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ABSTRACT

The COVID-19 pandemic has been going on for two years now and although many hypotheses have been put forward, its
origin remain obscure. We investigated whether the huge public sequencing data archives’ samples collected earlier than
the earliest known cases of the pandemic might contain traces of SARS-CoV-2. Here we report the bioinformatic analysis
of a metagenome sample set collected from soil on King George Island, Antarctica between 2018-12-24 and 2019-01-13. It
contains sequence fragments matching the SARS-CoV-2 reference genome with altogether more than half million nucleotides,
covering the complete genome on average 17x. Preliminary phylogeny analysis places the sample close to the known earliest
cases. The high sequence coverage rules out chance alignments from other species but possible laboratory contamination
cannot be excluded. The sequence harbours a unique combination of mutations, unseen in other samples, so whatever its
origin, it can add important piece of information to the puzzle of the ongoing pandemic.

Introduction

The COVID-19 pandemic has been going on for two years now and although many hypotheses have been put forward, its
origin remains obscure. Sequencing techniques have evolved at a tremendous pace over the past decade and have been used by
researchers around the world to examine large number of samples and deposit them in international public sequence archives
such as ENA or SRA. As reported by the International Nucleotide Sequence Database Collaboration', the total size of sequence
data archive has exceeded 9 petabytes in 2020 and grew roughly 10 times in the last 4-year period. The uploaded samples often
contain sequences not only from the species that the researchers originally intended to study, but also genetic material from
the environment or other species®. This can be the either the result of contamination during the wet-lab processing or true
biological signal; the true origin is often hard to identify.

Our hypothesis was that these huge "gold mines" of sequence archives may contain genome fragments from early human
SARS-CoV-2 cases or from the hypothesised originator zoonotic host. We searched through metagenomic profiles of samples
collected earlier than the earliest known cases of the pandemic for traces of SARS-CoV-2 genetic sequences.

We did find a number of samples and here we report the analysis of one of these data sets.

Materials and Methods

The analysed sequencing project can be found under project ID PRINA6923193. Tt contains 12 samples, all were collected
from soil at King George Island, Antarctica in a 3 week period after 2018-12-24, which is summer in the southern hemisphere.
According to the European Nucleotide Archive’s metadata the sequencing read data was submitted by University of Science and
Technology of China on 2021-01-15. There is no information on the date of wet-lab processes and sequencing that should have
happened some time between the sample collection (2019-01) and the upload dates. The metadata contains some information
on the sequencing process. The WGS with average spot length of 300 was performed on an Illumina HiSeq 4000 in a paired
library layout, 150nt long reads resulting on average 9 Gbases per sample. See Table 1 on page 2 for some details of the
samples. The public data sets that can be accessed based on the project ID PRINA692319 or the listed run accession numbers
from SRA or ENA archives.

After downloading the FASTQ files we performed metagenomic analysis and aligned the reads to the SARS-CoV-2 reference
genome NC_04551 2.24. For the alignment and variant calling, (with minor modifications, detailed below) we followed the
"VEO workflow" developed by the VEO consortium for unified processing of the raw SARS-CoV-2 sequencing data uploaded



Table 1. Sample properties. The first 6 columns show basic metadata of the samples. See® for more information. The 2 extra
last columns show the count of reads that align to SARS-CoV-2 genome from the raw R1 and R2 reads. Low complexity reads
aligned to the poly-A tail were not counted.

Run Library Name Collection date  Isolation source lat lon R1 R2
SRR13441700 AKGI_BS1_2018_12_24 2018-12-24 Antarctic soil 62.13S5895W 112 65
SRR13441701 AKGI_PL3_2019_01_13 2019-01-13 Antarctic soil 62.21 S58.93 W 0 0
SRR13441702 AKGI_PL2_2019_01_13 2019-01-13 Antarctic soil 62.21 S 58.93 W 0 0
SRR13441703 AKGI_PL1_2019_01_13 2019-01-13 Antarctic soil 62.21 S 58.93 W 0 0
SRR13441704 AKGI_PS3_2019_01_13 2019-01-13 Antarctic soil 62.21 S58.92 W 387 4485
SRR13441705 AKGI_PS2_2019_01_13 2019-01-13 Antarctic soil 62.21 S58.92W 242 3800
SRR13441706 AKGI_PS1_2019_01_13 2019-01-13 Antarctic soil 62.21 S58.92 W 0 0
SRR13441707 AKGI_SS3_2019_01_05 2019-01-05 Antarctic soil 62.21 S59.01 W 0 0
SRR13441708 AKGI_BS3_2018_12_24 2018-12-24 Antarctic soil 62.13S58.95W 349 3537
SRR13441709 AKGI_BS2_2018_12_24 2018-12-24 Antarctic soil 62.13S5895W 112 161
SRR13441710 AKGI_SS2_2019_01_05 2019-01-05 Antarctic soil 62.21 S59.01W 113 106
SRR13441711 AKGI_SS1_2019_01_05 2019-01-05 Antarctic soil 62.21 S59.01 W 0 0

to ENA-EBI and presented at the COVID-19 data portal share site (https://www.covidl9dataportal.org/®). In
short, the raw sequencing reads were aligned to the SARS-CoV-2 reference genome with bwa mem’ then the genome coverage
was calculated by samtools mpileup®. The 1ofreq’ software was used to call variants and the VEO workflow’s custom python
script created the final consensus sequences.

The initial analysis revealed that although all 12 samples contain some reads that match the SARS-CoV-2 genome, only 3 of
them, SRR13441704, SRR13441705 and SRR13441708 had enough matching reads to cover the whole genome (see "# aligned
R1/R2" columns of Table 1 on page 2 ); in the following sections we present the analysis only for these 3 abundant samples.

Since the samples contain large amounts of foreign genetic material and also the original project was not optimized for
SARS-CoV-2 detection, the standard VEO analysis workflow was adjusted. Our initial alignment revealed that there is a strong
asymmetry between the forward (R1) and the reverse (R2) sequencing reads. We dropped the initial trimming and strict filtering
and to avoid possible problems that this asymmetry may cause, in the final analysis we applied single read based alignment and
used only the more abundant R2 reads.

The few samples and the relatively short genome made possible, and the non-standard nature of the samples made necessary
the visual inspection of the alignments which was done by the IGV'? tool. The gene-wise quasispecies analysis was performed
by aBayesQR by 0.15 SNV threshold!'.

The Pangolin: Phylogenetic Assignment of Named Global Outbreak Lineages'> web application'? and the UShER: Ultrafast
Sample placement on Existing tRee'* online tool was used for quick preliminary phylogeny analysis.

Results

The aligned reads cover the genome (see Fig. 1) on average 5.2 x. Certain parts have much higher sequencing depth than others
but this is not unusual for metagenomic sequencing. There is a strong correlation between the coverage of the three samples
which may indicate common biological or contamination origin.

Though some parts of the genome are covered by only a handful of nucleotides it was possible to call mutations with
reasonable confidence. An extract of the variant call VCF files is shown in Table 2. Some of the mutations (POS=13694, 16156,
18060, 21761, 23525, 28144) are found in all the samples, while others were called in only one (POS=8782, 17039, 17634,
18082, 25498, 26458, 26895) or two (POS=29449) samples. By the visual inspection of the read alignments (BAM files) with
the IGV tool we could also find some mutated bases in the samples where the variant call returned null result. Table 3 shows an
extract from the samtools mpileup results for the positions where mutations were not detected by the workflow in all samples.
For all cases mutated bases indeed occur with about the same ratio in all samples, so all samples may carry the same virus
variant(s), only the low sequencing depth did not make possible to pass the mutation call algorithm’s quality requirements.

Following this assumption, we have rerun the analysis on the pooled set of the SRR13441704, SRR13441705 and
SRR13441708 sample’s R2 reads. The consensus genome sequence can be found as a Supplementary file,
SRR134417_04_05_08_R2.fasta. Due to its low allele frequency the C17634G SNP did not get into the consensus sequence.

Pangolin'? assigned lineage "A" as the most likely lineage of SARS-CoV-2 for the consensus sequence. UShER web
service!> was also used to explore the phylogeny. Figure 2 displays the closest 50 samples from the GISAID collection as
of 2021-12-12. In agreement with the Pangolin tool, the closest neighbours are in lineage A and A.1 and by classification
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Figure 1. The smoothed coverage of the SARS-CoV-2 reference genome by the R2 reads from samples SRR13441704,
SRR13441705 and SRR13441708. The average depth is 5.2 but there are large correlated fluctuations in the coverage.

Table 2. Mutations and deletions found in the samples, extracted from the VCF files. The last 3 columns show multiple
allele frequencies (AF) and sequencing depth (DP) values, respectively, where the mutation occurred in multiple samples. The
leading "SRR 134417" was stripped from the RUN ID in the last column.

POS REF ALT  Annotation Gene AA change AF DP RUN

8782 C T synonymous_variant ORFlab  Ser2839Ser [0.66] [9] [08]
13694 C T missense_variant ORFlab Thr4482Ile [0.38,0.29,0.22] [47,34,35] [04, 05, 08]
16156 A G missense_variant ORFlab Met5303Val [0.36, 0.54, 0.5] [25, 11, 10] [04, 05, 08]
17039 A G missense_variant ORFlab Asn5597Ser [0.53] [13] [05]
17634 C G missense_variant ORFlab Asp5795Glu [0.25] [20] [08]
18060 C T synonymous_variant ORFlab Leu5937Leu [0.37,0.38,0.46] [27,26,26] [04, 05, 08]
18082 A G missense_variant ORFlab Ile5945Val [0.46] [28] [04]
21761 G del27 disrupt.inframe.del S Ile68_Thr76del [0.37, 0.33, 1.0] [8,9, 5] [04, 05, 08]
23525 C T missense_variant S His655Tyr [0.69, 0.61, 0.66] [13,13,6] [04, 05, 08]
25498 C T missense_variant ORF3a Pro36Ser [0.45] [11] [05]
26458 G T missense_variant E Asp72Tyr [0.5] [14] [05]
26895 C T missense_variant M His125Tyr [0.51] [60] [05]
28144 T C missense_variant ORF8 Leu84Ser [0.64,0.71,0.66] [17,14,15] [04, 05, 08]
29449 G T synonymous_variant N Val392Val [0.43, 0.24] [32, 29] [04, 08]

Nextstrain scheme, in B19 clade. We note that the UShER tool did not list the 27nt long deletion at 21761 as a difference from
the reference genome. It also gave a warning for the unusually high parsimony score, i.e. the sample has a very unique mutation
composition. The sample differs by 8 mutations plus the not counted deletion from the closest sample among the more than 6
million samples currently deposited to GISAID, GeneBank, COG-UK and CNCB.

The 27nt long deletion at 21761 ( Spike_I68del, Spike_H69del, Spike_V70del, Spike_S71del, Spike_G72del, Spike_T73del,
Spike_N74del, Spike_G75del, Spike_T76del in amino acid notation) is especially intriguing. Only 61 samples of the more than
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Table 3. Pileup for the mutation positions which were not identified in all samples. The lower and upper case letters denote
mutated nucleotides, while dot and comma the original reference nucleotide. (The meanings of other symbols are not relevant,
they can be found in samtools’ documentation.) We can observe that although mutations were not called by the workflow,
mutated bases indeed occur with about the same ratio in all samples.

pos ref SRR13441704 SRR 13441705 SRR13441708
8782 C tTTa.T TT,.., a.tTtTtT.
17039 A  $..G..g.g, Gg,Gg,,,GTgg"], ..C.GG,,,,,.g,
17634 C ... G..Gg,,,8,,2,5»-G.e.. € N € .2,.2,G.GG,.,,,.....
18082 A  g,g2,G,GGg.g,,.8,.,,..2,2GeG  G,,n,,,,GG,G,.g,,G*.., .g,28.,,2,2.,2,G,.sss,--C,.
25498 C . gT.TT¢t,.T. L. T.Tg,.. T.tT Lt
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Figure 2. Phylogeny of the pooled sample combined from SRR13441704, SRR13441705 and SRR13441708. Our sample
is placed close to the root of the SARS-CoV-2 phylogeny tree, branched from Pangolin lineage "A" with a large parsimony
score of 8 mutations.

6 million consensus sequences uploaded as of 2021-12-12 to GISAID harbours this specific deletion, see Table 4. Of these
samples, 19 Italian samples have very recent collection date, 2021-11-16 and 2021-11-17. Most probably there is no direct
relation, but we mention that the new Omicron variant has a long but not identical overlapping deletion at this site and also
Omicron shares the C23525T (H655Y) SNP with the samples studied here.

As the allele frequency (AF) column of Table 2 shows that none of the mutations occur with 100%. There are two mutations
at positions 18060 and 18082 which are close enough to have the chance to frequently reside in the same 150nt long sequencing
reads. Visual inspection with IGV suggested that this is not the case, these two mutations never occur in the same read,
indicating that the two samples may contain multiple strains. The result of gene-wise quasispecies analysis that was performed
with aBayesQR, shown in Figure 3, confirmed this finding.
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Figure 3. aBayesQR gene-wise quasispecies analysis results. The selected region around mutations at genomic positions
18060 and 18082 shows the mutated bases with white background for sample SRR13441704. Other samples, (not shown) have
similar composition. Where mutations occur, they are in distinct reads, none carries both of the mutations. This made possible
for the software to separate the distinct variants.

Table 4. Statistics for samples in GISAID that contain 27nt deletion at position 21761. Half of the Italian samples (n=19)
have very recent collection date of 2021-11-16 and 2021-11-17.

Host Location Pango lineage Count Date min Date max

Canis lupus familiaris ~ Croatia B.1.1 1 2021-04 2021-04

Human Malaysia B 1 2020-01-24 2020-01-24
Human Taiwan B 2 2020-10 2020-11

Human Taiwan B 1 2020-03-18 2020-03-18
Human Belgium A 1 2021-04-10 2021-04-10
Human Belgium A 1 2021-04-15 2021-04-15
Human Croatia B.1.1 1 2021-04 2021-04

Human Czech Republic  B.1.258 1 2020-10-06 2020-10-06
Human France B.1.1 2 2020-03-26 2020-03-26
Human France P.1.15 1 2020-03-23 2020-03-23
Human Germany B.1.1.7 1 2021-02 2021-02

Human Italy B.1 38 2021-05-03 2021-11-17
Human Italy None 2 2021-06-08 2021-11-16
Human Russia None 1 2020-06-04 2020-06-04
Human Russia B.1 1 2020-04-19 2020-04-19
Human Slovenia B.1 2 2020-03-07 2020-03-07
Human Slovenia B.1.1 2 2020-03-09 2020-03-30
Human Turkey B.1.1 2 2020-03-17 2020-03-17

Discussion

The PRINA692319 project’s original objective was to apply shotgun metagenomics to tundra soils in maritime Antarctica to
determine the effects of sea animal activities on the nitrogen cycle microbial community and function gene. At the sequence
archive they did not report related scientific publication, but we could find two articles Dai et al. 2021'¢ and Wang et al. 2019'7
with overlapping authors and affiliation at University of Science and Technology of China, Hefei, China. These publications list
samples with the same identifiers and based on that SRR13441704 and SRR13441705 were collected from "Penguin colony
soil" while SRR13441708 from "background tundra soils on the upland areas". Details of the wet-lab procedure, sequencing
library preparation and the date and location of the sequencing are not recorded at the sequence archives. These would be
crucial pieces of information to decide whether the detected SARS-CoV-2 content has real biological origin or it is the result of
lab contamination or sequencing artifact.

In either case we find the samples very interesting. The variant seems to be quite different from all other known samples,
but at the same time harbours only a few mutations with respect to the reference genome that suggests early origin. According
to the epidemics reports China is almost free of COVID-19 except the time interval between late 2019 to April 2020 and also
no widespread infection was reported outside of Wuhan and Hubei province. This makes the chance contamination from
an infected person very unlikely or indicates wide unknown latent spread of infections. On the other hand, true presence of
SARS-CoV-2 in the collected samples seems even more unlikely and intriguing.

Details on the sample processing methods and dates will be requested from the original authors and the preprint can be
extended with this information. If part of the samples are still available, further investigation may give answers to many of the
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open questions and help to either make sequencing procedures more reliable or to decipher the origin of SARS-CoV-2.
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