Prime n solutions of the Brocard’s Problem

Devansh Singh (✉ ds0324549@gmail.com)
I.E.T. Lucknow

Research Article

Keywords: Laplace Transform, Brocard’s Problem, s, f (t).

Posted Date: December 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1217305/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Prime n solutions of the Brocard’s Problem

Devansh Singh*

B.Tech. M.E.

Department of Mechanical Engineering,

Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India

ds0324549@gmail.com, 8787011853, ORCID- 0000-0002-4947-8297

Keywords- Laplace Transform, Brocard’s Problem, s, f (t).

MSC Classification- 44A10, 11D45

Abbreviations- L[f(t)] = ∫₀^∞ e^{-st} f(t) dt, where s>0. L[f(t)] is called Laplace transform of f(t). ‘∀’ means “for all”, ‘:’ means “such that”, ‘≡’ means “congruent to”, “parity” means even or odd.

Abstract- In this paper on the [1]“Brocard’s Problem”, I have worked on case when n is prime and n divides m-1. Necessary conditions on m are given in Theorem and Corollaries.

I used necessary and sufficient condition of primes. Assuming that n is prime and divides m-1, I applied Inverse Laplace Transform on the obtained equation and got a polynomial function which is easier to deal with. I worked with zero of the polynomial function and got lower bound of p which was not useful as p tends to infinity, but solving quartic equation which I have given at the end could give significant upper, lower bounds of p.

What would happen to those upper, lower bounds if p tends to infinity?

Introduction- [1]“Brocard’s Problem” asks for (n, m): n! + 1 = m^2, where (m, n) are natural numbers and n! is factorial of n; is a Diophantine equation in 2 variables. It was posed by “Henri Brocard” in 1876 and 1885, and independently in 1913 by “Srinivasa Ramanujan”. Only 3 solutions of the problem have been found so far which are (4, 5), (5, 11), (7, 71). There may be more solutions but none has
been found up to $n \leq 10^{15}$. Overholt (1993) showed that there are only finitely many solutions provided that the “abc conjecture” is true.

We will try to find solutions where n is prime and divides $m-1$. We will use Wilson’s theorem on prime numbers, it is a necessary and sufficient condition for primality. According to the Wilson’s Theorem, p is prime number iff $(p−1)! \equiv −1 \pmod{p}$. [4]

Theorem 1 - m in $p! + 1 = m^2$ – (eqn. 1), is $\frac{p(p^2-1)}{2} + 1$, where ‘a’ is odd.

Proof - 1) Using Wilson’s Theorem on prime we can write $(p - 1)! = pq’ + p-1$, where p is odd prime and $q’$ is an even natural number.

2) Using assumption that p divides $m-1$ we can write $m = pq + 1$ – (eqn. 2). On squaring m we get: $m^2 = p^2q^2 + 1 + 2pq = p! + 1$. Solving this equation we get $pq^2 + 2q = (p-1)! – (eqn. 3)$, where q is an even natural number.

From above 1) and 2) - $(p-1)! = pq^2 + 2q = pq’ + p-1$. Solving this equation we get: $p(q’ - q^2 + 1) = 2q + 1$. Let $a = q’ - q^2 + 1$, where ‘a’ is odd then $q = \frac{p(p-1)}{2}$.

After substituting value of q from above, eqn. 2 can be rewritten as:

$m = \frac{p(p^2-1)}{2} + 1$.

Eqn. 1 can be rewritten as: $(p − 1)! = \left(\frac{p(p-1)}{2}\right)\left(\frac{p(p-1)}{2} + 2\right)$

Let $s = \frac{p(p-1)}{2}$ then again rewriting eqn. 1 as: $p! = s^2 + 2s$ - (eqn. 4)

Corollary 1.1 - $a \equiv r \pmod{4}$, where $r \equiv p \pmod{4}$.

Proof - ∴ $(p − 1)! = \left(\frac{p(p-1)}{4}\right)(p(p-1) + 4)$. (From proof of Theorem 1.1)

∴ $4(p−1)! = (p(a - 1))(p(pa - 1) + 4)$.

Taking mod 4 on both sides, we get: $p(pa − 1)^2 \equiv 0 \pmod{4}$.
\[\therefore p \equiv 1 \pmod{4} \text{ or } p \equiv 3 \pmod{4} \therefore (pa - 1)^2 \equiv 0 \pmod{4}. \]

So, \(pa \equiv 1 \pmod{4} \) and so, \(a \equiv r \pmod{4} \), where \(r \equiv p \pmod{4} \).

Corollary 1.2 \(\frac{p+a-2r}{4} \) is even when \(m \equiv 1 \pmod{4} \) and \(\frac{p+a-2r}{4} \) is odd when \(m \equiv 3 \pmod{4} \).

Proof \(\because m = \frac{p(pa-1)}{2} + 1 \) (Theorem 1) and \(a \equiv r \pmod{4} \), where \(r \equiv p \pmod{4} \) (Corollary 1.1); we get: \(m = \frac{(4Q_1+r)((4Q_1+r)(4Q_2+r)-1)}{2} + 1 \), where \(p = 4Q_1 + r \) and \(a = 4Q_2 + r \).

1.) For \(r=1 \): \(m = \frac{(4Q_1+1)((4Q_1+3)(4Q_2+3)-1)}{2} + 1 = 32Q_1^2Q_2 + 16Q_1Q_2 + 8Q_1^2 + 2Q_1 + 2Q_2 + 1. \)

2.) For \(r=3 \): \(m = \frac{(4Q_1+3)((4Q_1+3)(4Q_2+3)-1)}{2} + 1 = 32Q_1^2Q_2 + 48Q_1Q_2 + 24Q_1^2 + 34Q_1 + 18Q_2 + 13. \)

From 1.) and 2.) above, we get \(m \equiv (2(Q_1 + Q_2) + 1)(mod \ 4). \)

i. \(1 \equiv (2(Q_1 + Q_2) + 1)(mod \ 4) \Rightarrow 0 \equiv 2(Q_1 + Q_2)(mod \ 4) \Rightarrow Q_1 + Q_2 \text{ is even} \Rightarrow Q_1 \text{ and } Q_2 \text{ are of same parity.} \)

ii. \(3 \equiv (2(Q_1 + Q_2) + 1)(mod \ 4) \Rightarrow 2 \equiv 2(Q_1 + Q_2)(mod \ 4) \Rightarrow 1 \equiv (Q_1 + Q_2)(mod \ 4) \text{ or } 3 \equiv (Q_1 + Q_2)(mod \ 4) \Rightarrow (Q_1 + Q_2) \text{ is odd} \Rightarrow Q_1 \text{ and } Q_2 \text{ are of opposite parity.} \)

Corollary 1.3 ‘\(a \)’ increases with increase in \(p \).

Proof

<table>
<thead>
<tr>
<th>a</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

(a, p) for known values of p.
m from Theorem 1.1 = \(\frac{p(p-1)}{2} + 1 = \sqrt{p!} + 1 \). So, \(a = \frac{2\sqrt{p!} + 1 + 1}{p^2} \approx \frac{2\sqrt{p!}}{p^2} \).

\[p! \approx \left(\frac{p}{e} \right)^p \sqrt{2\pi p}. \text{[3]} \]

\[a \approx 2 \left(\frac{p}{e} \right)^{\frac{p}{2}} \frac{\sqrt{2\pi p}}{e^2} \text{ is increasing for } p > 5. \]

Applying Inverse Laplace Transform on equation 4: We can apply inverse Laplace transform on equation to get a function which is simpler to deal with than its predecessor.

First comparing 4\(^{th}\) eqn. with: \(L[f^2(t)] = s^2L[f(t)] - sf(0) - f^1(0) \), where \(L[f(t)] \) is Laplace Transform of \(f(t) \) and \(f^n(t) \) is \(n \)\(^{th}\) derivative of \(f(t) \). After comparison we get: \(L[f(t)] = 1, f(0) = -2, f^1(0) = 0 \) and \(p! = s^{p+1}L[t^p] = L[f^2(t)] \) (as \(L[t^n] = n!/s^{n+1} \)).

Let \(f^2(t) = s^{p+1}t^p \) then \(f^1(t) = \frac{s^{p+1}t^{p+1}}{p+1} + c_1. \)

\[\because f^1(0) = 0, \therefore c_1 = 0. \]

\[\therefore f(t) = \frac{s^{p+1}t^{p+1}}{(p+1)(p+2)} + c_2. \]

\[\therefore f(0) = -2, \therefore c_2 = -2. \]

\[\therefore f(t) = \frac{s^{p+1}t^{p+2}}{(p+1)(p+2)} - 2, \text{ for } t \in [0, \infty). \]

Existence of \(L[f(t)] \):

[2] Sufficient conditions for existence of \(L[f(t)] \):

1) \(f(t) \) is piecewise-continuous on \([0, \infty)\).

2) \(f(t) \) is of exponential order \(c \) if there exist positive real numbers \(M, c \): \(f(t) \leq M e^{ct} \) for all \(t > t_0 > 0 \).

We have:
a) \(f(t) \) is piecewise-continuous on \([0, \infty)\).

b) \(f(t) = \frac{s^{p+1}t^{p+2}}{(p+1)(p+2)} - 2 < \frac{s^{p+1}e^{(p+2)t}}{(p+1)(p+2)} \) for \(\forall \ t > 0 \). There exist positive real numbers \(M, c \) such that \(f(t) \leq Me^{ct} \) for all \(t > 0(t_0) \), where \(M = \frac{s^{p+1}}{(p+1)(p+2)} \) and \(c = p + 2 \). \(\therefore \) \(f(t) \) is of exponential order ‘c’.

So, \(L[f(t)] \) exists for \(s = \frac{p(pa-1)}{2} > c \).

Let \(t = \varepsilon: f(\varepsilon) = 0 \) then \(\varepsilon = (\frac{\sqrt{2s(p+1)(p+2)}}{s^{p+1}})^{1/p+2} \).

\(\therefore s > \frac{1}{\varepsilon} = \left(\frac{s^{p+1}}{2(p+1)(p+2)} \right)\frac{1}{p+2} = \frac{s^{1-1/p+2}}{(2(p+1)(p+2))^{1/p+2}} > \frac{s^{3/4}}{(2(p+1)(p+2))^{1/4}} \text{ (i)} \)

\(\Rightarrow \frac{1}{\varepsilon^4} > \frac{s^3}{2(p+1)(p+2)}. \) After rearranging we get: \(2(p+1)(p+2) > s^3 \varepsilon^4 > s^2 \varepsilon^4 > s \varepsilon^4 \). \(\text{(ii)} \)

Using \(2(p+1)(p+2) > s \varepsilon^4 \) for simplicity, substituting value of \(s = \frac{p(pa-1)}{2} \), and after rearranging we get: \(p^2(\varepsilon^4 - 4) - p(\varepsilon^4 + 12) - 8 < 0 \).

Due to Corollary 1.3:

\(e^{a^{1/4}} = a^{1/4} \left(\frac{2^{p+2}(p+1)(p+2)}{(p(pa-1))^{p+1}} \right)^{1/p+2} = \frac{2((p+1)(p+2))^{1/p+2}}{a^{0.75} \frac{1}{p+2} (p-\frac{1}{a})^{1-\frac{1}{p+2}} p^{1-\frac{1}{p+2}}} \) decreases with increase in \(a \). For \(a = 1 \), \((e^{a^{1/4}})^4 = 0.00468831446 < 4 \).

Solving above inequality and due to above reasoning, we get: \(p \geq \frac{\sqrt{\Delta-(12+\varepsilon^4)}}{2(4-\varepsilon^4)} \), where \(\Delta = \varepsilon^8 + \varepsilon^4(24 + 32a) + 16 \).

Theorem 2- If there are infinitely many solutions of \(p! = s^2 + 2s \) then

\(\lim_{a \to \infty} e^{a^{1/4}} = 0, \lim_{a \to \infty} e = 0 \) and conversely.

Proof- If there are infinitely many solutions of \(p! = s^2 + 2s \) then \(\lim_{a \to \infty} e^{a^{1/4}} = \lim_{a \to \infty} \frac{2(p+1)(p+2)}{s^{p+1}}^{1/p+2}, \) where \(s = \frac{p(pa-1)}{2} \).
\[\lim_{a \to \infty} e^{1/4} = \lim_{a \to \infty} a^{1/4} \left(\frac{2^{p+2}(p+1)(p+2)}{(p(pa-1))^{p+1}} \right)^{1/p+2} = \lim_{a \to \infty} \frac{2((p+1)(p+2))^{1/p+2}}{0.75 - \frac{1}{p+2}(p-\frac{1}{a})^{1-p+2} p^{1-p+2}} = 0 \]

\[\therefore \lim_{a \to \infty} e^{1/4} = 0 \text{ so does } \lim_{a \to \infty} e = 0. \text{ Similarly } \lim_{a \to \infty} e^x = 0 \text{ if } \frac{1}{p+2} + x \leq 1 \text{ otherwise it is infinite.} \]

\[\therefore \lim_{a \to \infty} \sqrt{\Delta} = \frac{\sqrt{\Delta - (12+e^4)}}{2(4ae^4)} (\Delta = e^8 + e^4(24 + 32a) + 16) = -1 \]

\[\Rightarrow -1 \leq \lim_{p \to \infty} p \text{ which is not useful.} \]

\[2(p+1)(p+2) > s^2 e^4. \]

From (i) inequality above theorem 1.2, we have \(s > \frac{1}{e} \), where \(s = \frac{p(pa-_)}{2} \).

\[p^2ae - pe - 2 > 0 \Rightarrow p > \frac{e + \sqrt{e^2 + 8ae}}{2ae}. \]

\[\therefore \lim_{e \to 0} \frac{e + \sqrt{e^2 + 8ae}}{2ae} = \infty. \therefore p > \infty. \text{ So, converse of the theorem is also true.} \]

Or \(e \to 0 \leftrightarrow p \to \infty. \)

*From (ii) inequality, above theorem 1.2, we have: \(2(p+1)(p+2) > s^2 e^4 \) or \(2(p+1)(p+2) > s^2 e^3 \) (if we put \(p = 1 \)). If we expand this inequality in terms of \(p \) and \(a \), we will get 4\(^{th}\) degree polynomial inequality in \(p \).

Though solving 4\(^{th}\) degree polynomial equation is time consuming but there are chances that we may get significant information on upper bounds and lower bounds of \(p \) which we cannot get in \(2(p+1)(p+2) > s e^4 \) or \(2(p+1)(p+2) > s e^2. \)

Result- \(\frac{p+a-2r}{4} = Q_1 + Q_2 \) is even when \(m \equiv 1 \text{ (mod 4) \ and } \frac{p+a-2r}{4} = Q_1 + Q_2 \) is odd when \(m \equiv 3 \text{ (mod 4). Also:} \)

1) If \(1 \equiv p \text{ (mod 4), then } m = 32Q_1^2Q_2 + 16Q_1Q_2 + 8Q_1^2 + 2Q_1 + 2Q_2 + 1. \)
2) If \(3 \equiv p \text{ (mod 4), then } m = 32Q_1^2Q_2 + 48Q_1Q_2 + 24Q_1^2 + 34Q_1 + 18Q_2 + 13. \)
References

* All data generated or analysed during this study are included in this article.*