Beneficial Effects of Dantrolene in the Treatment of Rhabdomyolysis as a Potential Late Complication Associated With COVID-19: A Case Report

Nobutaka Chiba
Nihon university School of Medicine https://orcid.org/0000-0002-2190-7395

Masakazu Matsuzaki
Nihon University Hospital

Takayuki Mawatari
Kanamachi Kisen Hospital

Minori Mizuochi
Nihon University School of Medicine

Atsushi Sakurai
Nihon university school of medicine

Kosaku Kinoshita (kinoshita.kosaku@nihon-u.ac.jp)
Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine

Case report

Keywords: COVID-19, rhabdomyolysis, hyperpyrexia, dantrolene, immune response

DOI: https://doi.org/10.21203/rs.3.rs-123527/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Patients with severe COVID-19 have disorders of the respiratory, cardiovascular, coagulation, skeletal muscle and central nervous systems. These system failures may be associated with cytokine release syndrome, characterized by hyperpyrexia, thrombocytopenia, hyperferritinemia, and the elevation of other inflammatory markers. Rhabdomyolysis with high fever is a complication that is rarely found in COVID-19. The exact relations of these clinical conditions in patients with COVID-19 are still unknown.

Case presentation: We present the case of a 36-year-old man with severe COVID-19 complicated by rhabdomyolysis and high fever. After admission, his condition continued to deteriorate, with a high body temperature. After 9 days, in his laboratory examination, creatine kinase and myoglobin levels were noted to increase (to 26046 U/L, 3668 ng/mL). In addition to viral therapy, he was immediately treated with hydration. However, high fever and levels of rhabdomyolysis continued. The patient had been diagnosed with malignant hyperthermia associated with a late complication of COVID-19, although he had no hereditary predisposition to malignant hyperthermia or neuroleptic malignant syndrome. The administration of dantrolene with muscle relaxation and anti-inflammatory function showed potential efficacy for rhabdomyolysis, high fever and increased plasma inflammatory markers.

Conclusions: Malignant hyperthermia is triggered by not only anesthetic agents but also viral infections. A possible mechanism of malignant hyperthermia is a hypersensitivity of calcium release from the sarcoplasmic reticulum. These include mutations in or the activation of the skeletal muscle ryanodine receptor calcium release channel. Dantrolene is a ryanodine receptor antagonist and is used as an anti-inflammatory agent. The administration of dantrolene showed potential efficacy for rhabdomyolysis, high body temperature due to inflammation, and increased inflammatory markers. The underlying mechanism of the association of rhabdomyolysis and high fever in COVID-19 might be a similar pathogenesis in malignant hyperthermia.

Background

The majority of patients with severe coronavirus disease 2019 (COVID-19) have acute respiratory distress syndrome and lymphopenia; in addition, some have disorders of the central or peripheral nervous system, cardiac arrhythmias, cardiomyopathy, rhabdomyolysis, coagulopathy, and shock [1]. These system failures may be associated with cytokine release syndrome, characterized by hyperpyrexia, thrombocytopenia, hyperferritinemia, and the elevation of other inflammatory markers [2]. We present the case of a 36-year-old man with severe COVID-19 complicated by rhabdomyolysis and high fever who was given dantrolene. As a result, not only reductions in creatine kinase (CK) and myoglobin levels and body temperature but also decreases in inflammatory markers, including C-reactive protein (CRP) and ferritin, were found.

Case Presentation
A 36-year-old previously healthy man presented to the emergency department with 2 days of worsening dyspnea. He had fever, cough and fatigue during the week before presentation. His initial vital signs included temperature 39.2°C, blood pressure 141/105 mmHg, respiratory rate 22 breaths per minute, heart rate 142 beats per minute, and oxygen saturation 92% on room air. Physical examination revealed rough breath sounds in the lungs. He denied myalgia. Pertinent laboratory findings included the following: white blood cell count $5.7 \times 10^3/\mu L$, lymphocyte count 11.7, platelet count $165 \times 10^3/\mu L$, CRP 3.17 mg/dL, lactate dehydrogenase 220 U/L, CK 170 U/l, myoglobin 20 ng/mL, creatinine 0.7 mg/dL, D-dimer 0.7 ng/mL, and brain natriuretic peptide 3.9 pg/mL. Chest radiography showed patchy bilateral opacities in the lung parenchyma, and computed tomography of the chest showed bilateral ground-glass opacities. We treated the patient with oxygen inhalation, azithromycin and ceftriaxone and with antipyretics to control his high fever. On day 2 after admission, a reverse-transcriptase-polymerase-chain-reaction assay detected the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in a nasopharyngeal swab. The next day, his condition deteriorated, with hypoxemia. We started him on favipiravir [3600 mg on day 1 and 1600 mg per day on day 2 and subsequently, median treatment 14 days (IQR, 12 to 14 days)]. On day 4 after admission, his condition continued to deteriorate, with fever, hypotension and hypoxemia. He underwent endotracheal intubation and was admitted to the intensive care unit (ICU).

After ICU hospitalization, his condition continued to deteriorate, with high fever and high ventilatory requirements. High body temperature and CRP levels, systemic inflammatory response syndrome and refractory hypoxemia ($\text{PaO}_2/\text{FiO}_2$ 159 mmHg and FiO_2 of 0.6 with PEEP 15 cmH$_2$O) continued.

On hospital day 9, in his laboratory examination, CK and myoglobin levels started to increase (to 26046 U/L, 3668 ng/mL) (Fig. 1). The patient had been diagnosed with malignant hyperthermia associated with a late complication of COVID-19, although he had no hereditary predisposition to malignant hyperthermia or neuroleptic malignant syndrome. In addition to ongoing treatment, the patient was immediately treated with hydration. After fluid therapy, the levels of CK and myoglobin tended to decrease (to 14047 U/L, 2179 ng/mL), but on the next day, his CK and myoglobin levels were elevated again (to 18205 U/L, 2612 ng/mL), and his high body temperature and CRP and ferritin levels persisted (Fig. 1). We started him on dantrolene 20 mg intravenously four times a day from fourteen to sixteen days after admission and 50 mg orally three times a day over the next 2 days. Consequently, his body temperature started to decrease, and he showed a decrease in CK, myoglobin, CRP, and ferritin levels (Fig. 1). It was possible to extubate him on the 17th day after admission. His clinical condition continued to improve, and after a negative SARS-CoV-2 test, we were able to finally discharge him to his home on the 28th day after admission.

Discussion And Conclusions

There have been some case reports of high fever and rhabdomyolysis associated with COVID-19 [3, 4], however, the exact relations of these clinical conditions in patients with COVID-19 are still unknown. In our case, we diagnosed malignant hyperthermia with rhabdomyolysis, and the patient was given dantrolene. After the administration of dantrolene, his fever and serum CK and myoglobin levels were reduced to the normal range.
Malignant hyperthermia is triggered by various stimulations, such as anesthetic agents, heat stroke [5] and viral infections [6]. A possible mechanism of malignant hyperthermia is a hypersensitivity of calcium release from the sarcoplasmic reticulum. These include mutations in [7] or the activation [8] of the skeletal muscle ryanodine receptor calcium release channel. In the presence of mutations in or the activation of the ryanodine receptor, skeletal muscle cells can release proinflammatory cytokines, such as IL-6, and exhibit excessive muscle contraction, which might lead to rhabdomyolysis with heat production, resulting in high fever and serum CK and myoglobin levels in the clinic, as in previous reports [6-8].

Dantrolene is essential to achieve the best possible outcome for patients with malignant hyperthermia and neuroleptic malignant syndrome, and these effects of dantrolene have also been demonstrated to reduce CK levels and high body temperature immediately in previous reports [6, 9]. Indeed, dantrolene is a ryanodine receptor antagonist and is used as an anti-inflammatory agent [10]. The effectiveness of dantrolene acts on a Ca-releasing channel from the sarcoplasmic reticulum in skeletal muscle fibers, inhibits Ca release, and blocks interleukin (IL)-6, which is known as endogenous pyrogen release [8]. The proinflammatory cytokines IL-1β, IL-6 and IL-18 are inflammatory markers that are responsible for high fever and elevated plasma levels of CRP and ferritin in the clinic [11]. In particular, IL-6 can also be used as a marker to predict SARS-CoV-2 disease deterioration [12]. Previous studies demonstrated that dantrolene could prevent the activation of the ryanodine receptor and block IL-6 release [8]. In our patient, a decrease in CK and myoglobin levels was observed after the use of dantrolene, with prompt alleviation of high fever. Interestingly, decreased plasma levels of CRP and ferritin were found at the same time. In a recent report, it was suggested that hyperpyrexia may be caused by a SARS-CoV-2-related exuberant immune response. Therefore, hyperpyrexia with aggravated and excess immune responses becomes a predictor of worse outcomes in COVID-19 patients [13]. Therefore, it is suggested that the anti-inflammatory effects of dantrolene might contribute to resolving rhabdomyolysis and high fever in patients with COVID-19.

Case reports of patients diagnosed with SARS-CoV-2 infection presenting with rhabdomyolysis are rare [3, 4]. There have been several possible hypotheses explaining the pathogenesis of viral-induced rhabdomyolysis: direct viral invasion can lead to rhabdomyolysis, a robust immune response to viruses results in cytokine storms and damages muscle tissues, and circulating viral toxins may directly destroy muscle cell membranes [4, 14]. In a previous case report, two case reports of patients with simple pneumonia [3, 4] showed that an increase in CK following hospitalization was thought to be caused by myositis due to direct viral invasion and/or muscle twitching with shivering. Our patient presented high fever, hyperferritinemia, and elevated plasma levels of CRP, and rhabdomyolysis was observed with higher plasma CK levels. These clinical data improved to their normal ranges after the administration of dantrolene. Taken together, additional hypotheses could be considered as rhabdomyolysis-induced skeletal muscle ryanodine receptor mutations or activation. However, whether COVID-19 itself could be a direct trigger for mutation in or the activation of the skeletal muscle ryanodine receptor and whether our patient has an inherited malignant hyperthermia susceptibility trait or a potential predisposition remain unclear.
In summary, rhabdomyolysis with high fever is a complication that is rarely found in COVID-19. The administration of dantrolene showed potential efficacy for rhabdomyolysis, high body temperature due to inflammation, and increased inflammatory markers. The underlying mechanisms might be a similar pathogenesis in malignant hyperthermia.

Declarations

Acknowledgements: Not applicable.

Authors’ contributions: All co-authors contributed equally to this work. All authors and approved the final manuscript.

Funding: No funding was received for this work.

Availability of data and materials: Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal. Since no human experimentation was performed, no approval by an ethics board was required.

Consent for publication: All co-authors consent for this publication.

Competing interests: All co-authors declare no conflict of interest.

Author details: 1Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine; 2Department of Emergency and Critical Care Medicine, Nihon University Hospital; 3Department of Internal Medicine, Kanamachi Kisen Hospital, Tokyo, Japan

References

taking a cold medicine in a patient who was susceptible to malignant hyperthermia. Internal

7. Voemans NC, Snoeck M, Jungbluth H. RYR1-related rhabdomyolysis: A common but probably
underdiagnosed manifestation of defective skeletal muscle ryanodine receptor dysfunction. Rev

mutations on interleukin-6 release and intracellular calcium homeostasis in human myotubes from
malignant hyperthermia-susceptible individuals and patients affected by central core disease. J. Biol.

the treatment of neuroleptic malignant syndrome: A report of two cases. Neurology. 1983;33:516-
518.

methylprednisolone, dantrolene, and their combination on experimental spinal cord injury. Int J Cin

11. Jeroen S, Jaap TO, Frank LV, Mihai GN. IL-1β/IL-6/CRP and IL-18/ferritin: Distinct Inflammatory

IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9;1123-30.

2862.

Figures
Figure 1

Clinical course of the patient. Effect of dantrolene administration on creatine kinase, myoglobin and body temperature. Decreases in inflammatory markers, including C-reactive protein and ferritin, were found.