Photocatalytic CO2 reduction with a quantum efficiency exceeding 60%: time-resolved spectroscopic and X-ray studies on Cu(I) photosensitizers in coordinative interaction with Co(II) phthalocyanine catalysts

Jia-Wei Wang  
Sun Yat-Sen University  https://orcid.org/0000-0003-1966-7131

Xian Zhang  
University of Göttingen

Michael Karnahl  
Technische Universität Braunschweig

Zhi-Mei Luo  
Institute of Chemical Research of Catalonia

Zizi Li  
Sun Yat-sen University

Yanjun Huang  
Sun Yat-sen University

Jin Yu  
Argonne National Laboratory

Wenhui Hu  
Marquette University

Xiaoyi Zhang  
Argonne National Laboratory  https://orcid.org/0000-0001-9732-1449

Dooshaye Moonshiram  
IMDEA

Gangfeng Ouyang (cesoygf@mail.sysu.edu.cn)  
Sun Yat-sen University  https://orcid.org/0000-0002-0797-6036

Article

Keywords:

Posted Date: January 14th, 2022
Photocatalytic CO$_2$ reduction with a quantum efficiency exceeding 60%: time-resolved spectroscopic and X-ray studies on Cu(I) photosensitizers in coordinative interaction with Co(II) phthalocyanine catalysts

Jia-Wei Wang,$^{1,2}$ Xian Zhang,$^3$ Michael Karnahl,$^4$ Zhi-Mei Luo,$^2$ Zizi Li,$^5$ Yanjun Huang,$^5$ Jin Yu,$^6$ Wenhui Hu,$^7$ Xiaoyi Zhang,$^7$ Dooshaye Moonshiram,*$^8$ Gangfeng Ouyang*$^{1,5,9,10}$

$^1$School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
$^2$Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Paisos Catalans 16, Tarragona 43007, Spain.
$^3$Institute of Inorganic Chemistry, University of Göttingen, Göttingen D-37077, Germany
$^4$Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany.
$^5$KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
$^6$X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont IL, 60439, U.S.A
$^7$Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, USA
$^8$Spain Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz, 3, Madrid, 28049, Spain
$^9$Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
$^{10}$Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou, 510070, China

Correspondence and requests for materials should be addressed to D.M. (dooshaye.moonshiram@imdea.org) and G.O. (cesoygf@mail.sysu.edu.cn).
Abstract

The utilization of a fully noble-metal-free system for photocatalytic CO$_2$ reduction remains a fundamental challenge, demanding the precise design of photosensitizers and catalysts, as well as the exploitation of their intermolecular interactions to facilitate electron delivery. Herein, we have implemented triple modulations on catalyst, photosensitizer and coordinative interaction between them for high-performance light-driven CO$_2$ reduction. In this study, heteroleptic copper and cobalt phthalocyanine complexes were selected as photosensitizers and catalysts, respectively. An over ten-fold improvement in light-driven reduction of CO$_2$ to CO is achieved for the catalysts with appending electron-withdrawing substituents for optimal CO-desorption ability. In addition, pyridine substituents were implanted at the backbone of the phenanthroline moiety of the Cu(I) photosensitizers and the effect of their axial coordinative interaction with the catalyst was tested. The combined results of $^1$H NMR titration experiment, steady-state/transient photoluminescence, and transient absorption spectroscopy confirm the coordinative interaction and reductive quenching pathway in photocatalysis corroboratively. It has been found that the catalytic performances of the coordinatively interacted systems are unexpectedly reverse to those with the pyridine-free Cu(I) photosensitizers. Moreover, the latter system enables a very high quantum efficiency up to 63.5% at 425 nm with a high selectivity exceeding 99% for CO$_2$-to-CO conversion. As determined by time-resolved X-ray absorption spectroscopy and DFT calculation, the replacement of phenyl by pyridyl groups in the Cu(I) photosensitizer favors a stronger flattening and larger torsional angle change of the overall excited state geometry upon photoexcitation, which explains the decreased lifetime of the triplet excited state. Our work promotes the systematic multi-pathway optimizations on the catalyst, photosensitizer and their interactions for advanced CO$_2$ photoreduction.
Introduction

Sunlight-driven reduction of CO\textsubscript{2} continues to attract attention as a sustainable, carbon-neutral route to produce renewable fuels.\cite{1,2} Due to the sluggish multi-electron reaction kinetics and strong competition with H\textsubscript{2} evolution,\cite{3,4} considerable efforts have been dedicated to the development of efficient and selective systems for photocatalytic CO\textsubscript{2} reduction. Most examples, fully or in part, utilize metal complexes as molecular photosensitizers (PSs) or catalysts, which are highly optimizable via synthetic methods and easy to characterize for mechanistic investigations.\cite{5-7} Among them, noble-metal-based PSs, like Ru, Ir and Re complexes, are extensively applied to drive the catalysts.\cite{8-11} However, the high expense and low abundance of 4d and 5d transition metals inevitably precludes large-scale applications of such systems and therefore earth-abundant molecular systems are of intensified interest.\cite{12-16} Organic dyes could serve as economical PSs due to their strong absorption and high redox potentials. An early example was contributed by Fujita et al.,\cite{17} in which the photocatalytic reduction of CO\textsubscript{2} to CO and HCOOH using Co macrocycles as catalysts was assisted by p-terphenyl, giving a quantum efficiency (\(\Phi\)) of 25% at 313 nm. More recently, Robert and co-workers have exploited several organic dyes like 9-cyanoanthracene,\cite{18} purpurin\cite{19} or 3,7-di(4-biphenyl)-1-naphthalene-10-phenoxazine\cite{20} in combination with iron porphyrin catalysts. These examples demonstrate the high catalytic efficiency and selectivity of organic dyes, while they may suffer from low photostability,\cite{21} demanding new alternatives for CO\textsubscript{2} reduction.

For instance, Cu(I) based PSs have shown great potential in photocatalysis caused by their versatile redox characteristics and highly variable ligand scaffolds for tunable redox and excited-state properties.\cite{21-26} In terms of CO\textsubscript{2} reduction, Ishitani et al. have designed a diphosphine-tethered phenanthroline ligand to prepare a dimeric Cu(I) PS, which displayed notable stability during photocatalysis along with Fe\cite{27,28} or Mn\cite{29} catalysts. The tetradentate nature of the applied ligand effectively prevents the dissociation of diphosphine donors around the Cu centers, achieving a maximum \(\Phi\) of 57\% for the co-production of CO and HCOOH. Beller and co-workers deployed the Cu(I) dyes \textit{in situ} by directly mixing the Cu(I) precursor and respective ligands in the photocatalytic systems for CO\textsubscript{2} reduction, in conjunction with cyclopentadienone Fe complexes\cite{14} or Mn diamine complexes\cite{30} respectively as catalysts. Furthermore, Sakai et al.\cite{13,31} prepared a sulphonated Cu(I) PS to work in fully aqueous solutions with water-soluble Co porphyrins, achieving good selectivity (near 90\%) and turnover numbers (TONs, up to 4000).

The examples mentioned above have shown some promising catalytic performances and demonstrated that Cu(I) PS are suitable for light-driven CO\textsubscript{2} reduction. Nevertheless, there is still substantial room for improving the performances, as the noble-metal containing systems have demonstrated TON > 10\textsuperscript{7}\textsuperscript{32} and \(\Phi > 80\%\).\cite{33} The anticipated improvement can be achieved by rationally
optimizing the catalysts and PSs and additionally by enhancing the essential electron transfer between PS and catalyst. Focusing on the latter issue, various strategies have been explored, including the covalent attachment, or H-bond interactions in addition to coordinative interaction developed by us. However, most of these systems still rely on noble-metal-based PSs or catalysts. In contrast, fully noble-metal-free molecular systems applying weak interactions between PS and catalyst to improve electron transfer, to the best of our knowledge, have seldom been reported so far.

Herein, we have chosen heteroleptic diphosphine-diimine Cu(I) complexes, \([\text{Cu}(\text{P}^\text{P})(\text{N}^\text{N})]^+\), as PSs, and cobalt phthalocyanine (\(\text{CoPc}\)) derived complexes as catalysts, for optimizing photocatalytic CO\(_2\) reduction. The three key factors, i.e. catalyst, PS and their interaction, are all considered for significant improvements in photocatalysis. In consequence, the optimal combination of \([\text{Cu}^1(\text{xantphos})(\text{bcp})]\text{PF}_6\) (\(\text{CuBCP}\); xantphos = 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene, bcp = bathocuproine) and cobalt tetracarboxylphthalocyanine (\(\text{CoTCPc}\)) enables an extremely high maximum \(\Phi\) of 63.5\% at 425 nm for the CO\(_2\)-to-CO conversion with 99\% selectivity. Further, the coordinative interaction between Cu(I) PS and \(\text{CoTCPc}\) has been constructed by using a pyridine-decorated 1,10-phenanthroline-derived ligand for the Cu(I) centers, which nonetheless led to a decreased efficiency. As evidenced through DFT calculations and time-resolved X-ray absorption spectroscopic measurements, the increased flattening of the overall excited state geometry and the larger torsional angle change of the photoexcited state impair the PS stability significantly in this case. This methodical study conducted is promising for future rational developments of both earth-abundant PSs and catalytic complexes for CO\(_2\) reduction with additional interactions.

**Results**

**Electronic structures of Co(II) catalysts**

First, a systematic series of different Co(II) catalysts (see Figure 1) with different substituents for electronic modulation were selected, namely cobalt \(\beta\)-tetasulphophthalocyanine (\(\text{CoTSPc}\)), \(\text{CoTCPc}\), \(\text{CoPc}\), cobalt \(\beta\)-tetraaminophthalocyanine (\(\text{CoTAPc}\)) and cobalt \(\beta\)-tetra(dimethylamino)phthalocyanine (\(\text{CoTDMAPc}\)). These catalysts, if not commercially available, were characterized by high-resolution mass spectrometry (HR-MS; Experimental section and Supplementary Figure 1-3 in Supporting Information), elemental analysis (Supplementary Table 1) and UV-vis spectroscopy (Supplementary Figure 4 in Supporting Information). As the structures of these \(\beta\)-substituted \(\text{CoPc}\) derivatives cannot be defined by single-crystal X-ray diffraction due to the different regioisomers arising from the synthesis with two random \(\beta\)-positions, DFT calculations were applied to analyze the structural and electronic effects of the different substituents by fixing them at the positions of 1, 5, 9 and 13. As can be seen from
Figure 1 and Table 1, the β-substituents result in negligible distortions on the phthalocyanine rings with the nearly 0° angles of plane distortion φ. According to the Hirshfeld population\textsuperscript{39} listed in Table 1, the Co atomic charges in these molecules vary through incorporation of different substituents. All Co atomic charges are positive, which indicates that the electron density is transferred from cobalt to the phthalocyanine substituents. It is found that the Co atomic charges in the complexes with the -N(CH\textsubscript{3})\textsubscript{2}, -NH\textsubscript{2}, -H, -COOH, and -HSO\textsubscript{3} substituents are 0.1959, 0.1971, 0.2038, 0.2084, and 0.2122 e, respectively. This is in the exact order of the increasing ability of the β-substituents to attract electrons (-N(CH\textsubscript{3})\textsubscript{2} < -NH\textsubscript{2} < -H < -COOH < -HSO\textsubscript{3}) and demonstrates the facile modulations of the electronic properties of these Co(II) catalysts.

![Figure 1](image)

**Figure 1 | CoPc catalysts.** a Chemical and b calculated structures (PBE0\textsuperscript{40} functional and def2-SVP basis set; with top and side views) of the applied Co(II) catalysts, highlighting the electronic effects caused by the different β-substituents. The white, gray, blue, red and pink colors denote H, C, N, O, S and Co atoms, respectively.

Then cyclic voltammetric methods were utilized to examine their redox properties with respect to the different electron-withdrawing/donating substituents. NMP/TEA (NMP = N-methylpyrrolidone; TEA = triethylamine; v:v = 5:1) mixed solvent was chosen as the electrolyte solvent to fully dissolve the CoPc derivatives and mimic the alkaline conditions in subsequent photocatalysis. Studies of their cyclic voltammograms under N\textsubscript{2} revealed their first reduction waves at -0.83 to -1.46 V (vs. Fc\textsuperscript{+}/Fc\textsuperscript{0} unless otherwise stated), mostly attributable to Co\textsuperscript{II/1} reduction\textsuperscript{38,41} events. It has been found that the substituents with stronger electron-withdrawing ability enable the positive shifts of the first reduction wave (Supplementary Figure 5 and 6; Table 1), further manifesting the electronic effect. Meanwhile, the CVs of these complexes show enhanced currents in the presence of CO\textsubscript{2} and the addition of phenol as an additional proton source, displaying their catalytic capabilities under corresponding conditions in photocatalysis.
Table 1 Summary of the geometric parameters of the cobalt phthalocyanine catalysts presenting the Co-N bond length (Å), the angle of plane distortion (φ, °), Hirshfeld Co atomic charge (e) and the position of 1st reduction waves (V vs. Fe+/Fe0) in their CVs.

<table>
<thead>
<tr>
<th>Molecules</th>
<th>d(Co-N)</th>
<th>φ</th>
<th>Hirshfeld Co atomic charge</th>
<th>1st reduction wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoTDMAPc</td>
<td>1.9274</td>
<td>0.00</td>
<td>0.1959</td>
<td>-1.46</td>
</tr>
<tr>
<td>CoTAPc</td>
<td>1.9272</td>
<td>0.00</td>
<td>0.1971</td>
<td>-1.43</td>
</tr>
<tr>
<td>CoPc</td>
<td>1.9266</td>
<td>0.00</td>
<td>0.2038</td>
<td>-1.38</td>
</tr>
<tr>
<td>CoTCPc</td>
<td>1.9269</td>
<td>0.00</td>
<td>0.2084</td>
<td>-0.88</td>
</tr>
<tr>
<td>CoTSPc</td>
<td>1.9265</td>
<td>0.02</td>
<td>0.2122</td>
<td>-0.83</td>
</tr>
</tbody>
</table>

Structural and photophysical properties of Cu(I) PSs

Subsequently, four heteroleptic Cu(I) complexes of the type [Cu(P^P)(N^N)]^+ were prepared as PSs (Figure 2a). Two different P^P ligands, namely DPEphos (= bis[(2-diphenylphosphino)phenyl]ether) and xantphos as well as two N^N ligands, bcp (= bathocuproine) and pbcp (= 2,9-dimethyl-4,7-di(pyridin-4-yl)-1,10-phenanthroline), were employed in a pair-wise manner to afford four Cu(I) complexes. Two pendant pyridines were introduced at the 4,7-position of the phenanthroline moiety in CuPBCP and CuPBCP' with the aim to generate a coordinative interaction with the macrocyclic Co(II) catalysts. The purities and structures of these complexes were clarified by elemental analysis and 1H NMR spectroscopy (Supplementary Table 1 and 2). The new Cu(I) dyes containing the pbcp ligand, i.e. [Cu'(xantphos)(pbcp)]PF6 (CuPBCP) and [Cu'(DPEphos)(pbcp)]PF6 (CuPBCP'), were further characterized by 1H-1H NMR correlation spectroscopy (COSY; Supplementary Figure 7 and 8), HR-MS (Supplementary Figure 9 and 10) and single-crystal X-ray diffraction (Supplementary Figure 11 and 12, Supplementary Table 3) methods, respectively. Analysis of the crystal structures of [Cu'(xantphos)(bcp)]PF6 (CuBCP)^42 and [Cu'(DPEphos)(bcp)]PF6 (CuBCP'),^43 and comparison with those the Cu(I) PSs with the same P^P ligand reveal only negligible changes in the dihedral angles (Supplementary Table 4) between the P^P and N^N ligand planes, showing that the replacement of the bcp ligand with the pbcp ligand does not lead to significant configurational differences.
We then applied various methods to investigate the photophysical and redox properties of the four Cu(I) PSs, which are summarized in Supplementary Table 4. The UV-vis and steady-state fluorescent spectra were measured in deaerated CH$_3$CN. The comparison of the UV-vis spectra (see Figure 2b) displays that the visible-light absorption of the four Cu(I) PSs are quite similar. More specifically, at about 380 nm, CuPBCP and CuPBCP’ (both with pyridine moieties) have a lower absorbance than CuBCP and CuBCP’. The steady-state fluorescent spectra (see Figure 2c) show that the utilization of the bcp ligand induces stronger luminescence, attributed to the triplet states of metal-to-ligand charge transfer (3MLCT), under excitation at 450 nm compared to the complexes with the pbcp ligand. The electron-withdrawing effect of pyridine pendants in CuPBCP and CuPBCP’ may lower the luminescent abilities. Due to the exciplex quenching effect posed by the CH$_3$CN coordination to the excited Cu dye, the emission quantum yields (Φ$_{em}$) of all four Cu(I) complexes are relatively low. We thus calculated the Φ$_{em}$ values with the reference of [Ru(bpy)$_3$]PF$_6$$_2$ (Φ$_{em}$ = 0.018 in ambient CH$_3$CN). The following descending order of Φ$_{em}$ values was found (Supplementary Table 4) to be CuBCP’ (0.60%) > CuBCP (0.58%) > CuPBCP’ (0.44%) > CuPBCP (0.23%). We further determined the excited state lifetimes by time-resolved fluorescent spectroscopy using time-correlated single photon counting (TCSPC; Supplementary Figure 13). The weighted average lifetimes of the Cu(I) PSs follow the same trends as their Φ$_{em}$ with CuBCP, CuBCP’, CuPBCP and CuPBCP’ displaying lifetimes of 280, 256.8, 74.2 and 63.8 ns, respectively (Table 4). The triexponential decay traces of the excited CuPBCP and CuPBCP’ are consistent with markedly short lifetimes < 100 ns, which suggest the
presence of several decay pathways and will be further discussed later. To sum up, the Cu(I) PSs bearing the xantphos or bcp ligands display higher \( \Phi_{em} \) values and excited state lifetimes than those with DPEphos or pbcp, respectively.

Furthermore, cyclic voltammetry in combination with the spectroscopic results discussed above was applied to evaluate the excited-state redox potentials\(^{46,47} \) of the Cu(I) PSs (Supplementary Figure 14 and Supplementary Table 4). It can be seen that the reductive quenching potentials \( (E_{Q, red}) \) of the xantphos-based Cu(I) PSs are more positive than the two complexes with DPEphos (1.34/1.51 V vs. 1.26/1.21 V for \text{CuBCP}/\text{CuPBCP} vs. \text{CuBCP}'/\text{CuPBCP}'', Supplementary Table 4), indicative of the stronger driving force of reductive quenching pathway.\(^{27,30,31,48,49} \) As the reductive quenching is the preferred pathway using such Cu(I) PS,\(^{30,50} \) this should be favorable to drive the CO\(_2\) reduction catalysis. With this knowledge of the four Cu(I) PSs, the correlation between photocatalytic performances and their properties will be examined by the following catalytic experiments.

**Modulation on catalysts for photocatalytic CO\(_2\) reduction**

With basic understanding of the above Cu(I) PSs and Co(II) catalysts, they were then used for the visible-light-driven reduction of CO\(_2\) using a mixture CH\(_3\)CN/TEA and BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole) as the sacrificial electron donor. As photo-induced dissociation of the diphosphine ligand is a commonly observed drawback of heteroleptic [Cu(P^P)(N^N)]\(^+\) complexes,\(^{51,52} \) a general protocol was followed,\(^{53} \) where 1.0 mM diphosphine ligand (2.0 eq. of PS) was added to the catalytic mixture to inhibit its dissociation during photocatalysis. We first screened the Co(II) catalysts together with CuBCP as the PS (Table 2, entries 1-5) under 450 nm irradiation. All five Co(II) catalysts enabled the selective formation of CO with only trace amounts of H\(_2\) and no liquid products, providing CO selectivity over 97%. CoTCPc showed the highest catalytic performance in terms of CO yield, followed by CoTSPc, CoPc, CoTAPc and CoTDMAPc (Figure 3a). As a result, an impressive increase of more than ten-fold in catalytic efficiency is achieved from CoTDMAPc to CoTCPc. Hence, the usage of electron-withdrawing \( \beta \)-substituents tend to increase the catalytic performances of Co(II) catalysts, with CoTCPc as the optimal one, while the more electron-withdrawing CoTSPc shows a lower activity.

It should be noted that all components are necessary to afford a substantial amount of CO in the representative CuBCP/CoTCPc system (Supplementary Table 5), and some factors were further considered for a systematic optimization of the photocatalytic system applying the best catalyst, \textit{i.e.} CoTCPc. As depicted by Figure 3b and S15, a decreasing concentration of CoTCPc can significantly increase the TON with a maximum of 2950 at 0.2 \( \mu \)M within 1 h (Table 3, entry 6). Conversely, the CO yield (ca. 110 \( \mu \)mol when deactivated; Supplementary Figure 15) reached a plateau at catalytic
concentrations over 100 μM CoTCPc. This is most likely because the increasing CoTCPc concentration leads to a stronger absorption of irradiated light at 450 nm and thus precludes the excitation of PS, as indicated by their partially overlapped UV-vis spectra (Supplementary Figure 16). Beside catalyst concentration, the addition of a proton source, like phenol, H2O or 2,2',2"-trifluoroethanol, can significantly promote the catalytic activity (Supplementary Figure 17). This can be explained by the facilitation of proton-dependent chemical steps in CO2 reduction. More impressively, by varying the irradiation wavelengths (i.e. 405, 425 and 450 nm) and impairing the intensity to 40 mW cm−2, a maximum quantum efficiency (Φ) of 63.5% can be obtained at 425 nm (Figure 3c and 3d). This Φ is comparable to state-of-the-art molecular systems for photocatalytic CO2 reduction and even better than some noble-metal-based ones like fac-[Re{4,4'-(OMe)2bpy}(CO)3{P(OEt)3}]−/fac-[Re(bpy)(CO)3(CH3CN)]+ (ΦCO = 59% at 365 nm), a Ru-Re dyad (ΦCO = 45% at 480 nm), etc. Most important, this Φ value is the highest value among the noble-metal-free systems, including Cu-purpurin/FeTDHPP (ΦCO = 6% at 450 nm; FeTDHPP = chloroiron(III) 5,10,15,20-tetrakis (2',6'-dihydroxyphenyl)-porphyrin), p-terphenyl/Co-cyclam (ΦHCOOH+CO = 25% at 313 nm; cyclam = 1,4,8,11-tetraazacyclotetradecane), [Cu2(P2bph)2]2+/fac-Mn(4,4'-(OMe)2bpy)(CO)3Br6 (ΦHCOOH+CO = 57% at 436 nm; P2bph = 4,7-diphenyl-2,9-di(diphenylphosphinotetramethylene)-1,10-phenanthroline), etc. The CO production of the CuBCP/CoTCPc system ceased after 2 h of reaction, most presumably due to the decomposition of the Cu PS, whereas the high Φ of this photocatalytic system is still impressive. On the other hand, the reaction with 13CO2 atmosphere exhibited the significant formation of 13CO (m/z = 29; Supplementary Figure 18), evidencing that the CO was produced from the reduction of CO2 rather than from the decomposition of organic components. Overall, the above photocatalytic results demonstrate the extraordinary performance of the CuBCP/CoTCPc system for photocatalytic CO2-to-CO conversion.

Table 2. Results of photocatalytic CO2 reduction experiments.*

<table>
<thead>
<tr>
<th>Entry</th>
<th>PS</th>
<th>Catalyst</th>
<th>n(CO) (μmol)</th>
<th>n(H2) (μmol)</th>
<th>TON(CO)</th>
<th>CO%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuBCP</td>
<td>CoTDMAPc</td>
<td>8.4</td>
<td>0.23</td>
<td>42</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>CuBCP</td>
<td>CoTApC</td>
<td>23.9</td>
<td>0.56</td>
<td>120</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>CuBCP</td>
<td>CoPc</td>
<td>37.0</td>
<td>0.79</td>
<td>185</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>CuBCP</td>
<td>CoTSPc</td>
<td>51.5</td>
<td>0.95</td>
<td>258</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>CuBCP</td>
<td>CoTCPc</td>
<td>86.8</td>
<td>0.62</td>
<td>456</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>CuBCP</td>
<td>CoTCPc</td>
<td>2.16</td>
<td>0.07</td>
<td>2950</td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td>CuBCP'</td>
<td>CoTCPc</td>
<td>57.2</td>
<td>0.52</td>
<td>286</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>CuPBCP</td>
<td>CoTCPc</td>
<td>4.2</td>
<td>0.55</td>
<td>21</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td>CuPBCP'</td>
<td>CoTCPc</td>
<td>3.3</td>
<td>0.48</td>
<td>16</td>
<td>87</td>
</tr>
</tbody>
</table>

*Standard condition: Cu(I) PS (0.5 mM), diphosphine ligand (1.0 mM), Co(II) catalyst (0.05 mM), phenol (5.0 v%),
and BIH (20 mM) in 4 mL CH₃CN/TEA (v:v = 5:1) within 1 h of 450-nm irradiation (100 mW cm⁻²) under 1 atm CO₂.

Figure 3 | Photocatalytic CO₂ reduction. a Time profiles of photocatalytic CO (star) and H₂ (circle) formation using 0.5 mM CuBCP and 50 μM CoTCPc (red), CoTSPc (orange), CoPc (violet), CoTAPc (blue) or CoTDMAPc (green) under 450 nm irradiation (100 mW cm⁻²). b TON comparison for CO and H₂ formation at varying concentrations of CoTCPc with CuBCP. c Wavelength dependency of the time profiles of photocatalytic CO (star) and H₂ (circle) formation with 0.5 mM CuBCP and 50 μM CoTCPc at 450 (blue), 425 (red) or 405 (green) nm light irradiation (40 mW cm⁻²). d Φ values for CO and H₂ formation at 5 min of 450, 425 or 405 nm light irradiation (40 mW cm⁻²) from CuBCP/CoTCPc system. e Time profiles of photocatalytic CO (star) and H₂ (circle) formation with 50 μM CoTCPc and 0.5 mM CuBCP (pink), CuBCP’ (azure), CuPBCP (orange) and CuPBCP’ (turquoise).

Modulations on PSs and interaction for photocatalytic CO₂ reduction

Next, the four different Cu(I) PSs were tested with the best CoTCPc catalyst under the same optimized catalytic conditions (Figure 3e and Table 2, entries 5, 7-9). The activity was found to follow a descending order of CuBCP > CuBCP’ > CuPBCP > CuPBCP’. It is obvious, that the two Cu(I) PSs bearing the xantphos ligand exhibit higher performances than their counterparts with DPEphos. The differences can be ascribed to the bulkier and more rigid nature of xantphos than DPEphos. The bulky xantphos ligand can protect the copper center against undesired exciplex quenching by solvent molecules or counter ions. Moreover, xantphos is less flexible, which prevents the unwanted flattening in the excited state. Accordingly, it has been reported that in terms of photocatalytic hydrogen
evolution, the replacement of the DPEphos ligand by the xantphos not only enhanced the (photo)stability, but also improved the photophysical properties (e.g. excited-state lifetimes). Here we also observed that the photophysical properties of CuBCP, including $\Phi_{em}$ and lifetimes, are better than those of CuBCP', which are consistent with the observed activity order, demonstrating that the photophysical properties of Cu(I) PSs play a key role in CO$_2$ photoreduction.

The most notable observation is that the use of the pyridine-containing pbcp ligand does not result in an improved reduction of CO$_2$, which is most possibly caused by the much shorter excited state lifetimes of CuPBCP and CuPBCP'. Nevertheless, our previous studies indicate that a slightly inferior PS can be compensated by reinforcing the intermolecular electron transfer via coordinative interaction. As a type of covalent bonds, the labile coordinate bond not only endows the dynamic stability in the coordinatively interacted system, but also additionally facilitates the electron transfer processes in a manner of inner-sphere electron transfer (ISET) via the coordinative interaction as either a stable adduct or a transition state, potentially circumventing the diffusion limit. Therefore, we also examined the coordinative interaction by $^1$H NMR titration experiments. Prior to titration, the proton assignment for CuPBCP was carried out in $d_7$-DMF (Supplementary Table 2 and Supplementary Figure 19), because this solvent was suited to prepare highly concentrated CoTCPc solutions essential for titration. Then the addition of CoTCPc into the $d_7$-DMF solution of CuPBCP induced notable shifts and a broadening of the proton signals responsible for the pbcp ligand, indicating the interaction between CoTCPc and CuPBCP via the pbcp ligand, most possibly by the desired coordination interaction (Supplementary Figure 20). The binding constant can be calculated on the basis of the proton shifts in binding fit, which is estimated as a 1:1 binding constant ($K_{11}$) of 3795±118 M$^{-1}$ in non-cooperative 1:2 model (see detailed analysis in Experimental section and Supplementary Table 6). The $K_{11}$ value is of the same order of 10$^3$ M$^{-1}$ as the measured value from the coordinative interaction between a pyridine-appended Ir(III) PS and CoPe, supporting the presence of a dynamic coordinative interaction between CuPBCP and CoTCPc. This optimal non-cooperative 1:2 model suggests each of the two pyridine pendants in CuPBCP can coordinate to a CoTCPc molecule without interference. In contrast, the parallel titration between CuBCP and CoTCPc yielded only negligible shift for all proton signals (Supplementary Figure 21), supporting the absence of interaction without the pbcp ligand. The above comparison demonstrates well the coordinative
interaction between CoTCPc and CuPBCP. Furthermore, the $^1$H NMR titration between CuPBCP and CoTCPc was carried out in the presence of excess TEA (5%). This investigation aims at estimating the competitive coordination between CuPBCP and TEA toward CoTCPc, because TEA can also axially coordinate to CoTCPc, as herein revealed by UV-vis spectra in the absence and presence of TEA (Supplementary Figure 22). During the $^1$H NMR titration in the CuPBCP/CoTCPc/TEA system, the shifts were still visible (Supplementary Figure 23), and the binding constant was calculated as $1611 \pm 45 \text{ M}^{-1}$ in non-cooperative 1:2 model (Supplementary Table 7). This value is in the same order of magnitude and in the same binding model as the TEA-free system, demonstrating the tolerance of coordinative interaction against competitive TEA coordination. According to the above results, substantial coordinative interaction has been achieved between CuPBCP and CoTCPc, but this cannot compensate for the impaired photophysical properties caused by the replacement of bcp with pbcp, leading to diminished activity. The further reasons for the loss of activity caused only by the replacement of two C atoms by N atoms should be investigated in detail for the rational design of Cu(I) PSs, which will be discussed later.

**Catalytic mechanism of CoTCPc**

A mechanistic understanding of the best CoTCPc catalyst from the sequence of CoPc derivatives is meaningful for further optimization of this family of catalysts. First, the CVs of CoTCPc can provide some redox catalytic insights (Supplementary Figure 5). Under N$_2$, three reduction events appeared in the CV of CoTCPc in NMP/TEA medium. The first reversible one should be attributed to Co$^{II/III}$ reduction, while the subsequent reduction waves may be induced by the reduction on the Pc ring. The introduction of CO$_2$ induces a current enhancement at the second reduction wave, indicating that the two-electron reduced species is able to initiate the catalytic reduction of CO$_2$. Further, an additional catalytic wave appeared at the Co$^{II/III}$ reduction wave in the CV upon the addition of phenol under CO$_2$, showing the decreased overpotential required for effective catalysis by enabling the proton-dependent transfer. The quite positive catalytic potential for CO$_2$ reduction should contribute to the high catalytic activity of CoTCPc in photocatalysis. With the above clues, a catalytic cycle for CoTCPc can be proposed (Supplementary Figure 24), in which the one-electron reduced catalyst, the Co(I) species, can bind and reduce CO$_2$ with protonation to yield Co-COOH intermediate, followed by the
cleave of C-OH bond to release CO.

**Structure-activity relationship**

Aforementioned electrochemical results have illustrated that the electron-withdrawing effects effectively impose positive shifts of Co$^{II/1}$ redox couple, which is amenable for photocatalysis at lower overpotentials. However, CoTSPc, with the most electron-withdrawing sulfonic-acid substituents, gave a minor performance than CoTCPc. To preliminarily decipher the structure-activity relationship, additional DFT calculations (PBE0 functional and def2-SVP basis set) based on the above proposed mechanism were carried out. The calculated reactions involve the rate-determining generation of *COOH intermediate from the adsorption and reduction of CO$_2$ at the Co site. The *COOH intermediate then undergoes a proton-coupled electron transfer step to cleave C-OH bond and evolves *CO, which is ultimately desorbed to recover the free Co center. We have obtained the calculated structures derived from the used Co(II) catalysts that adsorb CO and COOH with corresponding Gibbs free energies, most importantly the $\Delta G(*COOH)$ and $\Delta G(*CO)$ (Supplementary Table 8). It can be seen that the values of $\Delta G(*COOH)$ for all CoPc molecules are close, showing a negligible correlation with the order of catalytic activity. In contrast, the order of the $\Delta G(*CO)$ values is more consistent with the order of catalytic activity (Figure 4), which suggests that the CO desorption step plays a crucial role for the catalytic performance. The key contribution of CO desorption ability in CO$_2$ reduction has been extensively documented. This DFT-calculated volcano-type plot computationally indicates CoTCPc as the best catalyst in our case, while this primary observation demands more CoPc derivatives as well as more detailed theoretical/experimental works, which are on the progress, for further confirmation.
Figure 4 | Structure-activity relationship. Plots of $\Delta G(^{3}CO)$ (red diamond) and CO production rate (blue pentagon) of five Co(II) catalysts versus their Hirshfeld Co atomic charges, showing the correlations between $\Delta G(^{3}CO)$ and catalytic activity as well as the volcano-like trend of electronic effects.

Photo-induced electron transfer

The proposed catalytic mechanism and the observed structure-activity relationship were further supported by verifying the underlying photo-induced electron transfer processes. For this purpose, we focused on the investigation of the excited states of CuBCP and CuPBCP to also analyze the low performances caused by the pyridine pendants. Firstly, quenching experiments with the excited state of the Cu(I) PSs were carried out by steady-state fluorescent spectroscopy (Figure 5 and Table 3). On one hand, both CuBCP and CuPBCP can be effectively quenched by BIH (Figure 5a and 5b), which suggests a reductive quenching pathway (see Equation 1, 2 and 3). On the other hand, the reductive quenching constant for BIH ($k_{q(BIH)}$), as determined by Stern-Volmer (S-V; Equation 4) plots, is higher for CuBCP than for CuPBCP (5.23 vs. $3.27 \times 10^{9}$ M$^{-1}$ s$^{-1}$; Figure 5c). This is contradictory to the more positive $E_{q,red}$ value of CuPBCP compared to CuBCP (1.51 vs. 1.34 V), inferring that other factors, most presumably the short-lived excited state, induce the lethargic quenching between CuPBCP and BIH. The reductive quenching belongs to dynamic quenching, as the lifetime of CuBCP can also be reduced upon the addition of BIH with a comparable quenching constant, $k_{q(BIH)}' = 8.95 \times 10^{9}$ M$^{-1}$ s$^{-1}$ (Supplementary Figure 25). On the other hand, we also observed significant quenching by the addition of CoTCPc in both steady-state (Figure 5d-5f) and transient fluorescent spectra (Supplementary Figure 26). However, the slopes in S-V plots with CoTCPc for both CuBCP and CuPBCP are not linear with shifted emission peaks. These observations are consistent with the absorption of excitation light and excited luminescence (Supplementary Figure 16) rather than
oxidative quenching (Equation 1, 5 and 6) by CoTCPc.

\[
\text{Cu PS} + h\nu \xrightarrow{\phi_{em}} \text{Cu PS}^* \tag{1}
\]

\[
\text{Cu PS}^* + \text{BIH} \xrightarrow{k_{q,\text{red}}} \text{Cu PS}^- + \text{BIH}^+ \tag{2}
\]

\[
\text{Cu PS}^- + \text{Co}^{II}\text{TCPc} \xrightarrow{k_r} \text{Cu PS} + \text{Co}^I\text{TCPc} \tag{3}
\]

\[
\frac{l_0}{l} = 1 + k_q \tau_0 [Q] \tag{4}
\]

\[
\text{Cu PS}^* + \text{Co}^{II}\text{TCPc} \xrightarrow{k_{q,\text{ox}}} \text{Cu PS}^+ + \text{Co}^I\text{TCPc} \tag{5}
\]

\[
\text{Cu PS}^+ + \text{BIH} \rightarrow \text{Cu PS} + \text{BIH}^+ \tag{6}
\]

\[
\frac{\tau_1}{\tau} = 1 + k_r \tau_1 [Q] \tag{7}
\]

We then implemented transient absorption (TA; Figure 6 and Table 3 with Experimental details in SI) spectroscopy to further verify the electron transfer pathway and analyze the different states of the Cu(I) PSs. First, for CuBCP, the excitation at 420 nm can induce significant absorption changes peaking at 330 and 530 nm, in which the latter can be attributed to the absorption of the \( ^3\text{MLCT} \) species (Figure 6a). The excited species has a lifetime (\( \tau_0' \)) of 301.6 ns, which is close to the result of time-resolved fluorescent lifetime \( \tau_0 = 280.0 \text{ ns} \). The addition of an excess of BIH (60 equivalents) induces a long-lived species (\( \tau_1 = 75.8 \mu\text{s} \); Figure 6b) with a new absorption spectrum with a main absorption at 350 nm, indicative of the formation of a reduced state, CuBCP\(^-\), and accordingly the reductive quenching pathway (Equation 2). In contrast, negligible changes occur in the shape of TA spectra upon the addition of CoTCPc, proving the absence of oxidative quenching pathway (equation 5). Further, the spectral intensity was markedly reduced and the lifetime was slightly reduced in a non-linear manner (Supplementary Figure 26a-26b), which can be attributed to the significant absorption of CoTCPc rather than the oxidative quenching. Subsequently, an increasing concentration of CoTCPc decreased the longevity of CuBCP\(^-\) and a second-order reaction constant, \( k_r = 4.73 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \) can be calculated via equation 7.\(^{38}\)

The TA spectral evolution of CuPBCP upon excitation (Figure 6e) and the addition of BIH (Figure 6f) or CoTCPc (Supplementary Figure 26e-26d) are similar to those of CuBCP with analogous conclusions. It can be noticed that the lifetime of CuPBCP\(^-\) is much longer than that of CuBCP\(^-\) (470.8 vs. 75.8 \( \mu\text{s} \)), which could be related to the different electron localization in the varied diimine
ligands. Moreover, the further reaction between CuPBCP and CoTCPc at increasing concentrations gave rise to a higher $k_r = 6.91 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ than that of CuBCP. Considering that their reducing abilities are nearly identical (-1.36 V for CuBCP and -1.37 V for CuPBCP) and that the influence of the different lifetimes of their reduced states is eliminated via equation 7, the faster $k_r$ of CuPBCP should be mainly attributed to the coordinative interaction between the pyridine substituents and the macrocyclic CoTCPc.

From the numerous results of the different spectroscopic methods discussed above, several conclusions can be drawn. First, the photocatalytic reduction of CO$_2$ to CO using the system of Cu(I) PS and CoTCPc follows the reductive quenching pathway. Second, the light absorption of CoTCPc induces the apparent fluorescent quenching, and the oxidative quenching pathway has been excluded by characteristic TA spectra. Last and importantly, despite the very short-lived excited state of CuPBCP which impedes photocatalysis, the coordinative interaction between CuPBCP and CoTCPc still reinforces their intermolecular electron transfer. Hence, the principal strategy of designing a diimine ligand enabling a molecular interaction between PS and catalyst is very promising for future research.

Figure 5 | Steady-state emission quenching. Emission spectra of a CH$_3$CN solution containing 0.2 mM Cu(I) PS (CuBCP or CuPBCP), in the absence and presence of varying concentrations of quencher (BIH or CoTCPc), respectively. a CuBCP/BIH; b CuPBCP/BIH; d CuBCP/CoTCPc; e CuPBCP/CoTCPc. Linear fitting of ratio of luminescence intensity versus $c$ [BIH] or $f$ [CoTCPc].
Table 3 Related data and calculated reaction constants from steady-state fluorescent quenching and TA experiments in degassed CH₃CN solutions.

<table>
<thead>
<tr>
<th>PS</th>
<th>Steady-state fluorescent quenching</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t_0$ (ns) $k_{q(BIH)} \times 10^9$ M$^{-1}$ s$^{-1}$</td>
<td>$t_0'$ (ns) $\tau_1$ (μs) $k_r \times 10^8$ M$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>CuBCP</td>
<td>280.0 5.23</td>
<td>301.6 75.8 4.73</td>
</tr>
<tr>
<td>CuPBCP</td>
<td>74.2 3.27</td>
<td>53.3 470.2 6.91</td>
</tr>
</tbody>
</table>

Figure 6 | Nanosecond TA spectroscopy. Nanosecond TA spectroscopic results of (a-d) CuBCP and (e-h) CuPBCP.

TA spectra of a 0.03 mM CuBCP or b 0.03 mM CuBCP with 0.20 mM BIH. c Kinetic traces of 0.03 mM CuBCP with 0.20 mM BIH and 0~18 μM CoTCPc. d Plot of ($\tau_1$ / $\tau$ - 1) versus [CoTCPc] with linear fitting for the CuBCP system with BIH. TA spectra of e 0.05 mM CuPBCP or f 0.05 mM CuPBCP with 0.30 mM BIH. g Kinetic traces of 0.05 mM CuPBCP with 0.30 mM BIH and 0~20 μM CoTCPc. h Plot of ($\tau_1$ / $\tau$ - 1) versus [CoTCPc] with linear fitting for the CuPBCP system with BIH. The data were collected by following the spectra at 360 nm in Ar-saturated CH₃CN upon excitation at 420 nm.

Photocatalytic CO₂ reduction with other molecular catalysts

Besides the catalytic properties and mechanisms, the above systematic studies also reveal that the short-lived excited state of CuPBCP (analogous for CuPBCP$^+$) should be the main reason to induce a low activity in light-driven CO₂ reduction. To unfold this mystery, the electronic and structural properties of the ground- and excited-state conformations of CuBCP and CuPBCP were studied.
through steady-state and time-resolved X-ray absorption near-edge (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies (Supplementary Figure 27). The ground-state XANES spectra of CuBCP and CuPBCP (Supplementary Figure 27a) display identical features in the rising edge and main edge regions from 8980-9020 eV, indicating similar local coordination spheres, and geometrical conformations. A main peak was further observed at 8984 eV in the XANES spectra reflecting the nature of the 4p\textsubscript{z} orbital in the pseudo-tetrahedral coordination environments\textsuperscript{68-71} of these Cu(I) complexes (Supplementary Figure 27a). The CuBCP and CuPBCP EXAFS spectra reveal a prominent peak (Peak I) corresponding to the averaged Cu-N and Cu-P bond distances (Supplementary Figure 27b). The EXAFS fits for the extraction of the actual bond distances are shown in Supplementary Figure 28, Table 4 and Supplementary Table 9. Analysis of the EXAFS spectra of CuBCP and CuPBCP clearly resolved two Cu-N and Cu-P distances at 2.08/2.09 and 2.30 Å, respectively (Table 4 and Supplementary S9, Supplementary Figure 27). The observed trends in the experimental EXAFS are in good agreement with structural parameters from XRD analysis and DFT optimized coordinates (Supplementary Figure 27c, Supplementary Table 9-11), confirming the suitability of the theoretical method to account for the main structural trends in the Cu(I) PSs.

Following the above steady-state XANES and EXAFS measurements, picosecond time-resolved X-ray absorption (tr-XAS) spectroscopy was employed to capture snapshots of the excited state conformations of the CuBCP and CuPBCP complexes. In this scenario, a laser pulse (pump) initiates a photophysical process within the molecules under study and an X-ray pulse (probe) is used to interrogate its evolving optical response at varying delays.\textsuperscript{72-77} The solutions of the Cu(I) PSs were pumped at 400 nm wavelength. The tr-XAS spectra were collected before (laser-off) and after (laser-on) the laser excitation (Figure 7). In particular, by subtracting the laser-off from the laser-on spectrum, a transient signal is obtained for each pump-probe delay and provides information on the photoinduced dynamics. The transient signal monitored at 100 ps features two intense bleach transitions at 8982 and 8988 eV together with a broad positive peak at \(\sim\) 9000 eV (Figure 7), corresponding to the ground state bleaching of the Cu(I) PSs and formation of the formally oxidized Cu(II) and \(^3\)MLCT excited state. Interestingly, clear changes were not only observed in the oxidation state of Cu but also in its electronic configuration and coordination geometry. MLCT transition causes a 3d electron to be promoted to the low-lying \(\pi^*\) orbital of the ligand upon excitation, thus leading to a d level
occupational change from 3d$^{10}$ to 3d$^9$. A pre-edge feature corresponding to the 1s to 3d quadrupole transition which gains intensity due to 4p mixing$^{78,79}$ into the Cu 3d shell is thus observed at low photon energies at 8979 eV (Figure 7).

![Figure 7 | Time-resolved XAS.](image)

Figure 7 | Time-resolved XAS. Time-resolved XAS spectra (laser on/off) corresponding to the excited states of 0.8 mM CuBCP (magenta) and CuPBCP (green) owing to MLCT transitions at a delay of 100 ps between laser and X-ray pulses. The inset shows the pump-probe delay scans recorded at 9000 eV, corresponding to the decay of the excited-state species with the fittings of CuBCP (magenta) and CuPBCP (green).

![Figure 8 | XAS.](image)

Figure 8 | XAS. Normalized Cu K-edge XANES of the laser-off spectrum (black), laser-on (in magenta) and reconstructed excited state spectra (in dotted magenta) of CuBCP assuming 35% excited state. (b) Experimental Fourier transforms of k$^2$-weighted Cu EXAFS of the laser-off (in black) and reconstructed excited state (in dotted magenta) of CuBCP. The inset shows the back Fourier transformed experimental (solid line) and fitted (dashed lines)
$k^2\chi(k)$] of the laser off and reconstructed spectra of CuBCP. Experimental spectra for the reconstructed spectra were calculated for $k$ values of 2-10 Å$^{-1}$. (c) Normalized Cu K-edge XANES of the laser-off (in red), laser-on (green) and reconstructed excited state spectra (dotted green) of CuPBCP assuming 27% excited state. (d) Experimental Fourier transforms of $k^2$-weighted Cu EXAFS of the laser off (red) and reconstructed excited state (dotted green) of CuPBCP. The inset shows the back Fourier transformed experimental (solid lines) and fitted (dashed lines) $k^2\chi(k)$ of the laser off and reconstructed excited state of CuPBCP.

Table 4. Comparison of structural parameters obtained from DFT calculations and EXAFS analysis for CuBCP and CuPBCP. Bond lengths are given in Å.

<table>
<thead>
<tr>
<th>Complex</th>
<th>EXAFS fits</th>
<th>DFT ground state (Å)</th>
<th>DFT excited state (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuBCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground state:</td>
<td>Cu-N: 2 × 2.08</td>
<td>Cu-N: 2.07, 2.06</td>
<td>Cu-N: 2.01, 2.07</td>
</tr>
<tr>
<td>Cu-N: 2 × 2.09</td>
<td>Cu-N$_{avg}$: 2.07</td>
<td>Cu-N$_{avg}$: 2.07</td>
<td>Cu-N$_{avg}$: 2.04</td>
</tr>
<tr>
<td>Cu-P: 2 × 2.30</td>
<td>Cu-P: 2.23, 2.26</td>
<td>Cu-P: 2.31, 2.35</td>
<td>Cu-P$_{avg}$: 2.33</td>
</tr>
<tr>
<td>Excited state:</td>
<td>Cu-P$_{avg}$: 2.25</td>
<td>Cu-P$_{avg}$: 2.33</td>
<td>Cu-O: 3.29</td>
</tr>
<tr>
<td>Cu-N: 2 × 2.01</td>
<td>Cu-O: 3.17</td>
<td>Cu-O: 3.29</td>
<td>Torsional angle: 86.5°</td>
</tr>
<tr>
<td>Cu-P: 2 × 2.39</td>
<td>Torsional angle: 86.5°</td>
<td>Torsional angle: 79.6°</td>
<td>ΔTorsional angle: -6.84°</td>
</tr>
<tr>
<td>Torsional angle: 86.4°</td>
<td>Torsional angle: 86.4°</td>
<td>Torsional angle: 86.4°</td>
<td>ΔTorsional angle: -7.89°</td>
</tr>
<tr>
<td>CuPBCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground state:</td>
<td>Cu-N: 2 × 2.09</td>
<td>Cu-N: 2.07, 2.07</td>
<td>Cu-N: 2.02, 2.05</td>
</tr>
<tr>
<td>Cu-N: 2 × 2.09</td>
<td>Cu-N$_{avg}$: 2.07</td>
<td>Cu-N$_{avg}$: 2.04</td>
<td>Cu-P: 2.31, 2.36</td>
</tr>
<tr>
<td>Cu-P: 2 × 2.30</td>
<td>Cu-P: 2.23, 2.26</td>
<td>Cu-P: 2.31, 2.36</td>
<td>Cu-P$_{avg}$: 2.34</td>
</tr>
<tr>
<td>Excited state:</td>
<td>Cu-P$_{avg}$: 2.25</td>
<td>Cu-P$_{avg}$: 2.34</td>
<td>Cu-O: 3.29</td>
</tr>
<tr>
<td>Cu-N: 2 × 1.99</td>
<td>Cu-O: 3.16</td>
<td>Cu-O: 3.29</td>
<td>Torsional angle: 78.5°</td>
</tr>
<tr>
<td>Torsional angle: 86.4°</td>
<td>Torsional angle: 86.4°</td>
<td>Torsional angle: 86.4°</td>
<td>ΔTorsional angle: -7.89°</td>
</tr>
</tbody>
</table>

The kinetics of the decay of the $^3$MLCT excited state were additionally monitored by fixing the X-ray photon energy at 9000 eV and varying the time delay between the laser and X-ray pulses (Figure 7 inset and Supplementary Figure 29). The $^3$MLCT states of CuBCP and CuPBCP form promptly in less than the ~100 ps pulse duration of the X-rays and decay within 287 ± 63 and 64.3 ± 22.1 ns, respectively, in agreement with the previous time-resolved fluorescent experiments (Supplementary Table 4 and Supplementary Figure 13). The excited state fractions of CuBCP and CuPBCP were
determined by comparing their laser-off and laser-on XANES spectra (Figure 8a and 8c) to those of previous reported heteroleptic Cu complexes\textsuperscript{80} with similar coordination environments. A relative chemical shift in energy of 2 eV was typically observed between Cu(I) and Cu(II) reference complexes, such that the proportions of excited state of 35\% and 27\% were estimated in the laser on spectra of CuBCP and CuPBCP, respectively, and used to plot the actual or reconstructed XANES spectra of the excited states (Figure 8a and 8c).

The formation of a flattened geometry within the $^3$MLCT state has been well known to enable nucleophilic attack by solvent molecules or counterions thus promoting the formation of a low-energy excited state known as an “exciplex”, which subsequently decays to the ground state.\textsuperscript{70,71} Alternatively, the nature of the solvent can also modify triplet lifetimes without a direct coordination to the metal centre by tuning charge transfer excited state energies.\textsuperscript{81} The shortened excited-state lifetime of CuPBCP versus CuBCP reflects the effect of the pyridine decoration instead of benzene. That is, the pendant pyridine rings in CuPBCP seem to account for the decreased stability and lifetime of its $^3$MLCT state, as they can favour a stronger flattening of the overall excited-state geometry and a larger torsional angle change, as evidenced through DFT geometry optimization calculations and experimental EXAFS fits (Table 4 and Supplementary Table 11). DFT optimization calculations of the excited-state conformation of CuPBCP further display a larger torsion of the pendant pyridine rings of -0.729\° and -0.229\° in comparison to CuBCP which display decreased torsions of -0.117\° and -0.160\° (Supplementary Table 12). The larger torsions in the pyridine rings of CuPBCP are consequently presumed to lead to the decreased steric hindrance and enhanced solvent accessibility in its excited-state conformation, namely a stronger exciplex effect.

**Discussion**

In summary, triple modulations, in terms of catalyst, PS and additional coordinative interactions, have been employed in this work to accomplish high-performance photocatalytic CO$_2$ reduction to CO, using earth-abundant elements only. An excellent quantum efficiency of 63.5\% has been achieved with complete selectivity by the optimal selection of Cu(I) PSs and CoPc derivatives. Even more intriguing, the structure-activity relationships for both the catalysts and the PSs have been well verified by combined experimental and theoretical investigations. For the CoPc catalysts, the electron-
withdrawing substituents show a promotive effect on the photocatalysis, which are correlated with CO desorption tendencies during catalysis. For the \([\text{Cu(P}^\text{P})(\text{N}^\text{N})]^+\) PSs, on one hand, in terms of the diphosphine \(\text{P}^\text{P}\) ligand, a stronger rigidity of the diphosphine \(\text{P}^\text{P}\) ligand (xantphos vs. DPEphos) favors the luminescent properties and thus the photocatalytic activity. On the other hand, the results of the time-resolved X-ray absorption spectroscopy and the DFT calculations indicate for the diimine \(\text{N}^\text{N}\) ligand that the replacement of phenyl by pyridyl groups enhances exciplex quenching and thus induces short-lived triplet excited states. As a proof-of-concept, the intended coordinative interaction between the pendant pyridine rings in the \(\text{Cu(I)}\) PSs and the axial sites of \(\text{CoTCPc}\) has been established, which can facilitate the electron transfer between the above two components. Interestingly, the presence of such an interaction does not lead to an increase in catalytic activity, because the performance is still limited by the unstable excited state of the pyridine-decorated PS, noting the impact of delicate ligand modifications. Based on the above merits, we believe that our work opens new avenues to the development of highly cost-efficient molecular systems for \(\text{CO}_2\) photoreduction. The above-described experiments on the optimization of photocatalytic systems can serve as an inspiring and systematic guide to improve catalytic performances.

**Methods**

**Materials**

\(\text{CuBCP}, \text{CuBCP}', \text{BIH}, \text{CoTSPc}, \text{CoTCPc}, \text{pbcp ligand}\) were prepared following the previously reported methods. Milli-Q ultrapure water (> 18 MΩ) was utilized unless otherwise stated.

\([\text{Cu(CH}_3\text{CN})_4]\text{PF}_6\) (97%, Innochem), bis[(2-diphenyl-phosphino)phenyl]ether (DPEphos; 97%, Innochem), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (xantphos; 97%, Innochem), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, bcp; 97%, Innochem), \(\text{CoPc}\) (97%, \(\beta\)-form, Aldrich), \(\text{CoTAPc}\) (95%, Jilin Chinese Academy of Sciences-Yanshen Technology Co., Ltd.), and other chemicals were commercially available and used without further purification.

**Instruments**

\(^1\text{H} \text{NMR and } ^1\text{H}-^1\text{H} \text{2D NMR correlation spectroscopy (COSY) spectra were obtained on a Bruker advance III instrument (400 MHz). Electrochemical measurements were carried out using an}\)
electrochemical workstation (CHI 620E). Gas chromatographic analysis was conducted on an Agilent 7820A gas chromatography. The isotopic labeling experiment was conducted under $^{13}$CO$_2$ atmosphere and the gas in the headspace was analyzed by a quantitative mass spectrometer attached Agilent 7890A gas chromatography. The liquid phase of the reaction system was analyzed by an ion chromatograph (Metrohm) to detect the presence of formate. UV–vis spectra were collected on a Shimadzu UV-3600 spectrophotometer. The emission experiments were conducted on a modular fluorescent life and steady-state fluorescence spectrometer (FLSP1000, Edinburgh Instruments LTD.). The TA spectroscopy was carried out on a laser flash photolysis instrument (LP980, Edinburgh Instruments LTD.). All experiments were operated at room temperature (24~25 °C) unless otherwise stated.

**Data availability**

Experimental details, Supplementary figures and tables, and computational data are available from the authors. Most data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper. The data with CCDC number, CuPBCP (2092595) and CuPBCP' (2043973), contain the supplementary crystallographic information for this paper. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/.

**References**

28. Takeda, H., Monma, Y. & Ishitani, O. Highly functional dinuclear Cu¹ комплекс photosensitizers for photocatalytic


48. Friedrich, A., et al. Effective quenching and excited-state relaxation of a Cu(I) photosensitizer addressed by time-


**Acknowledgments**
We are grateful for the TA spectroscopy and analysis assisted by Ping Wang and Prof. Zhi-Ming Zhang from Tianjin University of Technology, as well as the luminescence analysis supported by Ms. Yu-Xin Chen and the single-crystal X-ray diffraction by Dr. Long Jiang from the Instrumental Analysis and Research Center in Sun Yat-sen University. We are thankful to Mr. Martin Rentschler for help with NMR analysis. Gangfeng Ouyang thanks the National Natural Science Foundation of China (21737006, 22076222 and 22036003). Jia-Wei Wang acknowledges the financial supports from Guangdong Basic and Applied Basic Research Foundation (2020A1515110017 and 2021A1515012033), the European Union (Horizon 2020 Marie Skłodowska-Curie COFUND grant agreement No 801474) and Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033, CEX2019-000925-S). Dooshaye Moonshiram acknowledges supports from the Severo Ochoa Excellence program (SEV-2016-0686 from the Instituto IMDEA Nanociencia), the Acciones de Dinamización Europa Investigacion grant (EIN2019-103399), the Spanish Ministerio de Ciencia, Innovacion y Universidades grant (PID2019-111086RA-I00) and the Ramon y Cajal Fellowship (RYC2020-029863-I). This research also used resources of the Advanced Photon Source (Beamline 11 ID-D); a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

**Author contributions**

J.W.W. conceived and designed this project, J.W.W. and Z.M.L. synthesized the complexes, J.W.W., Z.M.L., Z.L. and Y.H. performed the photocatalytic experiments and luminescence spectroscopies, J.W.W. and M.K. analyzed and discussed the spectroscopic data, J.W.W. conducted the transient absorption spectroscopy and analyzed the data, X.Z. and D.M. carried out the DFT calculations, J.Y., W.H., X.Z. and D.M. operated the time-resolved X-ray absorption spectroscopy and analyzed the data, J.W.W., D.M. and O.G. analyzed the bulk data and provided the funding, J.W.W organized the collaborations. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

**Competing Interests**

The authors declare no competing interests.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- CuPBCP.cif
- CuPBCPd1.cif
- CuPBCPcifreport.pdf
- CuPBCPcifreportd1.pdf
- SupplementaryInformation.docx