

64. CCDC 2047031 (6bj) and 2047032 (7ja) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via .

Tables

Table 1 | Optimization of the reaction conditions.

![Optimization of the reaction conditions diagram](image-url)
<table>
<thead>
<tr>
<th>Entry</th>
<th>x / y / z [mol%]</th>
<th>Solvent</th>
<th>Yield [%]a</th>
<th>ee [%]b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5 / 0.6 / 1.0</td>
<td>DMA (0.05 M)</td>
<td>41</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>0.5 / 0.6 / 1.0</td>
<td>DMF (0.05 M)</td>
<td>39</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>0.5 / 0.6 / 1.0</td>
<td>CH$_3$CN (0.05 M)</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>0.5 / 0.6 / 1.0</td>
<td>THF (0.05 M)</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>0.5 / 0.6 / 1.0</td>
<td>CH$_2$Cl$_2$ (0.05 M)</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>0.5 / 0.6 / 0.8</td>
<td>DMA (0.05 M)</td>
<td>64</td>
<td>88</td>
</tr>
<tr>
<td>7c</td>
<td>0.5 / 0.6 / 0.8</td>
<td>DMA (0.05 M)</td>
<td>51</td>
<td>85</td>
</tr>
<tr>
<td>8d</td>
<td>0.5 / 0.6 / 0.8</td>
<td>DMA (0.05 M)</td>
<td>69</td>
<td>81</td>
</tr>
<tr>
<td>9e</td>
<td>0.5 / 0.6 / 0.8</td>
<td>DMA (0.05 M)</td>
<td>16</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>1.5 / 2.25 / 0.8</td>
<td>DMA (0.05 M)</td>
<td>78</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>1.5 / 2.25 / 0.8</td>
<td>DMA (0.04 M)</td>
<td>88 (74)</td>
<td>90</td>
</tr>
</tbody>
</table>

Reaction conditions: **1a** (0.1 mmol), **3a** (0.3 mmol), TMSCN (0.3 mmol), Cu(CH$_3$CN)$_4$PF$_6$ (x mol%), ligand **L1** (y mol%), **fac-Ir(ppy)$_3$** (z mol%), solvent (2.0-2.5 mL), 2x3 W purple LEDs, at room temperature.

aYields were determined by GC analysis, with isolated yield in parentheses.
bDetermined by HPLC analysis on a chiral stationary phase.
cWith CuCl.
dWith CuI.
eWith Cu(OTf)$_2$.

ppy = 2-phenylpyridine. DMA = N,N-dimethylacetamide. DMF = N,N-dimethylformamide.

Figures
A Cu-catalyzed, three-component radical alkene vicinal dicarbofunctionalization

Previous work

\[\text{radical sources} \quad \text{iminy radicals} \quad \text{carbon radicals} \]

\[\text{SET} \quad \text{C-C bond cleavage} \]

challenge: use of sp\(^3\)-I and sp\(^2\)-II carbon radicals in asymmetric intermolecular multicomponent alkene DCF reactions?

This work

1 & 2 + \[\text{visible light room temperature redox-neutral} \]

+ high functional group tolerance
+ broad scope of C-radical precursors
+ excellent chemo- and enantioselectivity

Figure 1

Catalytic asymmetric three-component radical dicarbofunctionalization reactions of alkenes. a) Cu-catalyzed, three-component radical alkene vicinal dicarbofunctionalization. b) First asymmetric, three-component alkene DCF with oxime esters and TMSCN.
Catalytic asymmetric three-component radical dicarbofunctionalization reactions of alkenes. a) Cu-catalyzed, three-component radical alkene vicinal dicarbofunctionalization. b) First asymmetric, three-component alkene DCF with oxime esters and TMSCN.
Figure 2

Scope of the alkenes in asymmetric three-component alkene acylcyanation. Reaction conditions: 1 (0.1 mmol), 3a (0.3 mmol), TMSCN (0.3 mmol), Cu(CH3CN)4PF6 (1.5 mol%), ligand L1 (2.25 mol%), fac-Ir(ppy)3 (0.8 mol%), 2x3 W purple LEDs, DMA (0.4 M), rt, 24 h. Isolated yields were reported. The ee and d.r. values were determined by HPLC analysis on a chiral stationary phase. a1.0 mmol scale reaction, 24 h.
Figure 2

Scope of the alkenes in asymmetric three-component alkene acylcyanation. Reaction conditions: 1 (0.1 mmol), 3a (0.3 mmol), TMSCN (0.3 mmol), Cu(CH3CN)4PF6 (1.5 mol%), ligand L1 (2.25 mol%), fac-Ir(ppy)3 (0.8 mol%), DMA (2.5 mL), 2x3 W purple LEDs, at room temperature. Isolated yields were reported. The ee and d.r. values were determined by HPLC analysis on a chiral stationary phase. a1.0 mmol scale reaction, 24 h.
Figure 3

Scope of the oxime esters in asymmetric three-component alkene acylcyanation. Reaction conditions: 1 (0.1 mmol), 3 (0.3 mmol), TMSCN (0.3 mmol), Cu(CH3CN)4PF6 (1.5 mol%), ligand L1 (2.25 mol%), fac-Ir(ppy)3 (0.8 mol%), 2x3 W purple LEDs, DMA (0.04 M), rt, 24 h. Isolated yields were reported. The ee and d.r. values were determined by HPLC analysis on a chiral stationary phase.
Figure 3

Scope of the oxime esters in asymmetric three-component alkene acylcyanation. Reaction conditions: 1 (0.1 mmol), 3 (0.3 mmol), TMSCN (0.3 mmol), Cu(CH3CN)4PF6 (1.5 mol%), ligand L1 (2.25 mol%), fac-Ir(ppy)3 (0.8 mol%), 2x3 W purple LEDs, DMA (0.04 M), rt, 24 h. Isolated yields were reported. The ee and d.r. values were determined by HPLC analysis on a chiral stationary phase.
Figure 4

Scope of the alkenes and cycloketone oxime esters in asymmetric three-component alkene cyanoalkylation reaction. Reaction conditions: 2 (0.2 mmol), 4 (0.6 mmol), TMSCN (0.6 mmol), Cu(CH3CN)4PF6 (0.5 mol%), ligand L1 (0.6 mol%), Ph-PTZ (1.25 mol%), DMA (4.0 mL), 2x3 W purple LEDs, at room temperature. Isolated yields were reported. The ee and d.r. values were determined by HPLC analysis on a chiral stationary phase.
Figure 4

Scope of the alkenes and cycloketone oxime esters in asymmetric three-component alkene cyanoolkylation reaction. Reaction conditions: 2 (0.2 mmol), 4 (0.6 mmol), TMSCN (0.6 mmol), Cu(CH3CN)4PF6 (0.5 mol%), ligand L1 (0.6 mol%), Ph-PTZ (1.25 mol%), DMA (4.0 mL), 2x3 W purple LEDs, at room temperature. Isolated yields were reported. The ee and d.r. values were determined by HPLC analysis on a chiral stationary phase.
Figure 5

Synthetic applications.
Figure 5

Synthetic applications.
Figure 6

Mechanistic studies.

a) radical trapping experiment

\[
\begin{align*}
1b + 5 + 3a & \quad \text{standard conditions} \quad 24 \text{ h} \\
& \quad \text{TEMPO (5.0 equiv)} \\
& \quad \text{CN} \\
& \quad \text{R} \\
& \quad \text{Ph} \\
& \quad \text{Ph} \\
\end{align*}
\]

b) radical clock experiment

\[
\begin{align*}
13 + 5 + 3a & \quad \text{standard conditions} \quad 24 \text{ h} \\
& \quad \text{CN} \\
& \quad \text{Ph} \\
& \quad \text{Ph} \\
\end{align*}
\]

14, 64% (E/Z = 1.3:1)
73% ee, 91% ee
Figure 6

Mechanistic studies.

Figure 7

Proposed reaction mechanism.
Figure 7

Proposed reaction mechanism.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupportingInformationFinal20201209.pdf
- SupportingInformationFinal20201209.pdf
- 6bjcheckcifReport.pdf
- 6bjcheckcifReport.pdf
- 7jacheckcifReport.pdf
- 7jacheckcifReport.pdf
- cifof6bj.cif
- cifof6bj.cif
- cifof7ja.cif
- cifof7ja.cif