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Abstract 

This article explores the detection of Attention Deficit Hyperactivity Disorder (ADHD), a 
neurobehavioral disorder, from electroencephalography (EEG) signals. Due to the unstable behavior of 
EEG signals caused by complex neuronal activity in the brain, frequency analysis methods are required 
to extract the hidden patterns. In this study, the feature extraction was performed with the Multitaper 
and Multivariate Variational Mode Decomposition methods. Then, these features were analyzed with 
the neighborhood component analysis and the features that contribute effectively to the classification 
were selected. The deep learning model including the convolution, pooling, and bidirectional long short 
term cell and fully connected layer was trained with the selected features. The trained model could 
effectively classify the subjects with ADHD with a deep learning model, support vector machines and 
linear discriminant analysis. The proposed approach was validated with an ADHD open access dataset 
(doi:10.21227/rzfh-zn36). Experimental results showed that the proposed approach can innovatively 
classify ADHD subjects from Control group effectively. The proposed method was able to classify 1210 
test samples in 0.1 seconds with an accuracy of 95.54%. The proposed method is promising for 
distinguishing subjects with attention deficit hyperactivity disorder effectively.  

Keywords: Attention Deficit Hyperactivity Disorder, Signal Decomposition, Power Spectral Density, 
Neighborhood Component Analysis, Deep Learning Model. 

 

1. INTRODUCTION 

Classification of EEG signals is an important step in the design of the brain-computer interface (BCI) 
[1]. One of the BCI applications is Attention Deficit Hyperactivity Disorder (ADHD) detection. ADHD, 
a neurodevelopmental disorder, is characterized by executive functions and attention deficit. It affects 
approximately 5% of adults and 10% of children worldwide [2]. Also, it varies according to the 
population and the disease can be up to 20% of the population [3]. For the diagnosis of ADHD, experts 
use neuropsychological assessments and heterogeneous cognitive profiles. However, wide cognitive 
profiles complicates the diagnosis [4]. One of the methods used to support the diagnosis is the evaluation 
of Electroencephalography (EEG) signals. The diagnosis of ADHD can be made more safely by 
examining the signal changes in the response of the patients to different stimuli. A clear diagnosis of 
ADHD is important in solving individuals' social and psychiatric problems [5]. 

Various methods such as ERP method [1], statistical analysis of the signal [6], and observation of the 
Power Spectral Density (PSD) of the signal [7], application of photic stimuli [8] were proposed by using 
EEG in detecting ADHD. In these studies, wavelet transform, frequency space transformation, welch 
power spectrum transform were used and it was stated that it caused significant changes in the alpha 
band in the PSD of individuals with ADHD [9]. It was stated in studies that ADHD classification can 
be performed when power of the signal changes are applied to artificial intelligence algorithms [10]. 
When applying frequency transformation to extract spectral information from a signal, it is assumed to 
be a reliable representation of the relative phase of power coefficients obtained versus frequency. 
However, this assumption is not always valid. The average of the signal is used to solve this problem. 
Taking averaging weakens signal components. It is also unreliable in small data sets [11]. Instead of the 
mean process, the Multitaper method is the motivation of the study as it creates PSD and reduces the 
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prediction bias by obtaining more than one independent estimation from the same sample. Frequency 
powers were also obtained in 3 different forms, and properties of outputs at different power levels were 
obtained with the Multivariate Variational Mode Decomposition (MVMD) method. These features 
allow the evaluation of the signal in 3 different bands. 

Different methods have been used in the literature for the diagnosis of ADHD. These studies generally 
are performed with the artificial intelligence algorithm. The PSD changes in EEG signals with stimuli, 
features obtained with the help of wavelet transform and chaotic analysis are classified by machine 
learning algorithms, neural networks and deep learning models. Yang et al. processed the data obtained 
from the 128 channels with PCA algorithm for ADHD classification. The authors applied the processed 
data to the K-nearest neighbors (KNN) and SVM classifier as a set of features. In the experimental 
results, 83.33% cross-validation success was obtained with the K-NN algorithm with the highest success 
rate [12]. Khoshnoud et al. used 19-channel EEG signals in their study. Data recording was performed 
while resting with eyes closed. Approximate Entropy, Lyapunov Exponent and Multifractal Singularity 
Spectrum were used for feature extraction in EEG signals. These features applied to the radial basis 
function network (RBFN) and SVM to classify them. In the study, classification based on frequency 
band power was evaluated using the same type classifiers. An accuracy of 83.33% was achieved with 
SVM under four-fold cross-validation test. As a result, it has been observed that nonlinear features 
provide better separation between ADHD and control than band power characteristics [13]. Chen et al. 
obtained features from the power spectrum for ADHD detection from EEG signals. These properties 
applied to SVM are divided into 4 groups as relative spectral power, spectral power ratio, complexity 
and dual phase. An accuracy of 84.59% was obtained in the SVM method used in the classification 
performed with these features [14]. Jahanshahloo et al. obtained the feature vector of the study using the 
fractal dimension, band power, and wavelet and Autoregressive (AR) coefficients. ADHD classification 
with this feature vector was performed by SVM method. In the experimental results, it has been observed 
that the combination of fractal dimension and wavelet transform features achieve well discrimination 
ability. In the classification made using these features, 88.77% success was achieved with the SVM 
method as a result of the 10-fold cross-validation approach [15]. Mueller et al. used two age-matched 
groups of adults in their study. Two visual stimuli were applied to the 2 classified groups in their study. 
The ERP responses in EEG recordings were separated into independent component analysis (ICA) and 
ADHD classification was performed by SVM method. The classification accuracy was obtained as 91% 
by using the 10-fold cross-validation [16]. Dea et al. obtained the PSD properties of the EEG signal. 
The authors used principal component analysis (PCA) to reduce the data size of PSD features. Reduced 
features are classified with Support Vector Machine (SVM). As a result of the experiments, healthy 
individuals were classified with a success rate of 94.1% with ADHD samples [17]. Altınkaynak et al. 
used morphological features and wavelet coefficients properties for ADHD classification. ADHD 
classification has been performed by using various machine learning techniques with the obtained 
feature vectors. The highest success was obtained from the Multilayer Perceptron (MLP) method with 
91.3% among Naive Bayes, Support Vector Machines, Multilayer Perceptron, Random Forest and 
Logistic Regression methods [18]. Khaleghi et al. aimed to find the most distinguishing features for 
ADHD detection from EEG signals. Double input symmetrical relevance (DISR), Mutual Information 
Maximization (MIM), Fast Correlation-Based Filter (FCBF) and Conditional Mutual Information 
Maximization criterion (CMIM) algorithms have been tested respectively. As a result, the highest 
accuracy (91.83%) was obtained with the combination of DISR and MLP [19]. Boroujeni et al. used 
features based on a combination of nonlinear features in the ADHD classification. In the calculation of 
the features, the chaotic time series of the EEG obtained from FP1, FP2, F3, F4 and Fz were analyzed. 
It provided an accuracy of 96.05% in the experiments performed [20].  

Studies involving deep learning methods have also been suggested in the literature. Chen et al. proposed 
a Convolutional Neural Network (CNN) -based method for detecting ADHD from EEG signals in their 
study.  The feature extraction was performed by arranging the order of the channels belonging to the 
EEG signals. In addition to these features, a success of 94.67% was achieved with the feature matrix 
obtained by calculating 13 features [21]. Dubreuil et al. detected ADHD with a CNN model trained 
using the stacked multi-channel EEG time-frequency separations of ERP. With its model trained with 
2800 feature vectors, higher success (88%) was obtained than RNN [22]. Marcano et al. used 5 EEG 
channels selected for the ratio of theta and beta power values measured during an attention task. A 



probability ratio detector is designed in the study. The area under curve (AUC) at resting and one 
excitation was achieved as 73%. It was also obtained as a false positive rate (FPR) of 0.32 [23]. 

In this study, the Multitaper method and MVMD were used in an innovative way together with the 
Neighborhood component analysis (NCA) and deep learning model (DLM) with Bidirectional Long 
Short Term Memory (BLSTM) cell. The frequency-power values generated by the data obtained from 
each EEG channel with the Multitaper method and MVMD were used to obtain the components of the 
EEG signal. The 2% tolerated 408 features were selected with the NCA algorithm. Support vector 
machines (SVM), Linear Discriminant Analysis (LDA) and DLM classifiers were trained with 2/3 of 
these features. Then the 1/3 holdout validation result of the experiments, the highest success was 
obtained by using NCA and DLM methods together with 95.54%. Since the NCA method enables the 
classifier to classify with fewer features, the processing time is shortened. 

The main contributions of this study are as follows. 

1. The MVMD contributes to noise immunity and mode alignment, as well as the removal of negativity 
in the EEG signal. While the Multitaper method creates power spectral density (PSD), data loss is 
prevented by taking averages because it reduces the prediction bias by obtaining more than one 
independent estimation from the same sample. 

2. The proposed method containing Multitaper-NCA and DLM was tested by separating from the 33.3% 
holdout validation group data set using EEG signals from patients diagnosed with ADHD. The method 
suggested as a result of the test reached a classification accuracy of 95.54%, which is much higher than 
the LDA SVM and DLM. When effective features are used in classification; the high ADHD 
classification is clearly obtained and processing time is substantially decreased. 

The article is organized as follows. Section 2 covers the methodology of detection of ADHD disorder 
in obtained dataset from hospital. Experimental results are shown in Section 3. A detailed discussion is 
given the proposed approach based on DLM with ADHD patients EEG data analysis in Section 4. 
Finally, a brief conclusion is given in Section 5. 

2. MATERIAL and METHODS 

2.1. Architecture of the Proposed ADHD Identification Model 

In the method developed in the proposed study, Multitaper, MVMD, NCA and DLM were used together. 
There are 3630 data in the data set in which the model is evaluated. 1830 of these data are subjects with 
ADHD and the rest of it consists of a control group. In the recording of the data, RAW EEG records 
belonging to 8 of 19 channels that included potential differences between electrodes were obtained using 
the international 10-20 system. These channels are C3, C4, P3, P4, T5, T6, O1, and O2. These channels 
are especially preferred because they are regions where eye-blink artifacts have few effects. As shown 
in Figure 1, power values of 1-49 Hz frequencies were obtained by applying the Multitaper method and 
the EEG signals of each one of the 8 channels are divided into 3 components. 407 features were selected 
that achieve optimal classification by using the NCA feature selector algorithm. The subjects with 
ADHD were classified into the malignant class and the control group were labeled as benign class by 
the DLM. 



 

Figure 1.The overall framework of proposed system 

2.2. ADHD Dataset 

The EEG data used in the study were obtained using the potential differences between the electrodes 
placed according to the international 10-20 system. Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, 
F8, P3, P4, T5, T6, O1, O2 channels, data received from 19 channels with 128 Hz sampling frequency 
are included. The A1 and A2 electrodes were the references with the earlobes. Visual attention tasks are 
included in the EEG recording protocol. With the continuous stimulation applied on each task, the 
subjects were asked to count certain visuals. EEG recordings corresponding to these stimuli were 
obtained. Records in the data set belong to 121 subjects, aged 7–12 years [24]. Of these, 61 subjects 
were evaluated in ADHD and 60 were in the control group. There were no reports of psychiatric 
disorders, epilepsy, or any high-risk behaviors in the control group. EEG signals recorded from 121 
subjects presented in the data set were used to obtain the data used in the study. The 30 segments were 
obtained from each of these signals in 10-second intervals. These segments were obtained randomly 
from different locations in time without overlapping each other. Experiments were conducted with a 
total of 3630 data. 

2.3. Feature Extraction with Multivariate Variational Mode Decomposition 

MVMD makes it possible to use one-dimensional Variational Mode Decomposition as multi-
dimensional. EEG recordings consisting of multi-channel signals can be processed with MVMD. In 
addition, this method ensures consistency of multi-channel component frequencies [34]. MVMD 
involves extending the signal to multivariate data instead of parsing a one-dimensional signal 𝑢𝑘(𝑡) into 𝑘 mode 𝑥(𝑡) = ∑𝑢𝑘(𝑡). Hilbert-Huang Transform is used to obtain the one-sided spectrum. Then u(t) 
is used to determine the center frequency. It is then modulated to the fundamental frequency 
corresponding to the frequency spectrum of each mode, multiplied by the exponential term to determine 
the corresponding center frequency w(t). In MVMD, the multivariate modulated oscillations of 𝐾 are 
calculated by obtaining 𝑢𝑘(𝑡) = [𝑢1(𝑡) + 𝑢2(𝑡) + 𝑢3(𝑡)] using the signal 𝑢𝑘(𝑡). The optimization 
function in this case is obtained by Equation 1 [25]. 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(∑ ∑‖𝜕𝑡[𝑢𝑘,𝑐(𝑡). 𝑒−𝑗𝑤𝑘 𝑡]‖2)𝑐𝑘  (1) 

In Equation 1, the term 𝑢𝑘,𝑐(𝑡) is a complex valued signal with a single frequency 𝑤𝑘 component in 

each channel. The channel number 𝑐 and the mode number 𝑘 indicate the analytically modulated signal. 
For the optimization specified in Equation 1, firstly, the constrained optimization problem is transformed 
into an unconstrained optimization problem. With this transformation, the problem is obtained as an 
augmented Lagrangian function by adding two penalty terms. The Lagrangian function is expressed by 
Equation 2. 
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 L(u𝑘,𝑐 , ω𝑘 , λc) = α ∑ ∑(𝜕𝑡[𝑢𝑘,𝑐(𝑡). 𝑒−𝑗𝑤𝑘𝑡])2𝑐𝑘  + ∑ 𝑥𝑐(𝑡) − ∑ 𝑢𝑘,𝑐(𝑡)2 +𝑘𝑐 ∑ λc, 𝑥𝑐(𝑡) − ∑ 𝑢𝑘,𝑐/𝑡)𝑘𝑐  (2) 

In Equation 2, α denotes the balance parameter used to provide the necessary data accuracy constraint. 
λ is the Lagrange multiplier. The problem that turns into an unconstrained optimization problem is 
solved by using the alternative direction method (ADMM) algorithm of the multipliers and the 
components of different channels and frequency bands are obtained. 

2.4. Feature extraction using Multitaper 

The Multitaper method is used to obtain the power spectral density by moving the information contained 
in a signal to the frequency space. The power spectrum is formed by distributing the average power of 
a signal to certain frequency values in the signal [26]. The average power of the 𝑥[𝑛] that is the discrete 
time signal in the range n1 and n2 is obtained. The total energy of the signal in N finite time is also finite. 
This situation is shown by Equation 3. 1𝑁 ∑|𝑥[𝑛]|2 = 1𝑁. 𝐹𝑠 ∫ |𝑇𝑥(𝑓)|2𝑑𝑓𝐹𝑠0

𝑁−1
𝑛=0  (3) 

In Equation 3, Fs is the sampling frequency and 𝑇 is the Fourier transform of 𝑓. The power spectrum of 𝑥[𝑛] and the discrete time Fourier transform of 𝑥[𝑛] are limited by finite time 𝑁 is defined by Equation 
4. 𝑆𝑥𝑁(𝑓) = 1𝑁. 𝐹𝑠 |𝑇𝑥(𝑓)|2, 𝑓𝜖[0, 𝐹𝑠]𝐻𝑧 (4) 

The average power of 𝑥[𝑛] from 0 to 𝑁 − 1 is obtained, when integrating 𝑆𝑥𝑁(𝑓)from 0 to 𝐹𝑠 in Equation 
2. Thus,  𝑆𝑥𝑁(𝑓) is calculated as the distribution of the finite average power over the frequency bands of 
x[n]. In the Multitaper method, the contracting window function is used instead of rectangular data 
windows to reduce the periodogram-deviation problem. 

A tapering window function w is defined by 𝑘 and the sub-sequence 𝑥𝑗[𝑛] periodogram corresponding 

to column 𝑗 of a single-conical spectrogram is calculated by Equation 5. 𝑆𝑥𝑗𝐿,𝑘(𝑓) = 1𝐹𝑠 |𝑇𝑤𝑘𝐿𝑥𝑗(𝑓)|2 , 𝑓𝜖[0, 𝐹𝑠]𝐻𝑧 (5) 

In Equation 5, T function is the Fourier transform of the w function. The estimator S is obtained by 
multiplying this transformation by the sampling frequency. Although the obtained S is an approximation 
of the long-term power spectrum, the periodogram-variance problem needs to be solved. In solving this 
problem, more than one tapering window functions are used to reduce the deviation and variance found 
in the periodogram. The windows are shown with W =  {w1𝐿 , w2𝐿 , . . . , w𝑘𝐿}. Each W window in the array 
is defined as K tapering window of length L. The multi-stage spectral estimator using W windows is 
obtained by Equation 6. 

𝑆𝑥𝑗𝑤 (𝑓) = ∑ 𝑆𝑥𝑗𝐿,𝑘(𝑓)𝐾𝑘=1 𝐾 , 𝑓𝜖[0, 𝐹𝑠] 𝐻𝑧 (6) 

 

2.5. Feature selection applying dimensionality reduction Neighborhood component analysis  
(NCA) algorithm 

NCA is a nonparametric feature selection method. It produces non-negative weights for all properties. 
NCA produces non-negative weights. Relief's negative weights mean an excess of features. The 
negatively weighted features are pruned. Then, the positive weighted features are selected by using the 



most distinctive features to generate weights. Before weights are produced, the properties are normalized 
using min - max normalization [27]. W = (minmax(fr), t_v) (7) 

In Equation 7, W denotes the weight vector of NCA. The feature vector is 𝑓𝑟 and 𝑡𝑣 is the target vector. 
Weights are obtained by matching the properties normalized with min-max with the target vector. 

2.6. Linear Discriminant Analysis 

The LDA method separates the two classes using a linear boundary between properties. In separation, 
the argument is expressed as a linear variable. This argument appears as a label for a class [28]. First, 
models of probability density functions are obtained for data generated from each class. Then, a new 
data point is classified by determining the probability density function whose values are greater than the 
others. The separation function of the LDA classifier is a linear compound of X's complements. This 
calculation is expressed as in Equation 8 [28]. D =  wX + m0 (8) 

In Equation 7, 𝑤 is the weight vector and 𝑚0 is the bias value. The decision-making for classes is defined 
with 𝐷 value. The 𝑋 is a 𝑝𝑋𝑁𝑘matrix of Nk samples. These samples are p-dimensional data from class 
k. μk means the previous probabilities of each class and δ is the covariance matrix. Each 𝑥 value is 
obtained with argmax as in Equation 9. The resulting LDA decision boundaries are linear across data 
classes. 𝑎𝑟𝑔𝑚𝑎𝑥 𝑥𝑇𝛿−1𝜇𝑘 − 12 𝜇𝑘𝑇𝛿−1𝜇𝑘 (9) 

Consequently, discrimination is a predominantly linear combination of predictors. Generally, estimators 
with large differences between class averages will have larger weights, also when the class averages are 
similar the weights will be small. 

2.7. Support Vector Machines  

SVM method transforms the input data vectors into a higher dimensional by passing it through a kernel 
process. The data in the area resulting from the transformation are classified by modeling complex 
decision boundaries with a hyperplane. In the classification process, the distance between the hyperplane 
and the nearest data point is maximized [29]. Generally, SVM can be formulated as seen in Equation 9. 

min (𝑤,𝑏) ∑ 𝑓(𝑦𝑖 , 𝑥𝑖𝑇. 𝑤 + 𝑏) + 𝛼. 𝑦(𝑤)𝑁
𝑖=1  (10) 

In Equation 10, w is the weight vector and b is the bias value. The i'th input and output pair (xi,yi) is 
obtained, where xi is the input and yi is the output. The estimated output value of the i th sample is 
calculated with 𝑥𝑖𝑇 . 𝑤 + 𝑏. N is the number of samples and y(w) is the regularized term. α, on the other 
hand, is a non-negative parameter used to balance between the data fitting loss term and the regulator 
term. 

2.8. DLM with Bidirectional Long Short Term Memory Cell 

Long and Short Term Memory (LSTM) model is used in solving sequential classification problems. The 
LSTM unit determines whether the existing memory will be stored or updated with new information. 
Therefore, the LSTM-RNN is capable of modeling long-range dynamic dependencies, thus avoiding the 
problem of vanishing gradients problem during training [30]. LSTM architecture has an input gate, 
forgetting gate and output gate. A single LSTM unit is defined by Equation 11. 

 𝑖𝑡𝑗 = 𝜎(𝑈𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖)𝑗 (11) 



In Equation 10, W is the weight matrix and b is the deviation variable. i is the entrance gate of the j th 
LSTM unit at time t. σ is expressed as the sigmoid function. The input data at time t is expressed as xt 
and the output of the previous LSTM unit is ht.  

 𝑓𝑡𝑗 =  𝜎(𝑈𝑓𝑥𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓)𝑗 (12) 

 

In Equation 12, ft describes the forgetting gate. In the forget gate, the importance of information is 
calculated and unnecessary information is discarded. 

 𝑐𝑡~𝑗 = tanh (𝑈𝑐𝑥𝑡 + 𝑊𝑐ℎ𝑡−1 + 𝑏𝑐)  (13) 

 

In Equation 13, 𝑐𝑡~𝑗 represents the new memory gate unit and the memory content of the previous unit 
is expressed as b. The new memory content is calculated by forget gate unit. This represents updated 
memory content. 

  𝑐𝑡𝑗 = 𝑓𝑡𝑗𝑐𝑡−1𝑗 + 𝑖𝑡𝑗𝑐𝑡~𝑗   (14) 

 

The update in LSTM block is performed and 𝑐𝑡𝑗 is obtained by using Equation 14. The 𝑜𝑡𝑗 expressed as 

the output unit that controls the final output state. The output of the LSTM cell ℎ𝑡𝑗 is calculated by 
Equation 15 at the last LSTM output unit that enabled at time t.  

 ℎ𝑡𝑗 = 𝑜𝑡𝑗. tanh(𝑐𝑡𝑗) =  𝜎(𝑈0𝑥𝑡 + 𝑊0ℎ𝑡−1 + 𝑏0)𝑗. tanh(𝑐𝑡𝑗)   (15) 

 

BLSTM model has the ability to access content in both forward and backward directions. The 
demonstration of the BLSTM model is presented in Figure 2. 

 

 

Figure 2. Architecture of Bidirectional Long Short Term Memory Networks 
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For the hyper-parameters of DLM, the intermediate layer number was set as 100, the initial learning rate 
was 0.05, the gradient threshold was 1, and the mini batch size was 384 with the best performance. The 
parts in the architecture of the layers belonging to the DLM model created in this study are shown in 
Table 1. 

 

Table 1. The DLM structure of the Proposed Classifier 

Layer (type) Output Shape 

conv1d_1 (Conv1D) (1,407) 
batch_normalization_1 (1,407) 
activation_1(Activation) (1,407) 
Blstm_1 (BLSTM) (100) 
dense_1(Dense) (50) 
dense_2(Dense) (2) 

 

3. EXPERIMENTAL RESULTS  

This section covers the application and evaluation of the combined use of Multitaper, MVMD, NCA 
and DLM modules proposed in this study. First, the experimental setup, performance criteria and dataset 
are expressed. Then, the results of the experiments performed in the data set of the study are presented 
to validate the approach. Finally, a comparison is made between the approach applied and the ADHD 
classification methods suggested in the literature. The proposed method has been implemented in the 
Python programming environment. Experiments with the proposed method were carried out on an i7 
9900 Intel processor running at 2.40GHZ, 32GB of RAM and an NVidia GPU. 

The accuracy, precision, recall and f1 score metrics are used to measure the performance of the proposed 
approach. The true positive (TP), true negative (TN), false positive (FP) and false negative (FN) 
expressions are used in the calculation of these metrics. These expressions are derived from the 
confusion matrix. TP refers to ADHD subjects who are correctly classified. FP shows the subjects with 
ADHD but included in the control group. Shows subjects in the FN control group but classified as 
ADHD. TN represents the correct classification in the control group. The parameters obtained with these 
parameters are obtained by Equations 16, 17, 18 and 19 respectively. 

 𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
(16) 

 𝑃𝑟𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 
(17) 

 𝑅𝑐𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 
(18) 

 𝑓1 = 2. 𝑃𝑟𝑛. 𝑅𝑐𝑙𝑃𝑟𝑛 + 𝑅𝑐𝑙 
(19) 

 



EEG signal segments were obtained in 10 seconds using raw data. Power distribution at frequencies 
between 1-49Hz and features of 8 channels divided into 3 components were obtained by applying the 
Multitaper transformation and MVMD of these segments. The data set of the study, which consists of 
407 selected features by NCA, includes 3630 feature vectors. It contains the PSD graph of the individual 
with ADHD. There is the PSD graphic of the normal individual. In the study, nw parameter was chosen 
as 1.25. This parameter mostly reflects the power change in the graphics marked in red. As can be seen 
in the graphs, more power changes occur in subjects with ADHD. An example of the signal separated 
into its components by MVMD is shown in Figure 3. 

 

Figure 3. Sample of signal separated into components with MVMD (Blue: Low frequency part of the 
signal, orange: medium frequency part of the signal, Green: High frequency part of the signal) 

 

4. DISCUSSION 

2420 of 3630 data were used in the training of 3 separate classifiers. The classifiers trained in these data 
were applied to holdout validation with 1210 data, and their superiority to each other was revealed. 
While 76.38% accuracy was obtained with LDA classifier, 81.69% accuracy was obtained as a result of 
experiments with SVM classifier. The accuracy was achieved as 95.54% with the DLM designed in this 
study. 

 

Table 2. Confusion Matrix of Proposed Multitaper-NCA-BLSTM Method 

 Actual Normal Actual With-ADHD 

Predicted Normal 568 32 

Predicted With-ADHD 22 588 

 

The NCA feature selection algorithm was applied to the data set of the study to increase the effectiveness 
of it. The method, which was optimized by selecting the best 407 features of NCA, both increased the 
success of DLM and an effective system that works faster has emerged as a result of experiments. 
Finally, the performance criteria of the proposed approach are compared with different studies 
developed in the literature.  

The confusion matrix of the best model is presented in Table 2. Of the 600 subjects in the control group, 
568 were correctly classified. Among the group with ADHD, 588 out of 610 subjects were classified 
correctly. The FP rate was only 22 (3.6%). Precision, recall and f1 score were calculated as 0.95, 0.96 
and 0.95, respectively. The ROC curve for the success of the method is presented in Figure 4. The area 
under the curve was obtained as 0.96. 
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Figure 4. ROC Curve of holdout validation results of the proposed model 

 

Table 3. Training and Testing Time comparison for single DLM, SVM and LDA with proposed method 

Methods Training Time  (sec) 

(60% of data)  

Testing Time (sec) 

(40% of data) 

Pure SVM 72.223 0.0406 
SVM with NCA  72.068 0.0142 
Pure LDA 0.2340 0.0268 
LDA with NCA  0.0427 0.0057 
DLM 124.71 0.1770 
DLM with NCA  117.63 0.1069 

 

The performance analysis of the study was made by comparing the performance of other known 
classification methods. The experimental results obtained regarding the identifying of ADHD times are 
shown in Table 3. As a result, Multitaper-NCA-DLM with 407 features reduced training and test times 
were compared with SVM, LDA and BLSTM. The proposed method allows very low processing time 
compared to BLSTM with a similar number of features (407 features). 

The detection accuracy of the model proposed in the relevant studies in the literature in ADHD 
classification and the accuracy rates obtained from other classification algorithms are compared in Table 
4. Different methods have been used for ADHD detection. Feature extraction has been performed using 
methods such as multifractal singularity spectrum, approximate entropy, PSD, largest Lyapunov 
exponent, wavelet coefficients, chaotic time series analysis and Spectrogram. The feature vector is given 
to the classifier directly or by processing with feature reduction algorithms. Classification is made with 
machine learning, neural network or deep learning models by processing features with algorithms such 
as PCA and DISR. 

Among the studies using SVM machine learning, Dea et al. achieved 94.1% success by using PSD, PCA 
and SVM methods together [17]. The highest accuracy with MLP was obtained as 91.83% by using 
DISR and MLP together in Khaleghi et al.'s study [19]. With the combination of Spectrogram and CNN 
deep learning method, 88% success was achieved. Fouladvand et al. stated that they made the detection 
of ADHD with LSTM with 84% accuracy [31]. 

In the experiments conducted with the same data set, it was shown that the entropy measurements of 
especially the recordings in the C3 channel were effective in detecting ADHD. In the study, subjects 
with ADHD were classified with an accuracy of 93.65% with holdout validation 30% data slice [32]. 
When the trained model was tested with a 1/3 of the whole dataset, a test accuracy of 95.54% was 
achieved. These results show that the proposed method is more successful and effective than the methods 



suggested in the literature. While using the Multitaper method (PSD) used in the proposed method, data 
loss was prevented by taking an average because it reduces the prediction bias by obtaining more than 
one independent estimate from the same sample.  Abbas et al found distinctive features in the Beta 
power band in their experiments with the same data set. In the experimental results, the AUC success 
metric for ADHD detection in this band was 0.7585 [33]. 

 

5. CONCLUSION 

In this study, a method that performs ADHD diagnosis from EEG signals in which Multitaper, MVMD, 
NCA and DLM are used together in an innovative way is proposed. The dataset obtained from the EEG 
data obtained from 121 subjects. In addition, the results of previous studies are compared with the 
performance metrics obtained. PSD values of 8 channels and 3 signal components were obtained with 
Multitaper and MVMD, which were least affected by eye-blink artifact and significantly increased in 
stimulation in ADHD subjects. The feature vector reduction was implemented with NCA to improve 
performance metrics. Many DLM variants were also checked for false positives to achieve the best data 
generalization. It was found that the best 407 feature selection and hyper-parameters presented in the 
study were improved. 1210 data could be classified with 95.54% holdout validation accuracy. 
Furthermore, the classification performance obtained with deep learning was obtained more successfully 
than SVM and LDA classifiers. It shows that the proposed method for accuracy in experiments deals 
with False-positives less than other ADHD classification methods. Faster training and higher success 
level of DLM used with NCA provided an advantage over deep learning methods. The training takes 
about 117 seconds and checks the ADHD in 1210 data about 0.1 seconds. 
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