Pentavalent Vaccination in Rural Kenya: Coverage and Geographical Accessibility to Health Facilities Using Data from a Community Demographic and Health Surveillance System in Kilifi County.

Morris Ogero (ogeromorris@gmail.com)
Aga Khan University Hospital

James Orwa
Aga Khan University

Rachael Odhiambo
Aga Khan University

Felix Agoi
Aga Khan University

Adelaide Lusambili
Aga Khan University

Jerim Obure
Aga Khan University

Marleen Temmerman
Aga Khan University

Stanley Luchters
Aga Khan University

Anthony Ngugi
Aga Khan University

Research article

Keywords: diphtheria-tetanus-pertussis (DTP3), Community Health Demographic Surveillance System (HDSS)

DOI: https://doi.org/10.21203/rs.3.rs-122540/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

There is substantial evidence that immunization is one of the most significant and cost-effective pillars of preventive and promotive health interventions. Effective childhood immunization coverage is thus essential in stemming persistent childhood illnesses. The main indicator of performance of the immunisation programme is the third dose of diphtheria-tetanus-pertussis (DTP3) vaccine for children because it mirrors the completeness of a child’s immunisation schedule. Spatial access to a health facility, especially in SSA countries, is a significant determinant of DTP3 vaccination coverage, as the vaccine is mainly administered during routine immunisation schedules at health facilities. Rural areas and densely populated informal settlements are most affected by poor access to healthcare services. We therefore sought to determine vaccination coverage of DTP3, estimate the travel time to health facilities offering immunisation services, and explore its effect on immunisation coverage in one of the predominantly rural counties on the coast of Kenya.

Methods

Coordinates of health facilities, information on land cover, digital elevation models, and road networks were used to compute spatial accessibility to immunizing health facilities for eligible children within the Kaloleni-Rabai Community Health Demographic Surveillance System (HDSS). To explore the effect of travel time on DTP3 coverage, we fitted a hierarchical multivariable model adjusting for other a priori identified confounding factors.

Results

Spatial access to health facilities that offer immunization services significantly affected DTP3 coverage, with travel times of more than one hour to a health facility significantly associated with reduced odds of receiving DTP3 vaccine (AOR= 0.84 (95% CI 0.74 – 0.94).

Conclusion

Increased travel time is a significant barrier to the uptake of facility-delivered immunizations in this rural community. To improve immunisation coverage, local health authorities and policy makers in remote settings can use high-resolution maps to identify areas where distance and travel time may impede the achievement of high immunization coverage and identify appropriate interventions. These could include improving the road network, establishing new health centres and/or stepping up health outreach activities that include vaccinations in hard-to-reach areas within the county.

Background

One of the global Sustainable Development Goals (SDG) targets reducing childhood mortality from preventable deaths is ensuring universal vaccination coverage[1]. Estimates put lives saved through
immunization at 2–3 million per year [2], which is substantial evidence that immunization is one of the most significant and yet cost-effective pillars of preventive and promotive health interventions [3]. The establishment of the World Health Organization’s Expanded Program of Immunization (EPI), whose mandate is to ensure equitable access to routine immunization services, resulted in the introduction of more vaccines and better global coverage. The coverage of initial core vaccines (BCG, DTP, Polio, and measles vaccine) increased from 5% in 1974 to over 86% in 2018 [4, 5]. Despite impressive global statistics, there are substantial inter- and intracountry heterogeneities of vaccine coverage resulting in approximately 19.4 million unimmunised children in 2018. The majority of these children are from sub-Saharan countries [4, 6], where the mortality rate from vaccine-preventable diseases for the under-fives remains among the highest in the world [7].

The third dose of diphtheria-tetanus-pertussis (DTP3) vaccine for children is an important indicator of assessing performance of the immunisation programme because it mirrors the completeness of a child’s immunisation schedule [5]. For this reason, the Global Vaccine Action Plan (GVAP) set a dual target for DTP3 at 90% in national coverage and 80% for other administrative units by year 2020 [8]. According to the Global Alliance for Vaccines and Immunizations (GAVI), Kenya national estimates of DTP3 coverage were 81% in 2018 [9]. However, there is potential masking of spatial heterogeneities, especially in rural areas or areas of low coverage, as a result of averaging across regions. This might allow pockets of preventable infectious diseases to persist [10], which could act as foci for potential future outbreaks.

Spatial access to a health facility, especially in sub-Saharan African (SSA) countries, is a significant determinant of DTP3 vaccination coverage, as the vaccine is mainly administered during routine immunisation schedules at health facilities [11–13]. Studies have shown that rural areas [14, 15] and densely populated informal settlements [16, 17] are most affected by poor access to healthcare services. Although factors that influence access to immunisation services have been studied extensively in a broader sense [12, 18–22], the local context within communities, which to a larger extent determines how these factors interact, has not been explored. Furthermore, the role of spatial access to primary health services is poorly described in Kenya. In this study, we sought to determine vaccination coverage of DTP3, estimate the travel time to health facilities offering immunisation services, and explore its effect on immunisation coverage in one of the predominantly rural counties (Kilifi) on the coast of Kenya.

Methods

Study area

This study utilized data from the Kaloleni-Rabai Community Health Demographic Surveillance System (HDSS). This HDSS cohort is centred around Mariakani township and covers 112 villages spanning 10 Community Health Units (CHU) of Kaloleni and Rabai sub-counties, Kilifi County, Kenya (Fig. 1), three of which are peri urban. This cohort has been followed up semi-annually since 2017, and six rounds of data collection had been completed by the end of 2019. New individuals can enter the cohort by either birth or in-migration, while cohort members can exit by either out-migration or death. A detailed profile of this
cohort has been described elsewhere [23]. Each member of the cohort is assigned a unique identifier at entry, which is used to longitudinally track the individual.

Data Collection

For each round of data collection, a trained community health volunteer (CHV) visited the longitudinally tracked households and interviewed the mother or caretaker of the child who provided the following data: vaccination data (based on child’s vaccination card or on maternal recall if card is unavailable), demographic information, reproductive, maternal and child-health data, child orphan status, school attendance among children, social determinants of disease, nutritional data, vital events (births, migration, and deaths). DPT3 immunization data were captured for all children 14 weeks – 11 months of age. Global positioning system (GPS) coordinates of the households were also collected. A preconfigured open data kit (ODK) installed in electronic tablets was used for data collection, and upon completion of the interview, data were reviewed for completeness and synced to a central server. Further data screening was performed by a data manager for any errors (omissions and inconsistencies) and the feedback sent to CHV for verification. The whole process of data collection was supervised and coordinated by field officers and the Ministry of Health Public Health Personnel.

In each round of data collection, the data were analysed, and the audit reports per CHU shared with CHVs who in return coordinated the dissemination sessions with the community, where they discussed key areas of active feedback, including vaccination status, among others.

Assembling of geospatial data necessary for the estimation of spatial accessibility

To compute spatial access to health facilities, the following information was assembled: coordinates of health facilities, land cover, digital elevation model, road network, and barriers. While the households of interest were within Kaloleni and Rabai sub-counties of Kilifi County and with the assumption that the nearest health facility might be in the neighbouring counties, especially for households along the borders of the neighbouring sub-counties, we confined the analysis of the spatial accessibility to include immunising health facilities, digital elevation model (DEM), land cover, and road network from the counties neighbouring the study area, as shown in Fig. 2.

Health facilities

Since healthcare facilities are critical in the delivery of vaccines, we obtained a list of all facilities that offer immunization services within the study area and the neighbouring administrative areas from the Kenya master health facility list [24] and the Kenya health information system [25]. We merged facilities from these two sources, eliminated duplicates and obtained their GPS coordinates, which we validated
against the recently geocoded master database of all health facilities in sub-Saharan Africa [26]. Furthermore, we ensured that the resultant health facilities were within the settlement and not on waterbodies by checking their coordinates using Google Earth.

Road Network

Data for road networks were assembled from OpenStreetMaps (OSM) and Google Map Maker (GMM). Duplicates and short sections of roads disconnected from the main network were removed. As done elsewhere [27, 28], we classified roads into 4 categories: primary (class A & B) roads that mainly connect international borders, secondary (class C & D) roads that feed into primary roads or connected to major towns, county (class E) roads that feed into secondary roads and connect smaller towns or market centers, and rural (class U) roads that connect rural areas. These roads were assigned different speeds depending on the probable mode of transport as follows: primary and secondary roads whose modes of transport were vehicular were assigned speeds of 80 km/h and 50 km/h, respectively. County roads with bicycling as a mode of transport were assigned 11 km/h, while rural roads were assigned 5 km/h based on similar studies in Kenya [28, 29].

Digital elevation model & land cover

We obtained data for the land cover and digital elevation model (DEM) at a spatial resolution of 30 m from the Regional Centre for Mapping of Resources for Development (RCMRD)[30]. This is the centre responsible for disseminating open geospatial datasets for Eastern and Southern Africa. Land cover for the study area consisted of 9 categories, which we assigned walking speed based on previous studies [28, 29, 31]; tree cover (4 km/h), shrub cover (5 km/h), grassland (5 km/h), cropland (2 km/h), aquatic vegetation (0.01 km/h), sparse vegetation (2 km/h), bare areas (5 km/h), built-up areas (5 km/h), and open water (0.01 km/h). Walking and bicycling speeds were further adjusted accordingly based on the topography derived from the DEM. This correction used Tobler’s equation [32] that linked walking and bicycling speeds with the slope of the terrain.

\[
W = 6 \times \exp \left(-3.5 \, \text{abs} \left(\tan \left(\frac{S}{57.296} \right) + 0.05 \right) \right),
\]

where \(W\) is the speed calculated and \(S\) is the slope in degrees

Land covers and the DEM showing different elevations of the study area are provided in supplementary file 1.

Estimation Of Travel Time Using Geographic Accessibility Model

Methods for estimating geographical accessibility have been developed over time, namely, the travel time model [27], network analysis [33], and gravity model [34]. In this study, we used the travel time model because it has been recommended by the WHO as a suitable method of modeling healthcare accessibility
We used AccessMod (version 5)\[37\] to model geographical accessibility. The software uses the Manhattan distance method to cumulatively determine the time needed to cross contiguous cells using the least cost path from settlement to immunizing health facilities. Therefore, to estimate travel time, we first generated a travel impedance raster surface by merging land cover, elevation, and road network. To each contiguous cell of the resultant raster layer, we assigned travel speeds accordingly as described earlier. Lastly, we combined the location of the immunizing health facilities to the rasterized layer and estimated the time in minutes needed to travel to the nearest facility at 30 m spatial resolution. For further analyses, we extracted the travel time for each household’s geographical coordinates from the generated raster file. The obtained travel time was then distributed to children within a given household. Maps of travel time to the nearest immunizing health facility and the average time per household were plotted in QGIS (version 3.12).

Statistical Analyses

We used a Bayesian hierarchical logistics regression model to explore the effect of spatial accessibility on DTP3 coverage. Community health units (CHUs) and rounds of data collection were used as random effects. To stabilize computations, we used weakly informative priors that also serve to bind the estimates within the acceptable ranges \[38\]. We specified four chains each with 5000 iterations, half of which were used to warm the sampler and were discarded before estimations were made. The convergence of the model was determined by examining trace plots of the model. We adjusted for confounding due to sociodemographic and other health system factors available in the dataset (see Fig. 3). In keeping with previous studies investigating the effect of travel time \[29\], we grouped travel time into two groups: less than 1-hour and more than 1-hour travel seeking health services. To compare differences between two groups, we used an *independent t-test* statistical technique, and the results were interpreted using a *p-value* at the significance level of \(\alpha = 0.05\). The results from the multivariable model were reported as odds ratios (ORs) and 95% credible intervals. Significance of odds ratios was assumed if the 95% credible intervals excluded one. All analyses were performed using R Version 3.4.3.

Results

Characteristics and the vaccination status of the children in the cohort

We included data for 4,442 children aged 14 weeks to 11 months in the cohort. The study population was distributed in 10 CHUs with a median number of children per CHU of 303 (IQR = 181–404). The majority
of the children were female (2,261, 51%), and most of them (93.1%) slept under treated mosquito nets. The median travel time to a health facility was 41 (IQR = 18–65) minutes, and a total of 1266 (28.5%) children lived more than one-hour travel to immunizing health facilities. Demographic characteristics were not appreciably different between vaccinated and unvaccinated children, as shown in Table 1. We observed that coverage of DTP3 in the cohort improved over time (rounds of data collection) from 62% in January to June 2017 (round 1) to 93% in July to December 2019 (round 6) (see Fig. 4). The overall coverage was 3435 (77.3%), and this coverage varied across CHUs from 70.9–88.8% (see Fig. 5). Within the study area, there were a total of 32 immunizing health facilities. Figure 6 provides a visual representation of the travel time to the nearest immunizing health facilities using the combined modes of transport: walking/cycling and motorized transport. The data suggested that children who lived 30 minutes of travel from the immunizing health facilities had a DTP3 coverage of 82.6% compared to a coverage ratio of 62.1% in children with longer travel times (more than 2 hours from the immunising health facilities). In comparing travel time between type of residence, we observed that the median travel time was 17 minutes (IQR 8–31) and 54 (IQR 33–75) minutes in rural and peri-urban settlements, respectively (p value< 0.001).

Table 1
Characteristics of the HDSS children <11 months eligible for DTP3 vaccination

<table>
<thead>
<tr>
<th>Indicator</th>
<th>DPT3 vaccinated (n = 3435)</th>
<th>DPT3 not vaccinated (n = 1007)</th>
<th>Overall (n = 4442)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Female)</td>
<td>1743 (50.7%)</td>
<td>518 (51.4%)</td>
<td>2,261 (51.0%)</td>
</tr>
<tr>
<td>Peri-urban area of residence</td>
<td>1,189 (34.6%)</td>
<td>223 (22.1%)</td>
<td>1,412 (31.8%)</td>
</tr>
<tr>
<td>Use safe water</td>
<td>1331 (38.7%)</td>
<td>328 (32.6%)</td>
<td>1,659 (37.3%)</td>
</tr>
<tr>
<td>Treats drinking water</td>
<td>1959 (57.0%)</td>
<td>519 (51.5%)</td>
<td>2,478 (55.8%)</td>
</tr>
<tr>
<td>Hand-washing facility in a household</td>
<td>1174 (34.2%)</td>
<td>355 (35.3%)</td>
<td>1,529 (34.4%)</td>
</tr>
<tr>
<td>Ownership of latrine/toilet by a house</td>
<td>2143 (62.4%)</td>
<td>576 (57.2%)</td>
<td>2,719 (61.2%)</td>
</tr>
<tr>
<td>Has a birth certificate</td>
<td>159 (4.6%)</td>
<td>62 (6.2%)</td>
<td>221 (5.0%)</td>
</tr>
<tr>
<td>Is an orphan</td>
<td>67 (2.0%)</td>
<td>26 (2.6%)</td>
<td>93 (2.1%)</td>
</tr>
<tr>
<td>Sleep under mosquito-treated net</td>
<td>3247 (94.5%)</td>
<td>889 (88.3%)</td>
<td>4,136 (93.1%)</td>
</tr>
<tr>
<td>More than 1hr travel time</td>
<td>959 (27.9%)</td>
<td>375 (37.2%)</td>
<td>1,334 (30.1%)</td>
</tr>
</tbody>
</table>

Factors influencing DTP3 vaccination coverage.
The results from the multivariable model are shown in Table 2. Increased mean travel time to immunizing health facilities was associated with reduced odds of being vaccinated. Precisely, the results suggest that a travel time of more than one hour to a health facility significantly reduced the likelihood of DTP3 vaccination by approximately 16% after adjusting for other factors (adjusted odds ratio = 0.84 (95% CI 0.74–0.94)). Other factors included in the model, namely, sleeping under treated mosquito net, children given vitamin A supplements, and ownership of birth certificates, were associated with an increased likelihood of a child receiving DTP3 vaccine. WASH indicators, namely, hand washing, treating drinking water, and use of latrines, were not associated with DTP3 vaccination. Furthermore, other factors, such as child sex and type of settlement (rural or peri-urban), were not significant predictors of DTP3 vaccination (see Table 2).

Table 2
Multivariate model for factors influencing DTP3 vaccination coverage

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Adjusted odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban area of residence (Urban)</td>
<td>1.02 (0.73–1.44)</td>
</tr>
<tr>
<td>Treats drinking water</td>
<td>1.09 (0.97–1.21)</td>
</tr>
<tr>
<td>Hand-washing facility in a household</td>
<td>0.82 (0.74–0.92) *</td>
</tr>
<tr>
<td>Ownership of latrine/toilet by a household</td>
<td>1.04 (0.93–1.17)</td>
</tr>
<tr>
<td>Has a birth certificate</td>
<td>1.27 (1.00–1.61) *</td>
</tr>
<tr>
<td>Is an orphan</td>
<td>0.80 (0.59–1.10)</td>
</tr>
<tr>
<td>Child sex (Male)</td>
<td>1.01 (0.93–1.11)</td>
</tr>
<tr>
<td>Sleep under mosquito-treated net</td>
<td>1.36 (1.13–1.65) *</td>
</tr>
<tr>
<td>Given vitamin A supplements</td>
<td>6.41 (5.82–7.07) *</td>
</tr>
<tr>
<td>More than 1hr travel time</td>
<td>0.84 (0.75–0.94) *</td>
</tr>
</tbody>
</table>

*denotes statistical significance at the 5% significance level

Discussion

In this study, we sought to estimate the coverage of DTP3 vaccination and the influence of travel time to vaccination centres in one of the predominantly rural counties on the coast of Kenya using data from a community demographic and health surveillance system. Recognizing that the DTP3 vaccine is primarily administered during routine immunization at health centres, we hypothesized that spatial accessibility was a key factor in determining DTP3 vaccination uptake. The data from the surveillance system suggested that over three-quarters of the eligible children had received the DTP3 vaccine. While this immunisation coverage is commendable, it was below the GVAP goal of achieving 90% by year 2020 [8]. We observed that the mean travel time to immunising facilities was 44.9 (SD = 31.2) minutes, assuming a
composite mode of transport of walking/cycling and motorised transport. This varied significantly by place of residence (rural and peri-urban). We also noted that 30.1% of children lived more than one hour of travel from a health facility, which is far below the Kenyan policy recommendation that states that 90% of the population should live within one hour of walking speed from a health facility that offers immunisation services [39]. Travel times of more than one hour to a health facility were significantly associated with reduced odds of receiving DTP3 vaccination (AOR = 0.84 (95% CI 0.74–0.94), and travel times of more than two hours were associated with a DTP3 coverage ratio of 62.1%, which is below the set target.

Previous studies on the barriers of accessing healthcare [40, 41] have shown that the time required to travel to a healthcare facility, particularly in sub-Saharan Africa, is the main barrier to accessing healthcare. In this study, we used a combination of walking, cycling and motorised transport to estimate the travel times to health facilities that offered immunisation services. The effect of spatial access on immunisation coverage has been explored by previous studies [11–13, 42, 43], and they have shown that travel time influences the uptake of child vaccination. In addition to spatial accessibility, a number of studies have also shown that child birth order, wealth quintiles, and exposure to media content positively influence immunisation coverage, especially in low- and middle-income countries [44–46]. However, in this study, we did not explore these factors, as we were only interested in estimating the effects of spatial accessibility on immunisation coverage with a view of making recommendations to the local government to evenly increase and space out the number of health facilities that offer immunisation services in the area. We, however, assumed that these factors would be applicable in this context.

The involvement of community health workers/community health volunteers in childhood vaccination has been shown to be both efficient and cost-effective in expanding immunisation coverage and improving reporting systems, especially in hard-to-reach areas [47]. Our data demonstrated a marked improvement of DTP3 coverage over time since the inception of the community surveillance system whose data were used in this study (Fig. 6). This further demonstrates the value addition to immunization coverage that CHVs' involvement in child immunization services can offer. In this study, the use of CHVs, coupled with integrated audit and feedback activities embedded in the community by the CHVs, improved the overall adoption of recommended immunization practices over time [48]. We posit that engaging CHVs in regular data collection in the households provided for increased contact with household members, which afforded them opportunities for enhanced health education and promotion, including tracing defaulters of essential health services such as vaccinations. We also noted marked differences in immunisation coverage in different CHUs, which could be due to group dynamics and subtle geographical differences within the study area. Other factors, such as education levels, incentives and capacity building, could also have contributed to differences in the performance of the CHUs [49]. Factors such as ignorance of the need for immunisations, missing return dates for the next immunization schedule, fear of adverse events following immunisation, negative attitudes of health care providers and missed opportunities for vaccination have also been highlighted as factors that contribute to low vaccination coverage [50].
Strength And Limitations

This study had several limitations. First, travel time estimations did not consider factors that might affect travel speed, especially in the rainy season, frequency of transport services, and traffic flow. Other nuances that are likely to affect care-seeking behaviour, such as variation of the quality of healthcare services [51], health professionals’ strikes[52], and stock-outs, could not be adjusted for in the model. To determine DTP3 coverage, we used data from the vaccination card and mother’s recall in the absence of the vaccination card. The inclusion of maternal recall potentially introduced recall bias. Lastly, it is possible that the list of immunising facilities used in this study did not include make-shift facilities and provide immunisation services.

Conclusions

This study aimed to determine DTP3 vaccination coverage in one of the predominantly rural counties on the coast of Kenya using data from a community demographic and health surveillance system. We found that DTP3 coverage was significantly affected by spatial access to health facilities that offer immunization services with travel times of more than one hour to a health facility significantly associated with reduced odds of receiving DTP3 vaccine. To improve immunisation coverage, especially for DTP3, a high-resolution map of estimated travel time to the nearest healthcare facility could be used by local health authorities, policy makers and relevant stakeholders to identify places for intervention to improve physical accessibility to healthcare facilities in the community. Interventions could include improving the road network, establishing new health centres and/or stepping up health outreach activities that include vaccinations in hard-to-reach areas within the county.

List Abbreviations

BCG – Bacille Calmette -Guerin

CHU – Community Health Unit

CHV – Community Health Volunteer

DTP3 - Diphtheria-Tetanus-Pertussis

EPI – Expanded Programme of Immunization

GAVI - Global Alliance for Vaccines and Immunizations

GVAP - Global Vaccine Action Plan

GPS – Global Positioning System

GMM – Google Map Maker
Declarations

Ethics and Consent to Participate: consent was obtained from the study participant verbally and this was approved by the Aga Khan University institutional ethics review committee.

Availability of data and material: data are available upon a reasonable request to the institutional data governance committee.

Funding

Aga Khan Foundation Canada and the Government of Canada #7540280 have supported this research as part of the Access to Quality Care for Extending and Strengthening Health Services (AQCESS) project. The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author contribution

MO, JO, and AN contributed to the conceptualisation, design, data analysis and interpretation. RO, JO, FA, AL, MT, SL contributed to the revision of the manuscript and intellectual rigor of the content. All authors read and approved the final manuscript.

Consent for publication: Permission was granted from the caretaker or mother to publish this work.

Acknowledgements:

We thank the Ministry of Health, who gave permission for this work to be developed.

Competing interests:

The authors declare that they have no competing interests.

References

Figures
Figure 1

Map of Kaloleni-Rabai Subcounties where the Community Health Demographic Surveillance System is implemented. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 2

Map showing the distribution of households with children aged <11 months in various sublocations in 3 counties. Kwale, Kilifi and Mombasa. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 3

Conceptual framework
Figure 4

Vaccination coverage over the rounds of data collection in the community demographic surveillance system.
Figure 5

Vaccination coverage across community health units participating in the demographic surveillance system.
Figure 6

Distribution of the mean travel time from each grid (30 × 30 m) to the nearest immunizing health facility (red cross). The travel time was composite of walking and motorized transport to the nearest immunizing health facility in the study area. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.