3D Printing of Photonic Colloidal Glasses into Objects with Isotropic Structural Color

Ahmet Demiroers (ahmet.demiroers@mat.ethz.ch)
ETH Zurich
https://orcid.org/0000-0002-2748-1516

Erik Poloni
ETH Zurich
https://orcid.org/0000-0002-6982-0643

Maddalena Chiesa
ETH Zurich

Fabio Bargardi
ETH Zurich

Marco Binelli
ETH Zürich

Wilhelm Woigk
ETH Zurich

Lucas de Castro
University of São Paulo
https://orcid.org/0000-0002-7757-3726

Nicole Kleger
ETH Zurich

André Studart
ETH Zurich
https://orcid.org/0000-0003-4205-8545

Article

Keywords:

Posted Date: January 17th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1221969/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Nature Communications on July 29th, 2022. See the published version at https://doi.org/10.1038/s41467-022-32060-2.
3D Printing of Photonic Colloidal Glasses into Objects with Isotropic Structural Color

Ahmet F. Demirörs1,*, Erik Poloni1, Maddalena Chiesa1, Fabio L. Bargardi1, Marco R. Binelli1, Wilhelm Woigk1, Lucas D. C. de Castro1,2, Nicole Kleger1, and André R. Studart1,*

1 Complex Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
2 Federal University of São Carlos, Department of Materials Engineering, São Carlos, SP, Brazil

Abstract
Structural color is frequently exploited by living organisms for biological functions and has also been translated into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Additive manufacturing approaches were recently exploited for the fabrication of exquisite photonic objects, but the angle-dependence observed limits a broader application of structural color in synthetic systems. Here, we propose a manufacturing platform for the 3D printing of complex-shaped objects that display isotropic structural color generated from photonic colloidal glasses. Structurally colored objects are printed from aqueous colloidal inks containing monodisperse silica particles, carbon black and a gel-forming copolymer. Rheology and Small-Angle-X-Ray-Scattering measurements are performed to identify the processing conditions leading to printed objects with tunable structural colors. Multimaterial printing is eventually used to create complex-shaped objects with multiple structural colors using silica and carbon as abundant and sustainable building blocks.

Main Text
Living organisms and geological processes give rise to vivid colors in nature by forming structures with characteristic length scales comparable to the wavelength of visible light. This optical effect, known as structural color, can be found in iridescent gemstones called opals6-9 as well as in butterfly wings,10 beetles,11 and fish12,13. In these photonic materials, diffraction gratings and periodically ordered structures generate color through constructive interference of specific wavelengths of light2-5 and may be combined with light-absorbing pigments.1 Because they enable light manipulation in specific directions, these natural structures have inspired the development of a broad range of synthetic photonic materials14,15. The possibility to produce non-bleaching colors using sustainable chemistries also makes such nanostructured materials attractive alternatives to toxic pigment-based colorants16,17.

A particular feature of some of the above-mentioned natural photonic materials is the dependence of color on the illumination angle, which leads to the characteristic iridescent effect. While this angle dependence can be exploited to create band-gap photonic structures for light manipulation, it also limits
the suitability of structural color as an alternative to the isotropic coloration generated by absorption-based pigments. Notably, nature also offers examples of scattering from isotropic nanostructures that exhibit structural color with little angle-dependence. This has motivated the development of bio-inspired materials with isotropic structural color. Photonic glasses created through the self-assembly of colloidal particles has received significant attention in this regard. Such materials combine the long-range disorder needed to generate isotropic properties with the structural periodicity desired for the emergence of structural color. Mutually repulsive colloidal particles self-assemble into glass structures if the volume fraction of particles is increased above approximately 0.55. To prevent crystallization, slightly polydisperse colloids are often employed. Angle-independent structural color has been demonstrated in thin films of colloidal glasses made from particles with controlled polydispersity. The use of a broadband absorber to suppress angle-independent scattering has enabled the preparation of isotropic structural color also in thick films.

Despite the enticing prospects of creating structural color using self-assembling colloidal glasses, current examples are still limited to the two-dimensional and simple geometries generated by casting, coating and pressing processes. To partially fill this gap, additive manufacturing technologies have recently been exploited to produce three-dimensional photonic objects with intricate geometries and increased shape complexity. Photonic periodic structures have been fabricated by two-photon polymerization lithography of shrinking and shape-memory polymers. In other examples, tailored copolymers have been used to self-assemble into photonic crystals during fused filament fabrication or direct-writing of polymer solutions. A direct-writing approach has also been applied to self-assemble monodisperse particles into colorful colloidal crystals. However, current additive manufacturing methods have been restricted to crystalline structures with angle-dependent photonic properties, preventing a broader application of structural color as alternative to conventional pigments and dyes.

Here, we report a 3D printing platform for the manufacturing of complex-shaped objects with angle-independent structural color. The formation of isotropic structural color relies on the self-assembly of monodisperse particles into photonic colloidal glasses with tunable local order. Colloidal particles are printed into three-dimensional objects using the direct ink writing (DIW) approach. To design printable inks with programmed structural color, we first study the viscoelastic properties of pastes containing monodisperse silica particles, carbon black and rheology modifiers. Next, the processing conditions required for the formation of photonic colloidal glasses within the printed object are systematically evaluated. Finally, we demonstrate the potential of the printing platform by fabricating three-dimensional objects with isotropic multiple colors arising from the controlled formation of photonic colloidal glasses.

The direct ink writing of objects with isotropic structural color relies on the design of inks that simultaneously enable 3D shaping and self-assembly of colloidal glasses (Figure 1). Shaping of objects with bespoke color patterns occurs via the top-down deposition of inks of specific compositions using the programmable spatial control provided by the 3D printer. The formation of a colloidal glass with tailored photonic properties is driven by the bottom-up self-assembly of particles. Fulfilling the requirements of the printing and assembly processes is not straightforward. On the one hand, top-down
printing through the direct ink writing technique demands a colloidal ink with rheological properties that allow for the extrusion of filaments into distortion-free printed structures44, 45. On the other hand, the bottom-up assembly of particles into a colloidal glass depends on the formation of a highly packed arrangement of particles without the onset of crystallization. The volume fraction of particles in the ink plays a crucial role in the above printing and assembly processes. For direct ink writing, the volume fraction of particles is typically high but should still be lower than the maximum packing density to allow the ink to flow during extrusion through the printing nozzle. In contrast, the formation of a colloidal glass is favored when particles are jammed in a disordered arrangement by bringing their volume fraction close to the packing density when a glass transition is observed.

To meet these opposing demands, we designed a water-based colloidal ink with a volume fraction of particles that is initially low enough to enable DIW but eventually reaches the maximum packing limit desired for glass formation when the liquid phase of the ink is removed by drying. In addition to the color-forming silica particles, the ink also contains a gel-forming agent and carbon black nanoparticles. A temperature-responsive triblock copolymer of polypropylene oxide-polyethylene oxide-polypropylene oxide (PPO-PEO-PPO) is used as the gel-forming agent to tune the rheological behavior of the ink. The carbon black particles are utilized as an absorption medium between the silica particles to reduce multiple scattering of the incoming light18. Finally, polyacrylic acid is used as a dispersant for the electrosteric stabilization of the colloidal particles at neutral to high pH.

Distinct formulations were investigated in order to develop inks with the rheological properties needed for DIW and with the ability to generate photonic colloidal glasses upon drying. Because the structural color of the final object is directly affected by the characteristic length scale of the colloidal glass, ink formulations with silica particles of different sizes were prepared and studied. Preliminary printing experiments led to the identification of an ink formulation with promising rheological properties. The selected formulation contained monodisperse 250 nm silica particles at a volume fraction (ϕ) of 0.32 in an aqueous solution with 28 wt% PEO-PPO-PEO copolymer (Pluronic F-108) and up to 3 wt% carbon black.
Figure 1: The printing platform. Schematics illustrating the 3D printing of colloidal inks into objects with isotropic structural color. Coloration is generated by photonic colloidal glasses obtained upon complete drying of the as-printed objects.

The viscoelastic and flow properties of the selected ink were evaluated by a series of rheological measurements and matched the requirements for distortion-free DIW (Figure 2). The manufacturing of complex objects by DIW typically requires that inks display high storage modulus (G'), shear-thinning behavior, high yield stress (τ_y) and fast elastic recovery. Taking a typical grid-like architecture as an exemplary complex-shaped object, we estimate the storage modulus and yield stress levels needed to obtain distortion-free structures with well-defined geometry (Figure 2a,d and supporting information). A high storage modulus is desired to prevent sagging of free-spanning filaments, whereas a high yield stress is required to prevent distortion of the printed structure due to capillary forces. While these properties ensure mechanical stability of the final printed object, shear-thinning behavior at stresses beyond the yield stress and quick elastic recovery facilitate extrusion and promote gelation of the ink during and shortly after extrusion of the filaments, respectively.

Oscillatory experiments indicate that such an ink shows a clear viscoelastic response, which is characterized by a gel-like elastic behavior at low strains ($G' > G''$) and fluidization above a critical shear strain ($G' < G''$, Figure 2a). The storage modulus (G') of 18.8 kPa obtained for the optimized ink is sufficient to print grid-like structures with negligible sagging of spanning filaments. On the basis of simple beam theory, we expect grids printed with such an ink to show minimum distortion as long as the spanning length does not exceed 9.2 times the diameter of the filament (supporting information). In terms of yield stress, shear experiments reveal that the optimized ink exhibits a τ_y value of 441 Pa, which allows for printing of structures with local radii of curvature down to 43 µm without capillary-driven distortions. The optimized ink was also found to be shear-thinning within the range of shear rates expected during printing (Figure 2b). Finally, shearing experiments designed to emulate the extrusion
process reveal that that 45% of the ink’s storage modulus recovers within seconds after deposition of a filament (Figure 2c). These rheological properties eventually allowed for the 3D printing of large grid-like objects using the optimized ink formulation (Figure 2d). Notably, the as-printed object is black, indicating that its color is dominated by the highly-absorbing carbon particles present in the ink.

![Figure 2: Rheology of a representative colloidal ink.](image)

(a) Storage (G') and loss (G'') moduli of the ink as a function of the magnitude of the applied oscillatory shear strain. (b) Apparent viscosity of the ink as a function of the shear rate applied in a steady-shear experiment. The inset shows an as-printed object with a grid-like architecture. Scale bar: 5 mm. (c) Elastic recovery experiments that simulate the printing process through a sequence of oscillatory, steady-shear and oscillatory measurements. The oscillatory tests are performed before and after the application of a print-emulating steady shear at a rate of 10 s$^{-1}$. (d) Shear strain of the ink when subjected to an increasing shear stress in a quasi-static experiment. The red full circle indicates the apparent yield stress of the ink. The colloidal ink contained 32 vol% of 250 nm silica particles suspended in an aqueous solution with 19 wt% PEO-PPO-PEO copolymer and 0.7 wt% carbon black.

Drying of the as-printed object at 25 °C was found to change the color of the structure from black to grey. Surprisingly, further heat treatment at the higher temperature of 200 °C led to a strong and vivid
green color (Figure 3a). The fact that the color is angle-independent suggests that a photonic colloidal glass with length scales on the order of the wavelengths of visible light was formed upon drying at this higher temperature. To better understand the origin of the observed color, we first performed thermogravimetric analysis on as-printed specimens (Figure 3b). The results show that the as-printed sample loses only 5% of its initial mass when heated up to 150 °C, whereas a more substantial mass loss of 20% is observed upon further heating to 200 °C. Such two-step mass loss indicates that a significant fraction of water is strongly bound to the copolymer-rich continuous phase between the silica particles. An effective increase in the packing density of particles is thus only achieved at higher drying temperatures.

Scanning electron microscopy of specimens dried at 200 °C reveals that the removal of water from the as-printed material leads to a glass-like microstructure of densely packed silica particles without long-range order (Figure 3c). The colloidal glass obtained indicates that the random configuration of particles in the ink and in the room-temperature-dried object is preserved during the drying process at 200 °C (Figure S1). In contrast to previously reported approaches to induce glass formation by increasing the polydispersity of the colloids, crystallization in our case is prevented while using a single set of monodisperse particles. Thus, it is likely that the predominantly elastic behavior of the ink is not only important for printing distortion-free three-dimensional structures, but also plays a role in suppressing crystallization of the monodisperse colloidal particles. Indeed, the capillary forces expected during drying of the structure at 200°C lead to an estimated linear shrinkage of 14% (supplementary information) without affecting the long-range disordered arrangement of particles.

To quantify the short-range order responsible for the emergence of isotropic structural color, we carried out Small-Angle X-Ray Scattering (SAXS) experiments on samples dried at 200°C (Figure 3d & 3e). The measured SAXS pattern displays the continuous concentric rings that characterize isotropic structures, confirming the formation of a colloidal glass. Analysis of the azimuthal scattered intensity as a function of the scattering vector (\(Q\)) provides more information about the short-range order of the colloidal glass. The intensity peak shown in the azimuthal curve indicates that a specific angle range is selectively scattered by the structure. From the half width at half maximum (\(\Delta Q\)) of this peak, we estimate the range of spatial order (\(\xi\)) leading to such selective scattering using the relation: \(\xi = 2\pi/\Delta Q\). For structures formed by 250 nm silica particles, the \(\Delta Q\) value obtained by fitting a Gaussian distribution to our experimental data leads to a range of spatial order of 699 nm. SAXS measurements on the object prepared from 300 nm particles revealed spatial order of 550 nm for this sample (Figure S2). Both ranges are only few times (2.8 for 250 nm and 1.8 for 300 nm particles) the diameter of the used particles and indicate the short-range order of the formed colloidal glass. The isotropic nature of the structural color arises from the colloidal glass structure of the assembly, in agreement with previous work on similar angle-independent photonic structures.
Figure 3: Structure of printed and dried photonic colloidal glass. (a) Picture of a printed object after drying at 200 °C. (b) Thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) of an as-printed object subjected to heating in air. (c) Scanning electron microscopy (SEM) image, (d) SAXS pattern and (e) azimuthal X-Ray intensity as a function of scattering vector (q) obtained for a printed colloidal glass after drying at 200 °C. All structures were printed from a colloidal ink containing 250 nm silica particles. Scale bar in a) is 5 mm and in c) is 2 μm. The vertical line in (d) is an instrumentation artifact due to the interface between detectors (see supplementary information for details).

The formulation of inks that meet the rheological properties required for DIW and that generate photonic colloidal glasses upon drying enabled the development of a platform for the 3D printing of objects with tunable structural color. To illustrate the potential of such manufacturing platform, we first print three-dimensional grid-like structures, the color of which is determined by the size of the silica colloidal particles present in the initial ink (Figure 4a-c). Monodisperse silica particles with diameter of 200, 250 and 300 nm led to distinctive blue, green and magenta structural colors, respectively. Because the color
arises from the nanoscale structure of the material, this approach leads to colored objects that are not limited by the long-term bleaching of conventional pigments and do not require painting after manufacturing. In contrast to the iridescent effects of previously reported photonic structures fabricated by additive manufacturing, the color of the printed objects is angle independent. Moreover, the shaping capabilities offered by the DIW technique can be fully leveraged, enabling the fabrication of grids with long free-spanning filaments and high local curvature, as predicted from our rheological data (Figure 2).

To quantify the color generated by the photonic glasses, we measured the reflectance of the printed objects as a function of the wavelength of light for a fixed illumination angle (Figure 4d). The experimental results indicate the presence of a reflectance peak on the order of 42-45%, which arises from the photonic glass. The wavelength of the reflectance peak consistently moves from 470 to 535 to 610 nm as the diameter of the silica particles changes from 200 to 250 to 300 nm, respectively. Such wavelengths correspond to, respectively, blue, green and red color. The reflectance peaks occur at wavelengths that are 2.0 to 2.3 times larger than the monodisperse particles, thus providing a simple guideline for the selection of the colloidal particles to be added to the ink depending on the desired structural color.

Reflectance experiments were also conducted to evaluate the effect of carbon black as broad-band absorber on the photonic properties of the colloidal glass (Figure 4e). For a fixed silica particle size, an increase of the carbon black concentration from 0.3 wt% to 1.4 wt% was found to decrease the reflectance of the object at the green peak $\lambda = 550 \text{ nm}$ from 47 to 28% without shifting the position and the width of the reflectance peak. This observation is in line with the light absorption properties of the carbon black particles, which reduce the amount of light reflected by the surface. Importantly, the absorption of photons by the carbon particles ensures that only the light that is strongly scattered by particles located at a small distance from the surface contribute to the overall reflection of the object. The constant width of the reflectance peaks suggests that the carbon black concentration range used in our inks is sufficient to suppress multiple scattering events that would otherwise lead to a broad peak and white color.

A particular feature of our structurally colored printed objects is their thermal stability. Because the colloidal glass is made out of silica particles, exposing them to high temperatures does not change significantly the color reflected by the object (Figure 4f). Indeed, samples containing 200 nm silica particles retain their original blue color after subjected to a heat treatment at 350 °C for 1 hour in air. The color intensity is slightly reduced, probably due to the partial oxidation and removal of the carbon black. This decreases broad-band absorption by the continuous phase, resulting in a slight whitening effect similar to that observed for samples prepared with lower carbon black concentrations. By using a protective argon atmosphere, we found that the blue color can be preserved even after heating the object up to 1000 °C, see Figure 4f. Such high heat resistance allows the colored objects to be processed and applied over a broad temperature window, leading to a clear advantage compared to temperature-sensitive pigments.
To fully exploit the potential of our 3D printing platform, we manufactured a centimeter-scale object with dual structural colors using the spatial control and multimaterial capabilities offered by the DIW technique (Figure 4g & 4h). The object combines specific shapes and colors into a three-dimensional pattern that resembles the Swiss flag. To enable multi-material printing of such an object, two inks containing monodisperse silica particles with diameters of 200 nm or 300 nm are loaded in separate cartridges of the printer. Printing was carried out through the sequential deposition of the two inks using a computer-generated design. As-printed structures were dried at 200 °C to extract the aqueous phase of the ink and generate photonic glasses with the pre-programmed structural colors. The final dried object displays vivid blue and magenta colors and high fidelity to the original design. Most importantly, the structural nature of the color allows for the fabrication of a multi-colored object using predominantly the same chemical composition throughout the bulk and surface of the material. This resembles the strategy used by living organisms to generate a wide range of functional properties using a limited selection of abundant and sustainable chemistries. 46-48 With a silica volume fraction of over 97%, our objects are potentially recyclable and do not display the toxicity issues of typical colored pigments. As opposed to paintings and coatings, chipping of the surface does not compromise its optical functionality, since the color is an intrinsic property of the bulk material. Moreover, the changes in color expected by infiltrating the colloidal glass with different liquids can potentially be explored to imbue the object with attractive sensing capabilities.

Figure 4: 3D printed objects with isotropic structural color. (a-c) Grid-like structures printed from inks containing (a) 200 nm, (b) 250 nm, and (c) 300 nm silica colloids. (d,e) Reflectance spectra of 3D
Complex-shaped objects with isotropic structural color can be manufactured by 3D printing aqueous inks containing monodisperse silica particles. Structural color results from selective scattering from the colloidal glass formed upon printing and drying. The manufacturing of the structurally colored objects relies on the formulation of inks displaying the rheological properties required for direct ink writing and leading to the formation of a dense colloidal glass with periodicities at length scales comparable to visible wavelengths. These criteria can be satisfied by formulating inks with a volume fraction of particles that is sufficiently low to enable flow through the printing nozzle \(\phi = 0.32 \), but also high enough to form the desired colloidal glass upon complete removal of water from the printed object. The peak wavelength of the color generated by the photonic glass was found to be on the order of the size of the particle and could therefore be easily tuned by varying the diameter of the particles used. Besides the selectively scattering particles, vivid structural color is only achieved by incorporating carbon black in the ink to provide a broadband absorbing medium within the colloidal glass. A gel-forming copolymer is also present in the ink to reach the viscoelastic properties needed for printing. Our approach provides a powerful tool to design and fabricate multi-colored 3D objects through the multimaterial printing of inks of programmable structural color. Just like photonic materials created by living organisms in nature, our structurally colored objects can be produced using widely available, non-toxic and sustainable chemistries.

Materials & Methods

Preparation of colloidal inks:

For the preparation of a typical ink, a 0.84 mL aliquot of concentrated ammonia solution (Ammonia solution 25% for analysis, Emsure), 0.04 g of polycarboxylate dispersant (Dolapix CE 64, Schimmer & Schwarz, Germany) and an aliquot of carbon black suspension (CB, Cabot VXC72R, provided by BCD-Chemistry, Germany) were added into a 20 g solution of 28.6 wt% PEO-PPO-PEO (Pluronic F-108, Sigma Aldrich). The aqueous CB suspension contained 10% w/w CB and 2% w/w PEO-PPO-PEO (Pluronic F-108, Sigma Aldrich). The amount of CB suspension added to the ink was tuned so as to achieve a final CB content of 0.3 wt%, 0.7 wt%, and 1.4 wt% in the ink. 20 g monodisperse silica nanoparticles were added in powder form to the aqueous mixture of carbon black, ammonia, dispersant and PPO-PPO-PPO. Silica particles of 200 nm, 250 nm and 300 nm were purchased from Fiber Optic Center Inc. (AngstromSphere Monodisperse Silica Powder). The final ink was homogenized with a planetary mixer (ARE-250, Thinky) at 2000 rpm for two rounds of 1 min with two ceramic balls in the
container. Between the two mixing steps, the ink was cooled in an ice bath for 10 minutes to decrease the viscosity of the PEO-PPO-PEO solution. The ink was processed three times on a three roll-mill (DSY-200, Bühler, Switzerland). During this step, the gap size between the rolls was progressively decreased from 120 μm to 5 μm. In a typical ink formulation, the fraction of silica particles was fixed at 32 vol%.

3D Printing:
The colloidal inks were loaded into syringes and centrifuged at 2000 rpm for 1 min to remove bubbles prior to printing. Syringes loaded with the inks were mounted in a commercial extrusion-based 3D printer (3D Discovery, RegenHU Ltd., Switzerland). During printing, the ink was pneumatically extruded through a micronozzle onto hydrophobized glass substrates under an applied pressure of 2–3 bars. Nozzle diameters of 410 µm or 580 µm were used. After printing, the materials were dried under a cover at ambient temperature. Samples were also dried at 200 °C for 1h for complete removal of water. During this drying step, the temperature was increased slowly using a ramping period of 3 h to minimize cracking.

Rheology:
Rheological characterization of the inks was performed using a plate-plate geometry mounted on a strain- or stress-controlled rheometer (MCR501 and MCR702, Anton Paar). Oscillatory amplitude sweeps were carried out to measure the storage (G') and loss (G'') moduli of the ink. Tests were conducted at a frequency of 10 rad/s by increasing the shear strain amplitude from 0.1 to 100%. The apparent viscosity of the inks was quantified through steady-shear measurements conducted by progressively increasing the applied shear rate from 0.1 to 100 s$^{-1}$. To emulate the printing process and measure the elastic recovery of the ink, samples were first subjected to an oscillatory time sweep with 1% strain and 1 rad s$^{-1}$, followed by a steady-shear period of 1 min at 10 s$^{-1}$ before applying another oscillatory time sweep under the same conditions used at the beginning of the test (Figure 3c). Finally, the yield stress of the ink was quantified by applying an increasing shear stress and measuring the resulting shear strain.

Microstructural characterization:
The structure of printed and dried samples was characterized using scanning electron microscopy (SEM, LEO 1530 Gemini microscope). The SEM was equipped with an in-lens detector and was operated at an acceleration voltage of 2 kV, an aperture size of 30 µm and a working distance of 3–5 mm.

Optical properties:
The diffuse reflectance of printed and dried samples was measured with spectral resolution by using an integrating sphere and a spectrometer for visible wavelengths (Ocean Optics Inc.).
Small-angle X-ray scattering:

The scattering pattern of printed colloidal structures was characterized for samples with silica particle diameters of 250 nm and 300 nm (Figure 3d,e and Figure S2). SAXS/WAXS X-ray scattering measurements were performed with a Xeuss 3.0 UHR SAXS/WAXS system (Xenocs SAS, Grenoble, France) equipped with a GeniX 3D Cu Kalpa radiation source (λ = 1.54 Å) and a Q-Xoom in-vacuum motorized Eiger2 R 1M detector (Dectris Ltd., Switzerland) for data collection. 2D data reduction into 1D plots of scattering intensities, I(q), as a function of momentum transfer, Q (Q = 4π sin θ/λ, θ is half the scattering angle) was performed automatically using the Xenocs XSACT software.

Thermogravimetric analysis:

Thermogravimetric analysis (TGA) was performed using a Mettler Toledo TGA / DSC 3+ system in the range from 25 to 800 °C in air using a ramp of 10 °C min⁻¹.

Acknowledgments:

We gratefully acknowledge Xenocs France for provision of beam time on the Xeuss USAXS/SAXS/WAXS UHR equipment and Dr. P. Panine for the related SAXS/WAXS experimental work and the calculation of the ΔQ value. We also thank Vladimir Vojtech, Prof. Jörg Löffler, Dr. Tian Liu and Prof. Markus Niederberger, ETH Zurich for the access to the instrument.

Funding:

This research was supported by ETH Zürich and the Swiss National Science Foundation through the National Centre of Competence in Research Bio-Inspired Materials (grant number: 51NF40_182881). This research was in part supported by São Paulo Research Foundation - FAPESP (grant #2015/20052-0 and #2018/06456-0).

References

Supplementary Information for the paper
“3D Printing of Photonic Colloidal Glasses into Objects with Isotropic Structural Color”

Ahmet F. Demirörs*,1, Erik Poloni1, Maddalena Chiesa1, Fabio L. Bargardi1, Marco R. Binelli1, Wilhelm Woigk1, Lucas D. C. de Castro1,2, Nicole Kleger1, and André R. Studart*1

1Complex Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
2 Federal University of São Carlos, Department of Materials Engineering, São Carlos, SP, Brazil

E-mail: ahmet.demiroers@mat.ethz.ch and andre.studart@mat.ethz.ch

Direct Ink Writing of distortion-free complex-shaped objects:

Guidelines for direct ink writing have been proposed in terms of the yield stress and storage modulus levels needed to prevent capillary- and gravity-driven distortions of grid-like structures. 44, 45

On the basis of simple beam theory, we first estimate the storage modulus (\(G'\)) levels required to print distortion-free grid-like architectures (Figure 2a). In this estimation, the span length (\(L\)) of a filament hanging in air between two underlying print lines is considered an important geometrical parameter of the grid. Earlier work has shown that filament sagging is minimized if the storage modulus of the ink (\(G'\)) satisfies the following condition: \(G' \geq 1.4wD(L/D)^4\), where \(D\) is the filament diameter and \(w\) is the specific weight of the ink (\(\rho g/4\)). 44 Taking typical values for the specific weight of the colloidal ink (3213 kg \(\cdot m^{-2} \cdot s^{-2}\)) and for the filament diameter (0.58 mm), the measured storage modulus of 18.8 kPa (Figure 2a) should allow for the fabrication of grids with specific span length up to \(L^* = 9.2D\) without significant sagging.

To provide guidelines for the yield stress of the ink (\(\tau_y\)), we consider the capillary stress (\(\Delta P\)) that develops across a curved surface: \(\Delta P = \gamma/r\), where \(\gamma\) is the surface tension and \(r\) is the radius of curvature. To prevent capillary-induced distortion, the yield stress of the ink should be larger than the capillary stress: \(\tau_y \geq \Delta P\). This leads to the following simple estimation for the minimum radius of curvature for a distortion-free object: \(r = \gamma/\tau_y\). Assuming a surface tension of 0.019 N/m for our colloidal inks,45 we predict that the yield stress of our ink (441 Pa) should enable printing of objects with specific radii of curvature down to 43 \(\mu\)m without capillary-induced distortion.
Details of the SAXS detector

The SAXS data were collected using detectors based on hybrid pixel technology. Unlike CCD detectors, large surface hybrid pixel detectors are composed of side-butted chips, generating discontinuous arrays. This discontinuity is the reason for the vertical lines observed in SAXS patterns shown in Figure 3d and Figure S2a. Although the data could be 2D interpolated for aesthetic purposes, it was chosen here to keep the original and unbiased 2D data. Hybrid pixel detectors have advantages over CCD technology with superior Point Spread Function (PSF) of 1 pixel against 2-3 pixels for CCDs and with absence of read out noise over 9 decades of dynamic range against a maximum of 4 decades of dynamic range and easy saturation of CCDs.

Linear shrinkage estimation:
We estimated the shrinkage by two methods one was using simple image analyses on the SEM micrographs. The second was considering the material properties of the ink contents and assuming the whole water removal. In the image analyses method, the particle numbers under the same area under SEM images were counted and compared for RT dried and 200°C dried samples, see Figure S1. By comparing such particles density over the area, we estimated a linear shrinkage of 14%. The second estimate was performed by comparing the densities and volumes of the ingredients of the ink formulation. We compared the initial volume of the ink to the volume of the ink considering full removal of water. This resulted in a linear shrinkage estimate of 16%.
Supporting Figures:

Figure S1. Microstructure of colloidal glass formed upon drying at 25 °C and 200 °C. (a,b) SEM images of printed samples dried at (a) 25 °C and (b) 200 °C. Specimens were printed from inks containing 250 nm silica particles. The number of particles in the images increases from 1834 particles in (a) to 2758 particles in (b). Based on these particle densities, we estimate a linear shrinkage of ~14% during drying at 200 °C.

Figure S2. SAXS measurement on an object printed from an ink containing 300 nm silica particles. (a) SAXS pattern and (b) azimuthal X-Ray intensity as a function of scattering vector (Q) obtained after drying at 200 °C, shown for 250 and 300 nm particle containing inks. From full width at half maximum of the intensity peak (ΔQ), we estimate the range of spatial order to lie around 550 nm for 300 nm particles.