Supplementary materials

Appendix A. Wright’s standardized variance estimator 
We will use the symbol  to denote an allele copy in the first two appendices.
For the situation of a single subpopulation (say ), the BP is . We use the binary variable  to denote the state of an allele copy  in individual , whose value is  if , or  if , where  is in . Then  and . 
The kinship coefficient  is the probability of randomly sampling two IBD allele copies with replacement (say  and ) from individual  with replacement relative to . Then  is equal to one at the probability  if  and  are IBD. If  and  are not IBD, they are independent, and so  is equal to one at the probability . Hence 
.
Similarly, by the definition of the kinship coefficient , we have
,
where  and  are randomly sampled from . Therefore




Also, 
.
Since the operator  is linear, we obtain
,
.

[bookmark: _Hlk91959143]Therefore, by  and , it follows

For the situation of multiple subpopulations, the BP is the total population. We will use the binary variable  to denote the state of any allele copy , where ,  and  satisfy the nested relationship, i.e.,  and . Then  and . 
By the definition of , we have
,
,
.
By the same derivation as above, the following equations hold:
                       (A3)
,
                      (A4)
Also, 
,
 
                       (A5)
Note that , it follows
,
.
Hence

The same way can be used to derive the following expressions:



Appendix B. Nei’s heterozygosity estimator
We use the same binary variables as Appendix A. For simplicity, we omit the identifier  in the subscripts of , ,  and .
For the situation of a single subpopulation , the BP is . Because the probability that two distinct allele copies in  are IBD is , then

Noticing that , we have , then

Also,  by Equation (A2), then 
.
Now, by the definitions of  and , we obtain


So  and  by . Hence

For the situation of multiple subpopulations, the BP is . Then

Because of , we have  by Equation (A5). Also, we also have  by Equation (A4). Now, by the same derivation as the first half, we obtain 
,
,
,
where  is a representative in . Therefore 

Appendix C. Li’s correlation estimator
Unlike the first two appendices, we here denote  for the ordinal number of an allele instead of the allele itself. For example,  is the  allele copy within individual  at a target locus. 
In a single subpopulation (say), the BP is . Also, the estimate  of Li & Horvitz’s (1953) estimator can be expressed as

where  and  are two random variables, whose possible values are the assignments of all possible allele copies in individual  at a target locus, and each pair of their values is the assignments of allele copies  and  in which  is randomly sampled from subpopulation , and  and  are randomly sampled from 1 to  without replacement. Let  be the assignment of  (the value assigned can be arbitrary). Then the above expression can be rewritten as

Let  and  be two allele copies randomly sampled from individual  at this target locus with replacement, and let  and . Then  if  and  are IBD, otherwise . Especially, . So, , i.e.,
.
Hence                   .
Similarly, , and so 

As the derivation in Appendix B, we have . Because the operator  is linear, by  and  , we obtain 
.
Also, 
 
Then, by Equation (2), it follows
.
So,  Moreover,  by . Hence

Appendix D. Weir & Cockerham’s estimator
We perform our derivation based on Huang et al.’s (2019a) generalized AMOVA framework, and choose the IAM distance as an example to define various sums of squares (SS). In this framework, the derivation of the expected value of the  within each hierarchy is clearer. The symbol  ( or ) is simply called the sum of squared genetic distances between alleles within individuals, subpopulations or the total population. 
For a single subpopulation (say ), the BP is  and there are only the two squared sums  and , which is calculated by


where  and  are the ordinal numbers of two allele copies,  is the genetic distance between two distinct allele copies  and  within individual  at a target locus, whose definition in the infinity allele model (IAM) is as follows:  if  and  are IBD, otherwise . 
For independent samples, the probability that  and  are IBD is , and the expectation of  is ; the probability that  and  are IBD is 0. So, by the definition of IAM distance, the following hold: 
,
. 
Since  and , we have
   and   .
Then ,
 
=

Now, replacing  by the ,  by the ,  by , and  by , we obtain two relational expressions as follows:
                       (A6)
Noticing that the estimates  and  are unbiased for independent samples.
For non-independent samples, the probability that  and  are IBD is also , and thus . However, the probability that  and  are IBD is  instead of zero, and thus
.
Denote  for , then . Following the above method, we can derive that
   and   .
On the other hand, by Equation (A6), the following hold:

Then                 ,

So  and . Because , we obtain

For the situation of multiple subpopulations, the BP for each unit or each pair of units is the total population, and the three squared sums are defined as follows:



For this situation, the probability that  and  are IBD is still , whose expectation relative to the BP  is ; the probability that  and  are IBD is , and  if the samples are independent; and the probability that  and  are IBD is zero if the samples are independent, or is  if they are non-independent. 
Now, by the definitions of ,  and , for the independent samples, we have
,
,
.
Then , and
,
 
.
So, as the above derivation, the following three relational expressions are established:
              (A7)
Next, for the dependent samples, if we let
  and  ,
then               ,
,
.
By the same derivation as above, one has
,
, 
.
On the other hand, by Equation (A7), one obtains
,

.
Comparing the corresponding values of  at each hierarchy, one gets
,    and  .
Noticing that , it follows 
,
,
.
Appendix E. Genotypic frequencies under inbreeding
Huang et al. (2019b) derived the genotypic frequency at equilibrium state for polysomic inheritance under double-reduction and Huang et al. (2019a) use a Dirichlet distribution to approximate the genotypic frequencies under the conditions of inbreeding. The derivation are shown in Appendix B of Huang et al. (2019a). Here, we only present the resulting equation

where  denotes the genotype,  denotes the vector consisting of the frequencies  of alleles in a unit,  denotes the inbreeding coefficient in a unit,  is the number of copies of the  allele in , and  (Pritchard et al. 2000). 
Appendix F. Conditional distribution of genotypes
In this appendix, we focus on a band, which is defined as a virtual hierarchy inferior to the background population, denoted by . The symbols  and  have the same meanings as those in Appendix E, and we will also use  to denote the vector consisting of the frequencies  of alleles in band . In order to facilitate the derivation, we use  to represent the background population. Meanwhile, the kinship coefficient relative to  is denoted by  regardless of the value of .
To generate the inbred offspring, the expected kinship coefficient  between the father  and the mother  must be equal to the inbreeding coefficient , or equivalently equal to . Coincidentally, distinct alleles within a parent or between parents are all IBD at a probability of , therefore  and  can be considered as drawn from a band  without inbreeding ( and ). 
Since , the true allele frequencies in each individual ( and ) are equal to  and the alleles in - can be considered as independent relative to . Also, by , one has . Therefore, it can be inferred that  are drawn from the Dirichlet distribution , where  and  (Pritchard et al. 2000). Now, by using the results given in Appendix E, the expression of a joint probability mass function  of a father’s genotype  and a mother’s genotype  conditional on  and  can be derived as follows:



where  is the probability density function of  and the integral domain  can be expressed as
.
Therefore, the conditional distribution function of a mother’s genotype  given a father’s genotype  conditional on  and  can be expressed as



Similarly, the conditional distribution function of father’s genotypes can be expressed as 

Appendix G. Calculation of the kinship coefficient from pedigree
Karigl (1981) developed an iterative algorithm to calculate the kinship coefficients  and  from pedigree. Huang et al. (2015) generalized this algorithm into the situation of polysomic inheritance, and the generalized calculating formulas are as follows:
 
where  represents the kinship coefficient at the background of a subpopulation,  and  are distinct individuals,  is the father of , and  is the mother of . 
For natural individuals without pedigree information (i.e., the father and the mother are unknown), the expected kinship coefficient  is  within individuals,  between mates, or zero between other dyads in the parental generation. 
Let  denote the kinship coefficient between the full-sibs -, and let  denote the kinship coefficient between the half-sibs - (same father but different mothers). If  and  are without any pedigree information, the expectation  can be expressed as
;
Besides, the kinship between the two mothers  and  of half-sibs is identified by the following probability:


The value of this probability is calculated by using Equations (A8-A10). We derived that  is equal to , therefore the expectation  can be expressed as 
.
Therefore            and   .             (A11)
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Figure S1. The bias of  and  as a binary function of  and  of Nei’s (1973), Weir & Cockerham’s (1984) and our corrected estimators for autotetraploids. The mesh plots denote the theoretical biases and the black dots denote the simulated biases. 
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