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Abstract

We introduce a lightweight model based on Mask R-CNN with ResNet18 and ResNet34 backbone models that
segments lesions and predicts COVID-19 from chest CT scans in a single shot. The model requires a small dataset to
train: 650 images for the segmentation branch and 3000 for the classification branch, and it is evaluated on 21292 images
to achieve a 42.45% average precision (main MS COCO criterion) on the segmentation test split (100 images), 93.00%
COVID-19 sensitivity and F1-score of 96.76% on the classification test split (21192 images) across 3 classes: COVID-19,
Common Pneumonia and Control/Negative. The full source code, models and pretrained weights are available on
https://github.com/AlexTS1980/COVID-Single-Shot-Model.

1 Introduction

Examination of chest CT scans is one of the most popular and accurate ways of predicting COVID-19, alongside x-ray
radiography and real-time polymerise chain reaction (RT-PCR): it is faster than RT-PCR and more accurate than x-ray.
Depending on the stage of the virus, it can have higher sensitivity to COVID-19 than RT-PCR ([PCP20, AYH+20]. Since
the onset of the COVID-19 a large number of convolutional neural networks (convnets) and other deep learning (DL)
models for the detection of COVID-19 from chest CT scans and segmentation of lesions were introduced. The classifiers
typically use a feature extractor like ResNet with a problem-specific logit output (e.g. COVID-19 vs Common Pneumonia),
like in [GWW20, LQX+20, PCP20, BGCB20]. Most segmentation models use a semantic segmentation model like U-Net
to predict the classes’ masks at a pixel level, e.g. [FZJ+20, ZLZ+20], or to augment the classifier by concatenating the
mask prediction with deep features, e.g. in [WGM+20].

Recently introduced model COVID-CT-Mask-Net [TS20a] augments Mask R-CNN and Faster R-CNN [HGDG17,
RHGS15] object detection/segmentation models with a classification module that exploits the detectors’ capacity
for predicting bounding boxes and masks of the regions of interest (RoIs) equipped with normalized (confidence)
scores, expressing the model’s ‘opinion’ about the class of the object. The batch of these predictions is converted into
a vector of features that the classification module in COVID-CT-Mask-Net must learn. In [TS20b, TS20c] a number of
modifications were presented, including truncated lightweight versions of the base model that achieve a similar accuracy
of COVID-19 prediction and lesion segmentation. The main drawback of this approach is that it consists of two stages:
first, a segmentation model (Mask R-CNN) is trained on the data with ground truth (gt) masks, then, a classification
model is derived from it and trained on the data labeled at the image level (COVID-19, Common Pneumonia, Control).

In this paper we present a solution that trains a model to segment lesions in chest CT scans and predict the class of
the image (COVID-19, Common Pneumonia, Control) in a single shot (single-shot model, SSM). The solution relies on
Mask R-CNN’s capacity for detecting objects and segmenting their masks. Mask R-CNN consists of four main stages:

1

https://www.researchsquare.com/article/rs-119569/v1


Figure 1: Overview of the method. Black arrows: training/validation data copy or input, dotted arrows: test data, broken
arrow: model augmentation and weights copy. Green blocks: data splits, blue blocks: models. Stage I: Segmentation
pre-training, Stage II: joint segmentation and classification training, Stage III: model testing. For the The SSM trained
from scratch, Stage I is skipped. The order of the operations is top-down.

backbone (ResNet)+Feature Pyramid Network (FPN), Region Proposal Network (RPN), Region of Interest (RoI) and
mask prediction. We evaluate two approaches: with Mask R-CNN pretraining and without any pretraining. For the
classification part, we explore three approaches: first, we reuse the segmentation branch of RoI to create a batch for
the image classification, which is in line with the solution in [TS20a], second, we augment RoI module with a parallel
classification branch that outputs RoIs for the image classifier; finally, we abandon the pretraining stage altogether, and
adapt both branches simultaneously from scratch.

The single-shot model has a number of advantages:

• This approach solves both lesion detection/segmentation and COVID-19 vs Common Pneumonia vs Control class
prediction from chest CT scans in a single shot, as pretraining is not necessary.

• The models are lightweight (less than 10M parameters), as a result, training and evaluation are very fast. On a
CPU, processing of a single 512× 512 CT scan slice takes between 3.81-7.08s, which includes the full segmentation
output and the image class prediction.

• The model can be easily adapted to new data.

To the best of our knowledge, this is the first paper that presents a single-shot solution for both lesion instance
segmentation and COVID-19 classification. The rest of the paper is structured as following: in Section 2 we discuss the
datasets for both problems, in Section 3 we present the methodology, in Section 4 we discuss the experimental setup and
the results, Section 5 concludes.
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Figure 2: Architecture of the Single Shot Model with two parallel RoI branches. Both segmentation and image
classification losses are computed. Green arrows: segmentation and classification stages, red arrows: only segmentation
stage, blue arrows: only classification stage. Normal arrows: data/tensors, broken arrows: batches/samples, dotted
arrows: labels. Best viewed in color.

2 Data

We require two separate sets of the training data: segmentation data and classification data. Both of these sets are taken
from CNCB-NCOV [ZLS+20], http://ncov-ai.big.ac.cn/download resource. The segmentation data (750 images
labelled at pixel level) is split randomly into 650 training and validation and 100 test images. Masks for the lesion classes,
Ground Glass Opactity (GGO) and Consolidation (C) are merged into a single positive lesion class. Clean lung masks are
merged with the background. All 750 images (scan slices) were taken from COVID-19-positive patients, but some of the
slices are negative (no lesions present). These are skipped during training, and labelled as a single negative observation
at test stage.

For the 3-class (COVID19, CP, Normal) classification data we use the COVIDx-CT train/test/validation splits, [GWW20].
We use the same sample of 3000 images (1000/class) from the train split as in [TS20c], and also used the test and
validation splits in full, see Table 1. The splits are consistent across classes and patients. This means that negative
slices taken from the positive (COVID-19 or CP) patients were removed from the data altogether, and only those with
lesions were kept, and every patient was randomly assigned into only one of the splits, [GWW20]. This is one of the key
advantage of SSM: it generalizes very well to the unseen data while using only a small portion of the training dataset.

3 COVID-19 Single-Shot Segmentation And Classification Model

Mask R-CNN is one of the state-of-the-art models that detects and segments separate objects in images using Region
Proposal Net (RPN) and Region of Interest Net (RoI), which is different to semantic segmentation predicting classes at a
pixel level, such as FCN [LSD15] and UNet [RFB15]. Unlike semantic segmentation models, Mask R-CNN ‘understands’
separate objects, together with their labels and masks, and is therefore good at handling problems like partial occlusion.
Nevertheless, Mask R-CNN does not make global predictions, i.e. prediction at an image level (class of the image). Some
previous result, e.g. [TS20a, TS20b] extend Mask R-CNN to do global prediction, but in a separate model.
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(a) RoI with two parallel branches. Gray: segmentation branch, yellow: classification branch. Pink blocks: layers with features and
trainable weights, light green blocks: layers with features and non-trainable weights, yellow blocks: RoIAlign modules, purple blocks:
batch construction, bright green blocks: RPN batch and RoI image batch (classification stage). Black normal arrows: data/tensors,
red arrow: labels, broken black arrows: batches/samples, broken maroon arrows: weight copy from the segmentation into the
classification branch. Best viewed in color.

(b) RoI Batch to Feature Vector and image classification module S. Black arrows: tensors, dotted arrow: image label. Each bounding
box (green blocks) has its confidence score using softmax function. The values vary from ≈ 1 (red) to ≈ 0 (blue). Best viewed in color.

Figure 3: RoI layer with two parallel branches and batch to feature conversion.
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Single-shot model (SSM) that we present in this paper solves both the problem of detecting and segmenting le-
sions in chest CT scans and predicting whether the scan slice is COVID-19-positive, Common Pneumonia-positive or
Negative (no type of Pneumonia). Figure 1 summarizes the SSM training and evaluation mechanism. We present three
main approaches to the model’s training:

1. pretrained segmentation branch + single branch for segmentation+classification, Section 3.2,

2. pretrained segmentation branch + two parallel branches for segmentation+classification, Section 3.2,

3. training from scratch+two parallel branches for segmenation+classification, Section 3.3.

An important idea we use is the encoding of bounding boxes. Mask/Faster R-CNN use several encodings for the
bounding box coordinates: (a) encoded ground truth box coordinates for the RPN/RoI loss computation, (b) decoded
box offsets for the RPN detections output, (c) decoded RoI detection output for the inference, (d) scaled boxes in (c) to
match the image size. For the image classification problem we use the boxes before decoding in (c), i.e. the outputs
of the detection branch in RoI. Since the branch was trained using encoded ground truth targets in (a), it outputs box
coordinates encoded (normalized) using non-trainable coordinate weights (see Torchvision Mask R-CNN implementation,
https://pytorch.org/docs/stable/torchvision).

3.1 SSM Loss Function

RPN solves an object vs background binary problem, RoI solves a multiclass problem (objects vs background). Equation
1, loss of the segmentation branch, is the same as in [HGDG17, RHGS15]. Here xbox

j is the bounding box prediction, tbox
j

are gt (target) box coordinates, f j(x) are the logit scores, C is the index of the class of the jth prediction, e.g. C = 0 is
the background class. L1smooth is a variation of absolute distance function, [RHGS15]. Per-class mask labels tMask

j are

resized binary masks and predictions for this class xMask
j are logit score maps of the same size, so the loss is taken for

each mask pixelwise. Therefore RPN object loss and LMask are binary cross-entropy (log-sigmoid) loss functions (object
vs background), and RoI class loss is a cross-entropy loss functions (log-softmax). The encoding of the ground truth box
coordinates is also the same as in [RHGS15]. For the masks loss, only positive predictions in the sample are used (npos

RoI),
as well as for the box coordinates. For the object and class scores the whole sample (nRPN , nRoI) is used.

LSEG = LRPN + LRoI + LMask (1)

=
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∑
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t
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j |xbox
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∑
j=1

log qC
j (x) +

nRoI

∑
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t
Cpos
j L1smooth(|xbox

j − tbox
j |)−

nRoI

∑
j=1

log softmax( f C
j (x))

+
npos

RoI

∑
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tj
Mask log σ(xj

Mask)

qC
j (x) =

{
1− σ( f j(x)) if C=0
σ( f j(x)) else

t
Cpos
j =

{
1 if C>0
0 else

LCLS = −tCl
k log σ(hk(x))− ∑

k 6=Cl
(1− tCl

k ) log(1− σ(hk(x))) (2)

tCl
k =

{
1 if k=Cl
0 else

LTotal = LSEG + LCLS (3)
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Table 1: Comparison of models’ sizes and training datasets. The #trainable parameters is for the segmenta-
tion/classification problem. Models with ∗ have two backbone blocks, models with ∗∗ have three backbone blocks.
Models with 2 superscript have two parallel feature blocks in the RoI layer, models with the S superscript were trained
from scratch. Models trained from scratch have the same number of parameters as SSM2. Training time for SSM2,S are
pretrained/trained from scratch. The training time for all pretrained models includes the pretraining.

Model (Backbone)
#Total #Trainable

Training Validation Test
Ratio Training

parameters parameters Test/Train Time(min)
SSM (ResNet18+FPN)∗ 4.51M 4.51M/1.90M

650/3K 100/20.6K -/21.1K -/7.06

369
SSM (ResNet18+FPN)∗∗ 6.64M 6.64M/1.90M 355
SSM (ResNet34+FPN)∗ 5.17M 5.15M/2.56M 370
SSM (ResNet34+FPN)∗∗ 12.04M 12.04M/2.56M 380
SSM2,S (ResNet18+FPN)∗ 6.13M 6.13M/1.90M

650/3K 100/20.6K -/21.1K -/7.06

348/357
SSM2,S (ResNet18+FPN)∗∗ 8.27M 8.27M/1.90M 348/341
SSM2,S (ResNet34+FPN)∗ 6.80M 6.80M/2.56M 365/361
SSM2,S (ResNet34+FPN)∗∗ 13.66M 13.66M/2.56M 371/361

Equation 2 is the only loss function for the classification branch. We use class logits hk(x)(x is the output from the final
logit/score layer in the model), and binary cross-entropy loss functions, C is the total number of classes, Cl is the index
of the correct class. For example, if COVID-19 is the correct class of the image, the label vector is [0, 0, 1], Cl = 2. The
total loss, Equation 3 is taken without any coefficients adjusting either LSEG or LCLS.

3.2 Weight Sharing With The Pretrained Segmentation Model

The first approach to the SSM is summarized in Figure 1. Mask R-CNN is pretrained on the segmentation data. Then, its
weights are copied into the SSM, which then solves both segmentation and classification problems. This pretraining is
necessary because the RoI batch output, i.e., the batch input in the image classification module, Figure 3b, is expected to
have several important properties (see [TS20a] for details):

1. Contain encoded box coordinates (x, y, height, width),

2. Contain a normalized (softmax filter) confidence score,

3. Elements are ranked in the decreasing order of their confidence scores.

Module S is expected to learn this distribution, which applies certain restrictions on the RoI weights for the classification
problem: they can only be trained using object-level data (box coordinates, class, mask), which we obviously do not
have for the image classification dataset. We therefore resolve this problem in three different ways, each with a different
approach to the adaptation of the classification branch.

• Use pretrained RoI weights and the same branch for both problems,

• Use pretrained RoI weights and two parallel branches for each problem,

• Train both branches from scratch, no pretraining.

The last approach is explained in Section 3.3, and the last two approaches are illustrated in Figure 3a. In all approaches,
one image of segmentation data follows one image of classification data. The main difference is the classification weights
update rule.

In the first approach, the RoI branch weights are shared for both problems, i.e. the only architectural difference
between Mask R-CNN and SSM is the S module in Figure 3a that is connected to a single RoI branch. At the segmenta-
tion stage, all weights (i.e., backbone, RPN, RoI, Masks) except S are updated. In the classification stage these weights
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Table 2: Average precision of segmentation models at three different IoU thresholds. Bold+italicized: best, bold:second-
best, italicized: third-best. The rank is based on the AP across all IoU thresholds, which is the main MS COCO 2017
metric.

Model AP@0.5IoU AP@0.75IoU AP@[0.5 : 0.95]IoUs Rank
SSM(ResNet18+FPN)* 0.4585 0.3175 0.3516 11
SSM(ResNet18+FPN)** 0.4253 0.3222 0.3415 12
SSM(ResNet34+FPN)* 0.5635 0.3942 0.3993 5
SSM(ResNet34+FPN)** 0.5243 0.2984 0.3565 10
SSM2(ResNet18+FPN)∗ 0.4741 0.3910 0.3856 8
SSM2(ResNet18+FPN)∗∗ 0.4835 0.3851 0.3870 7
SSM2(ResNet34+FPN)∗ 0.5607 0.3978 0.4021 4
SSM2(ResNet34+FPN)∗∗ 0.5952 0.4164 0.4381 2
SSMS(ResNet18+FPN)∗ 0.5095 0.3927 0.3923 6
SSMS(ResNet18+FPN)∗∗ 0.5799 0.3828 0.4245 3
SSMS(ResNet34+FPN)∗ 0.6291 0.4648 0.4535 1
SSMS(ResNet34+FPN)∗∗ 0.5152 0.3381 0.3579 9

are frozen, and only S weights are updated. That is, RoI branch weights are only updated using segmentation loss.
The main difference between segmentation and classification stages is the RoIDetectBatch in Figure 3a that samples the
training batch for RoI from RPN output using gt data during the segmentation stage, and accepts the full RPN output
during the classification stage, see [TS20a] for the details.

In the second approach, we create a parallel branch in the RoI layer, see Figure 3a with the architecture identical
to the existing one (RoIAlign followed by the regional features with two fully connected layers followed by class and box
branches). This branch takes the full input from the RPN and outputs the RoI batch for S. The most important step here
is the selection of the sample of fixed size (RoIBatchSelection layer in Figure 3a), which is described in detail in [TS20a]
and is identical to the first approach. The weights in this classification branch are copied from segmentation branch
before the start of the algorithm and are never updated.

3.3 On-line Weight Sharing With the Segmentation Model

This approach does not require any pretraining at all (incl. backbone weights) and is therefore the easiest to train. Its
architecture is identical to the model with two branches in Section 3.2. The main difference is that, since the model
is trained from scratch, instead of freezing the weights, we copy the weights from the segmentation branch if there’s
an improvement in the segmentation loss in this iteration. In this setup the classification branch outputs the required
distribution of boxes without updating its weights wrt the image loss, but instead adapting it alongside the segmentation
branch. The weights are copied across all trainable RoI layers: RoI head and the detection branch (class + box coordinates).
In this setup RPN also adapts only to the segmentation data, thus maintaining its strength of predicting the objects,
which is important for the RoI segmentation branch.

Sampling rules remain the same. First, RPN batch is used in full (without RoIDetectBatch sampling) to create the
aligned regional features maps. These are fed through the classification module to output the batch of encoded box
coordinates+confidence scores. Then, RoIBatchSelection creates the RoI batch output by removing the overlapping boxes
and keeping the batch size fixed and maintaining the balance of high- and low-ranking boxes (see Figure 3b). Thus
the RoI batch maintains the characteristics detailed in Section 3.2 essential to the image classification problem and is
not affected by the image class loss. Finally, the architecture of S is identical across all three approaches: RoI batch is
converted to a feature vector (input), followed by two fully connected layers equipped with ReLU activation functions
and the final class logits layer.
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Table 3: Class sensitivity, overall accuracy and F1-score results on COVIDx-CT test data for 3 classes (21192 images).
Models with ∗ have two blocks, models with ∗∗ have three blocks. Models with 2 superscript have two parallel feature
blocks in the RoI layer, with S superscript were trained from scratch. The rank is based on F1 score.

Model COVID-19 CP Normal Overall F1 score Rank
SSM(ResNet18+FPN∗) 90.20% 89.52% 89.34% 89.58% 0.8969 7
SSM(ResNet18+FPN∗∗) 83.00% 89.55% 98.62% 92.25% 0.9220 5
SSM(ResNet34+FPN∗) 88.70% 83.35% 94.54% 89.43% 0.8941 8
SSM(ResNet34+FPN∗∗) 87.13% 96.75% 88.04% 91.23% 0.9138 6
SSM2(ResNet18+FPN∗) 83.76% 78.65% 87.58% 83.67% 0.8370 11
SSM2(ResNet18+FPN∗∗) 84.38% 78.22% 88.76% 84.18% 0.8417 10
SSM2(ResNet34+FPN∗) 85.48% 81.80% 79.39% 81.47% 0.8166 12
SSM2(ResNet34+FPN∗∗) 85.07% 78.07% 91.04% 85.28% 0.8528 9
SSMS(ResNet18+FPN∗) 93.16% 95.68% 96.18% 95.38% 0.9542 2
SSMS(ResNet18+FPN∗∗) 93.00% 96.53% 98.64% 96.75% 0.9676 1
SSMS(ResNet34+FPN∗) 89.62% 89.99% 96.76% 92.93% 0.9293 4
SSMS(ResNet34+FPN∗∗) 91.44% 95.33% 92.48% 93.26% 0.9333 3

4 Experimental results

We test empirically the following three hypotheses in order to determine the best overall model:

1. Reducing the model’s depth from full (4 layers) to 3 and 2, while keeping a single FPN module (see [TS20c] on the
matter of model truncation for this problem),

2. Changing the model’s architecture from ResNet50 to ResNet34 and ResNet18,

3. Comparing three frameworks introduced in Section 3: single branch, separate classification branch with the
pretrained frozen weights and two parallel branches trained from scratch.

For the experimental setup we selected two backbones: ResNet18 and ResNet34 becasue in [TS20c] it was shown that
smaller models achieve the classification accuracy close to that of the larger models like ResNet50 with just a fraction
of the model’s size. It was also shown that truncating models, i.e. removing either the last or the last two blocks (see
[HZRS16] for the explanation of the residual architecture and Torchvision model zoo, https://pytorch.org/docs/
stable/torchvision/models.html for the implementation we used) in fact improves the predictive quality of the model.
As a result, in this setup we skip both ResNet50 and full ResNet18/34 models in favor of smaller truncated versions
thereof. We also considered three update rules for the image classification step:

1. Module S only,

2. Module S+full backbone,

3. Module S+batch normalization layers in the backbone.

Approaches 1) and 3) require the least number of weights updates, and 3) is in line with [TS20a]. Nevertheless, with 2)
the best results were achieved across all models, hence the results reported in Tables 2 and 3 were attained using rule 2.
In total, we trained 12 different variants of the model: 4 with a single (segmentation+classification) RoI branch, 4 with
two parallel RoI branches, and 4 with two parallel RoI branches from scratch. In each setup, ResNet18/34+FPN with
either 2 or 3 blocks was used as a backbone. Each of the first 8 models was first pretrained with a purely segmentation
architecture (see Figure 1). The segmentation model was pretrained for 50 epochs with Adam optimizer, learning rate of
1e− 5 and weight decay coefficient of 1e− 3. Important Mask R-CNN hyperparameters such as non-maximum threshold
were the same as in [TS20c].
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All single shot models were trained in a similar way, with an Adam optimizer, learning rate of 1e− 5 and weight decay
coefficient of 1e − 3. For each image in the classification data, an image from the segmentation data was sampled
randomly, and the full model (except the RoI classification branch + image classification module S) was updated. Then,
the image from the classification dataset was fedforward. Each model was trained for 50 epochs (classification dataset).

Although there’s no metric that balances detection and classification results, from the ones presented in Table 2
and 3 we can infer that the models trained from scratch with the adapted classification branch perform best in classi-
fication, including COVID-19 sensitivity and F1 score, and they also perform best and second-best for classification,
measured by the mean AP. For the classification problem, adding the third block gives a stable improvement in F1 score
for each variant, but this effect is not clear for the segmentation problem. At the same time, switching from ResNet18 to
ResNet34 with the same number of blocks tends to give lower F1 score, while nearly always improving the segmentation
accuracy. These results likely mean there is a tradeoff between these two problems, despite coming from the same data.
Overall, the model with an adapted classification branch, ResNet18 with 3 layers seems to give the best balanced results:
0.4245 mean AP with 93.00% COVID-19 sensitivity and 96.76% F1 score.

5 Conclusions

In this paper we have presented a fast and accurate single-shot architecture that both predicts the class of the image,
COVID-19 vs Common Pneumonia vs Control, and segments lesions in the chest CT scans. Conceptual novelties include
the addition of a separate classification branch within the RoI layer that outputs only encoded bounding boxes and their
confidence scores that are used to train the image classification module. To the best of our knowledge, this is the first
solution in the COVID-19 deep learning community that does a single-shot lesion instance segmentation and chest CT
scan prediction.

We achieved the best results by training both branches from scratch: ResNet18 with the last truncated block achieves
0.4245 average precision for lesion segmentation, 93.00% COVID-19 sensitivity and 96.76% F1 score. Given the modest
model of size of 8.27M parameters, of which only 1.9M are trainable during the classification stage, this model achieves
the accuracy of a much larger classifier in [TS20b] with a ResNet50+FPN backbone and the segmentation precision of
Mask R-CNN with ResNet50+FPN.

So far we have achieved strong results by only exploring the localization (bounding box) and the strength (confi-
dence score) of the features. One of the key differences between COVID-19 and CP is the configuration of the lesions
and features: diffuse distribution, attenuation, crazy-paving patterns, etc, that bounding boxes can’t capture. In our
future research we intend to explore these configurations for COVID-19 prediction by considering the objects’ masks that
capture the objects’ shapes more accurately than bounding boxes. The full source code, model interfaces and pretrained
weights are available on https://github.com/AlexTS1980/COVID-Single-Shot-Model.
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