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Extended Data Fig. 1. TEM images of the NC 1HEA annealed at 1023 K for 2 h (a) and 100 h (b).




Extended Data Fig. 2. Backscattering SEM images: (a) NC 2HEA annealed at 973 K for 2 h and (b) 100 h, (c) NC 5HEA annealed at 973 K for 2 h and (d) NC 2HEA annealed at 1023 K for 2 h. After precipitates starting to form in the 2HEA sample, the average grain size increases from the 72±5 nm for the as-HPT to 508±30 and 416±17 nm for annealing at 973 K for 100 h and 1023 K for 2 h, respectively. The corresponding hardness decreases from an initial value of 3.88±0.08 GPa to 2.26±0.33 and 2.71±0.45 GPa, respectively (Figure S3). 


[image: F:\原园的课题\文章\高熵稳定纳米晶\20210328-manuscript-am\图\Supporting Information\Figure S3.tif]

Extended Data Fig. 3. (a) Averaged nanohardness variations as a function of annealing temperature (with a duration of 2 hour) for the NC 1HEA, 2HEA, 5HEA and 10HEA alloys with different total Ti, Ni, Co and Hf concentrations. (b) Variations of averaged nanohardness with increasing annealing time at 973 K in the NC 1HEA, 2HEA, 5HEA and 10HEA alloys. The error bars are 95% confidence interval of the mean.





Extended Data Fig. 4. Microstructure characterization of the NC 10HEA alloys before and after annealing at 973 K for 2 h. (a) Synchrotron XRD patterns of the HPT-processed and the annealed 10HEA. (b) EDS elemental mappings and (c) APT reconstructions of the 10HEA annealed at 973 K for 2 h. 


[image: F:\原园的课题\文章\高熵稳定纳米晶\20201011-manuscript\图\Supplementary Information\Fig.S5\未标题-1.tif]

[bookmark: _GoBack]Extended Data Fig. 5. Compositional analysis in the 10HEA annealed at 973 K for 2 h: (a) Representative 3D reconstruction with a precipitates on the triple GB (left), and the one-dimensional composition profile taken along the cylinder perpendicular across the grain boundary (right); (b) The 14 at.% (Ti+Ni+Co+Hf) iso-composition surface for the precipitates (a), and the proxigram composition profile as a function of the distance across the phase boundary between matrix and precipitate. 




Extended Data Fig. 6. High-resolution TEM images of the GB structure (a) in the HPT-processed 1HEA and after annealing at 973 K for (b) 2 h and (c) 1000 h. 




Extended Data Fig. 7. 3D-APT reconstructions of the NC 1Ni samples: distributions of Nb and Ni in the HPT-processed state (a) and in the sample annealed at 973 K for 2 h (b). The one-dimensional composition profile of Ni along the cylinder perpendicular to the grain boundary in the (c) HPT-processed and (d) annealed 1Ni sample.


Extended Data Discussion 1-calculation of effective enthalpy of segregation
In a ternary system, the B and C elements interact with each other at the GBs, so the effective segregation enthalpies of these solutes will not generally be the same as in the binary case. According to Xing et al 1, the relationship between the effective enthalpy (denotes with the superscript ‘eff’) of segregation for C atoms in the ternary A-B-C system, the enthalpies of mixing and enthalpy of segregation denotes with the superscript ‘bin’) of the A, B, and C elements is expressed as: 

                          (1)










Based on the Miedema model 2, the mixing enthalpy of Ni, Co, Ti and Hf in the binary Nb-based system, i.e., , ,  and  is -68.8, -49.4, 8.2 and 26.2 kJ/mol, respectively. Considering the small different of  and , as well as  and , the current Nb-(NiCoTiHf) system was taken as a pseudo-ternary system, defining (Ni,Co) as solute ‘B’ and (Ti, Hf) as solute ‘C’. The mixing enthalpy of (Ni,Co) and (Ti, Hf) in Nb, i.e.,  and , is estimated using the average value:

                                          (2)

                                          (3)



The calculated  and  by equation (2) and (3) are -59.1 and 17.2 kJ/mol, respectively. The value of  is also determined by the average value: 

 (4)













Here, the mixing enthalpy , ,  and  is -105.0, -81.4, -73.7 and -46.2 kJ/mol from Ref. [2] , respectively. Then the mixing enthalpy  is determined to be -76.6 kJ/mol by equation (4). Having the values of ,  and , the value of  is calculated to be 0.1 kJ/mol from equation (1), which means that the effective enthalpy of GB segregation  is greater than . According to Ref. [1], this positive value of  indicates that (Ti, Hf) should induce synergistic co-segregation at GB in Nb-(Ni, Co) alloy. Similarly, in the case (Ti, Hf) was taken as solute ‘B’ while (Ni, Co) was taken as solute ‘C’, the value of  can be calculated as 51.0 kJ/mol from equation (1), indicating (Ni, Co) should induce synergistic co-segregation at in Nb-(Ti, Hf). 

Extended Data Discussion 2-calculation of excess entropy of segregation
McLean proposed a statistical thermodynamic model for GB adsorption following the famous Langmuir surface monolayer adsorption model 3. Treating both the bulk and the GB as ideal solutions, the McLean-Langmuir adsorption equation can be generalized to multicomponent systems:

                                        (5)



where   and  are the bulk and GB compositions, respectively, of the i-th component, defining component 1 as the matrix and component i (i=2, …, N) as solutes; R is Boltzmann’s constant; T is the absolute temperature;  is the molar free energy of adsorption of solute i and can be expressed as:

                                      (6)


where  is the heat of segregation and  is the entropy of segregation of solute i. Combining equations (5) and (6), taking logarithms on both sides at the same time, the equation (5) can be derived as:

                              (7)



Thus the entropy of segregation  can be deduced from the extrapolated intercept of a plot of  versus 4. 
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