Development Dental Defects in Permanent Teeth Resulting From Primary Tooth Trauma. A Systematic Review.

Lucía Caeiro Villasenín
University of Murcia

Clara Serna Muñoz (claraserna@live.com)
University of Murcia

Amparo Pérez Silva
University of Murcia

Ascensión Vicente
University of Murcia

Andrea Poza Pascual
University of the Basque Country

Antonio José Ortiz Ruiz
University of Murcia

Research Article

Keywords: dental trauma, tooth, hypoplasia

DOI: https://doi.org/10.21203/rs.3.rs-117127/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Children are vulnerable to dental trauma, especially in the first two years of life. The objective was to determine whether trauma in temporary teething causes alterations in the development of permanent teething. Searches were made in May 2020 using PubMed, MEDLINE, MEDES, Scopus, Lilacs, and Embase. Papers in English, German, and Spanish, without restrictions in the year of publication, were included. The quality of the studies was analyzed using the NOS Scale. The search retrieved 537 references, and 7 studies were included for a qualitative analysis. The results showed that trauma to a deciduous tooth can damage the bud of the permanent tooth. Enamel discoloration and/or hypoplasia were the most common sequelae in the permanent teeth after trauma to the primary predecessor. The type and severity of sequelae in the permanent tooth are associated with the development phase of the bud. Children with trauma of their primary teeth should receive check-ups until the eruption of the permanent teeth for the early diagnosis and treatment of possible sequelae. Intrusion of the primary tooth was the trauma that caused the most damage and enamel alterations the most frequent sequelae.

Introduction

Children are especially vulnerable to dental trauma, especially in the first two years of life, when they are starting to walk and socialize. The prevalence of trauma ranges from 4% to 33%\(^1\). Epidemiological data show that approximately 30% of children aged < 7 years have trauma in ≥ 1 temporary incisor, and about 40% of children go to the dentist for the first time due to dental trauma\(^2\).

Dental injuries have been recognized as an oral public health problem\(^3\). Trauma lesions are considered emergency situations as they require immediate attention and may have important medical, aesthetic and psychological consequences for children and their parents\(^4\).

Due to the close relationship between the apex of primary teeth and the bud of permanent teeth, any lesion to the temporary teething may influence the eruption of the permanent teeth\(^5\).

The severity of sequelae depends on the patient's age, the degree of root reabsorption, the type and extent of the trauma, and the degree of development of the permanent successor at the time of trauma. Intrusion and avulsion of temporary teeth are considered the types of trauma that have the most consequences in permanent teeth, according to various studies\(^1,3,6–8\).

The main consequences of primary tooth trauma in the development of the permanent teeth are enamel discoloration, enamel hypoplasia, coronal dilaceration, root dilaceration, odontoma-like malformations and alterations in eruption\(^5,8,9\). Constant follow-up, with complementary tests, such as radiographs, and appropriate clinical interventions, can minimize or even prevent damage to the successor tooth\(^10,11\).

The objective of this systematic review was to determine whether trauma in the primary dentition causes alterations in the development of permanent dentition.

The aims of the review were outlined using the components of the Patient, Intervention, Comparison, and Outcome (PICO) system\(^12\):

- P: The patient population (or problem) addressed were permanent teeth whose predecessors suffered dental trauma.
- I: The intervention or exposure of interest was the type of trauma to the primary teeth.
- C: The comparators were permanent teeth whose primary predecessors had not had trauma.
- O: The main result or end point of interest was complications in permanent teeth whose primary predecessor had had trauma.

Material And Methods

The review was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement on the publication of systematic reviews and meta-analyses\(^13\). The review was registered as CRD42019123188 at the Centre for Reviews and Dissemination, University of York, United Kingdom.

Criteria for study selection.

The review included articles describing case-control and cross-sectional studies whose authors linked trauma in the primary dentition to their consequences on the permanent dentition. Animal studies, clinical case studies, pilot studies, letters and literature reviews were excluded.

Search and item selection strategy.

Without specifying the language, we performed a detailed search in the following electronic databases: PubMed, MEDLINE, MEDES, Scopus, Lilacs, and Embase. The search time period was June 1972\(^14\) May 2020\(^15\). We used all terms related to dental trauma through the following search string, making modifications as necessary for the various database requirements: "primary dentition", "permanent dentition", "dental trauma", "dental injury", "root fracture", "dentin-enamel fracture", "enamel fracture", "avulsion", "intrusion", "dislocation", "subluxation" and "concussion".

Studies were selected in three phases (Figure 1). First, we considered only the title. Secondly, we considered the article abstract. If the abstract did not provide sufficient information to decide on study inclusion, we reviewed the full article before making a final decision. Articles written in languages other than English, Spanish or German were discarded. Thirdly, we considered the full text of the article. Two authors (C.S., L.C.) carried out the three selection phases.
independently and resolved disagreements by consensus. In cases where consensus was not reached, the authors consulted a third author (A.V) who helped reach consensus.

Data extraction and quality assessment.

The same two authors (C.S., L.C.) extracted data from the articles included and evaluated the quality of the studies using the Newcastle-Ottawa scale (NOS) and cohort studies. For cross-sectional studies, the NOS tool for cohort studies was used.

According to the NOS scale, each study may be assigned a maximum score of 9, based on 3 different categories, classifying the study as “high quality” if the total score is ≥ 7. In our review, we were able to assign a maximum score of 8 since, in the “comparability” category, we considered a maximum score of one point, rather than two, because the studies analyzed related the exposed and unexposed groups by population only, without considering other factors. Therefore, we determined that these studies had to reach a score of 6 to be classified as “high quality”.

For some categories we had to determine appropriate cut-off points for evaluation. All authors agreed the following points: (a) a minimum of 50 children (first item in the selection category) was established as a representative sample, (b) the radiographic test (first item in the results category) was established as a common register for all studies and (c) an appropriate follow-up period up to the eruption of the permanent successor to the deciduous tooth with trauma (second item in the results category).

Results

The search strategy yielded 537 articles: 201 from Embase, 179 from Scopus, 92 from PubMed, 22 from Lilacs and 43 from MEDLINE. No items were found in MEDES. After removing all duplicate items, 310 remained. After applying the selection criterion, we included 18 articles in the review (Fig. 1), including 13 cross-sectional studies, two cohort studies, and three case-control studies.

Quality assessment. Using the NOS scale for cohort and cross-sectional studies, we found that none of the 15 studies reached the maximum score of 8, but four with a score of ≥ 6 were classified as high quality (Table 1). Using the NOS scale for case-control studies we found that, although none of the 3 studies reached the maximum score of 8, they could be classified as high quality (Table 2). The remaining 10 studies were classified as low quality. Due to the lower evidence of the results in low quality articles, the systematic review only reports the results of the high-quality studies (Tables 3 and 4).
Table 1
Methodological quality for cross-sectional and cohort studies, assessed using the Newcastle-Ottawa Scale. *

<table>
<thead>
<tr>
<th>STUDY</th>
<th>COUNTRY</th>
<th>STUDY DESIGN</th>
<th>CRITERIA **</th>
<th>TOTAL SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Selection</td>
<td>Comparability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Von Arx and Colleagues, 1993</td>
<td>Switzerland</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Odersjö and Colleagues, 2001</td>
<td>Sweden</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Christophersen and Colleagues, 2005</td>
<td>Denmark</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sennhenn-Kirchner and Colleagues, 2006</td>
<td>Germany</td>
<td>Cohort</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Altun and Colleagues, 2009</td>
<td>Turkey</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Da Silva Assunção and Colleagues, 2009</td>
<td>Brazil</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ribeiro do Espírito Santo and Colleagues, 2009</td>
<td>Brazil</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Carvalho and Colleagues, 2010</td>
<td>Brazil</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Guedes de Amorim and Colleagues, 2010</td>
<td>Brazil</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cueto Urbina and Colleagues, 2012</td>
<td>Chile</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Soares and Colleagues, 2014</td>
<td>Brazil</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mendoza-Mendoza and Colleagues, 2014</td>
<td>Spain</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bardellini and Colleagues, 2017</td>
<td>Italy</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Silva de Amorim and Colleagues, 2018</td>
<td>Brazil</td>
<td>Cross-sectional</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

† Source: (Wells et al., n.d.)
‡ We used the following criteria to assess the methodological quality of each study: representativeness of the exposed cohort (1); selection of the nonexposed cohort (2); ascertainment of exposure (3); demonstration that outcome of interest was not present at the start of study (4); comparability on the basis of confounding control in the design or analysis (5); assessment of outcome (6); duration of follow-up period (7); and adequacy of follow up (8). An “X” represents 1 point contributing to the total score, which represents the level of methodological quality we found for each study. Determining the methodological quality is important for determining the validity of the study results.

Table 2
Methodological quality for case-control studies, assessed using the Newcastle-Ottawa Scale. *

<table>
<thead>
<tr>
<th>STUDY</th>
<th>COUNTRY</th>
<th>STUDY DESIGN</th>
<th>CRITERIA **</th>
<th>TOTAL SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Selection</td>
<td>Comparability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Andreasen and Colleagues, 1971</td>
<td>Denmark</td>
<td>Case-control</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Andreasen and Colleagues, 1972</td>
<td>Denmark</td>
<td>Case-control</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Machado Lenzi and Colleagues, 2018</td>
<td>Brazil</td>
<td>Case-control</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

† Source: (Wells et al., n.d.)
‡ We used the following criteria to assess the methodological quality of each study: adequate case definition (1); representativeness of the case participants (2); selection of control participants (3); definition of control participants (4); comparability on the basis of confounding control in the design or analysis (5); assessment of exposure (6); same methods for case control participants (7); and nonresponse rate (8). An “X” represents 1 point contributing to the total score. The total score represents the methodological quality we found for each study. Determining the methodological quality is important for determining the validity of the study results. Future researchers can note the placement of points for each study in this systematic review as a guideline for focusing the goals of future studies to increase the quality of the research on the topic.
<table>
<thead>
<tr>
<th>STUDY</th>
<th>STUDY PARTICIPANTS</th>
<th>MOST AFFECTED TEETH</th>
<th>KIND OF PRIMARY TEETH TRAUMA</th>
<th>MOST DAMAGING TRAUMA</th>
<th>TIME WHEN TRAUMA OCCURRED</th>
<th>AGE AT DENTAL EXAMINATION</th>
<th>CONSEQUENCES IN PERMANENT DENTITION</th>
<th>SEQUELAE PREVALENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Von Arx and Colleagues, 1992</td>
<td>114 children (70 boys, 44 girls) 255 traumatized primary teeth Aged 0–7 years old</td>
<td>Central upper primary incisors (n = 161, 63%)</td>
<td>Intrusion (15%)</td>
<td>Intrusion (54% of cases developed malformations)</td>
<td>Mean aged at the time of trauma was 3.6 years old</td>
<td>Mean aged at the time of re-examination 8.7 years</td>
<td>Enamel hypoplasia (68%)</td>
<td>23% (n = 33)</td>
</tr>
<tr>
<td>Altun and Colleagues, 2009</td>
<td>78 children (41 boys, 37 girls) 138 traumatized primary incisors Aged 12–48 months</td>
<td>Maxillary incisors (93.47%, with right central primary incisors accounting for 41.3%)</td>
<td>Intrusion</td>
<td>Intrusion</td>
<td>Most injuries occurred between ages of 13 and 36 months</td>
<td>Mean aged 22.32 ±9.72 months</td>
<td>Enamel hypoplasia (39 teeth, 28.5%)</td>
<td>53.6% (n = 74)</td>
</tr>
<tr>
<td>Carvalho and Colleagues, 2010</td>
<td>307 children (169 boys, 138 girls) 753 traumatized anterior deciduous teeth Aged between 0–10 years old</td>
<td>Right central primary incisor (35.2% T.I, 47.3% PI)</td>
<td>Intrusion (n = 221, 29.3%)</td>
<td>Intrusion</td>
<td>Children with ages from 1 to 4 years old were the most affected</td>
<td>NP</td>
<td>Discoloration of enamel T.I (11.7%, n = 15) PI (12.9%, n = 12)</td>
<td>68.8% (n = 84)</td>
</tr>
<tr>
<td>STUDY</td>
<td>STUDY PARTICIPANTS</td>
<td>MOST AFFECTED TEETH</td>
<td>KIND OF PRIMARY TEETH TRAUMA</td>
<td>MOST DAMAGING TRAUMA</td>
<td>TIME WHEN TRAUMA OCCURRED</td>
<td>AGE AT DENTAL EXAMINATION</td>
<td>CONSEQUENCES IN PERMANENT DENTITION</td>
<td>SEQUELAE PREVALENCE</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>------------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Mendoza-Mendoza and Colleagues, 2014</td>
<td>879 children</td>
<td>Upper central primary incisors (86.9%)</td>
<td>Subluxation (47.29%)</td>
<td>Intrusion</td>
<td>Most common age range for injuries in deciduous teeth was 1–3 years old</td>
<td>43 children: 1 year old</td>
<td>Hypoplasia (2 cases)</td>
<td>4.5%</td>
</tr>
<tr>
<td></td>
<td>191 had traumatic injury to the primary dentition (101 boys, 90 girls)</td>
<td>Intrusion (23.15%)</td>
<td>Avulsion (13.63%)</td>
<td></td>
<td>57 children: 2 years old</td>
<td>2 children: 3 years old</td>
<td>Hypomineralization (2 cases)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aged 1–7 years old</td>
<td>Lateral luxation (9.35%)</td>
<td>Extrusive luxation (5.9%)</td>
<td></td>
<td>42 children: 3 years old</td>
<td>2 children: 4 years old</td>
<td>Delayed eruption (2 Case)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hard tissue lesion (31.64%)</td>
<td></td>
<td></td>
<td>27 children: 5 years old or more</td>
<td></td>
<td>Others (2 cases)</td>
<td></td>
</tr>
</tbody>
</table>

* NP: Not provided
** NS: not significant
† T.I: Total intrusion
‡ P.I: Partial intrusion
Table 4
Summary of the high-quality case-control studies about consequences in permanent teeth after primary teeth injuries.

<table>
<thead>
<tr>
<th>STUDY</th>
<th>PARTICIPANTS</th>
<th>MOST AFFECTED TEETH</th>
<th>KIND OF PRIMARY TEETH TRAUMA</th>
<th>MOST DAMAGING TRAUMA</th>
<th>TIME WHEN TRAUMA OCCURRED</th>
<th>AGE AT DENTAL EXAMINATION</th>
<th>CONSEQUENCES IN PERMANENT DENTITION</th>
<th>SEQUELAE PREVALENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andreasen and Colleagues, 1971</td>
<td>T.G**: 103 patients, 213 traumatized primary teeth (n = 131)</td>
<td>Maxillary central primary incisors</td>
<td>Subluxation: 35 primary teeth</td>
<td>Intrusion (69%, n = 25)</td>
<td>62 children: 0 to 2 years</td>
<td></td>
<td>White or yellow-brown discoloration of enamel (23%)</td>
<td>41% (n = 88)</td>
</tr>
<tr>
<td></td>
<td>C.G**: Contralateral permanent successors</td>
<td></td>
<td></td>
<td></td>
<td>43 children: 3 to 4 years</td>
<td></td>
<td>White or yellow-brown discoloration of enamel and circular enamel hypoplasia (12%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 children, 33 teeth</td>
<td></td>
<td></td>
<td></td>
<td>88 children: 5 to 6 years</td>
<td></td>
<td>Crown dilaceration (3%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aged 0–9 years old</td>
<td></td>
<td></td>
<td></td>
<td>20 children: 7 to 9 years</td>
<td></td>
<td>Partial or complete arrest of root formation (2%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not disturbances (59%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main material: 487 children (251 boys, 236 girls)</td>
<td>Only anterior teeth were included</td>
<td>Luxations and fractures</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>Internal white enamel hypoplasia < 0.5 mm T.G: 19.7% N.T.G: 21.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T.G: 147 children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal white enamel hypoplasia ≥ 0.5 mm T.G: 19.0% N.T.G: 13.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N.T.G**: 340 children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal white and yellow-brown enamel hypoplasia</td>
<td>T.G: 2.7% N.T.G:1.8%</td>
</tr>
<tr>
<td></td>
<td>C.G: 111 children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External white enamel hypoplasia T.G: 3.4% N.T.G:2.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(51 boys, 60 girls)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External white and yellow-brown enamel hypoplasia</td>
<td>T.G: 5.4% N.T.G:0.6%</td>
</tr>
<tr>
<td></td>
<td>Aged 9–17 years old</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White and/or yellow-brown discoloration of enamel and horizontal enamel hypoplasia</td>
<td>T.G: 2.0% N.T.G:0.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Generalized internal or external white enamel hypoplasia T.G: 5.4% N.T.G: 5.3%</td>
<td></td>
</tr>
</tbody>
</table>
In most studies, researchers reported the results as prevalence rates with a P value when there were significant differences. Andreasen et al. 5 between the type of trauma and the patient’s age at the time of trauma, with the consequences on permanent teeth being less frequent when trauma occurred in children aged > 4 years, results similar to those of Lenzi et al. 10. Other studies found no significant relationship between the time of intrusion and sequelae in permanent dentition. 6,11
The prevalence of permanent tooth alterations ranged from 4.5%1 to 68.8%11, the most common being tooth enamel defects. Although many of the articles studied the consequences in both sets of teeth, we focused only on the consequences in permanent dentition.

Consequences in permanent dentition in high quality articles.

Hypoplasia and/or hypocalcification were the most common malformations in permanent teeth in all studies1,5,6,10,11,18 especially after intrusion or avulsion. They included enamel discoloration, which ranged from white to yellow-brown, and defects of the enamel surface17. These lesions may be caused by environmental causes or genetic factors, emphasizing the need for a control group in studies10.

Alterations in eruption were much less common than enamel lesions1,11. In the study by Altun et al5, ectopic eruption was observed as a single sequela in 23 teeth and combined with other sequelae in 7 teeth.

Coronal or root dilaceration was rare or infrequent1,5,6,11. Alterations in the development of the remaining teeth involving the crown occurred more frequently than those in which the root was involved6,17.

Hypomineralization. Only one study mentioned two cases of hypomineralization due to injury to deciduous tooth1.

Odontoma was rare or uncommon and was only observed in groups who had trauma, indicating a direct relationship10.

Discussion

The results indicate the need for further quality studies on the involvement of the permanent successor tooth following trauma in the primary dentition, since we were only able to include 7 of the 18 studies as high quality according to the NOS scale.

The most common study design was cross-sectional. This is a type of observational study and therefore does not provide the same level of evidence as randomized controlled trials, although in some aspects of dental trauma, such as that dealt with by our review, randomized trials are not possible.

We found differences in the study designs analyzed, the type of trauma analyzed, the age of the participants, the follow-up time, etc. Because of this heterogeneity between studies, we were unable to perform a meta-analysis. Instead, we validated the studies based on selection criteria, comparability, and the measurement of results according to the NOS scale (Tables 1 and 2).

Of the seven high quality studies only three had a control group5,10,18. There was a majority of observational studies and the lack of a control group could have influenced the results, as the alterations in permanent dentition observed may be due to other causes (molar incisor hypomineralization, amelogenesis imperfecta, fluorosis, or dilaceration, which may be idiopathic), and not only because of the trauma in the primary dentition. A control group design would therefore be more appropriate and present fewer biases10.

Machado Lenzi et al10 found that permanent teeth whose preceding primary teeth had trauma had a much higher risk of alterations when compared to the control group: 28.9% of the permanent teeth in the trauma group had alterations, while the prevalence of defects in the control group due to other causes was 7%. Andreasen et al18 found a high frequency of alterations in the group without previous trauma, suggesting there are non-traumatic factors involved in the etiology of these changes. However, the same authors also stated, in another study, that a non-trauma etiology probably does not explain more than 3% of the alterations5.

The objective of this systematic review was to determine whether evidence in the literature that trauma in primary dentition causes alterations in the development of permanent succession teeth.

Any trauma to a primary tooth can damage the bud of the successor permanent tooth17.

Discoloration of the enamel and/or hypoplasia were the most common sequelae in permanent teeth following trauma to its deciduous predecessor1,4–8,10,11,17,21. Several studies found that the predominance of enamel hypoplasia versus other developmental alterations is due to the fact that it can be caused by less severe trauma in primary teeth10,17.

Most mineralization defects are located in the incisal half of the central and lateral incisors. In adjacent teeth, discoloration of the enamel may occur after being indirectly affected due to bleeding of the traumatized tooth10,17.

The type and severity of sequelae in the permanent teeth were associated with the developmental phase of the bud. When the studies considered the development of the permanent tooth at the time of the injury, discoloration of the enamel appeared to occur in the early stages of the formation of both the crown and the root, while enamel discoloration associated with hypoplasia was only found in teeth injured during the formation of the crown5,6. Severe trauma to the permanent tooth bud at an early stage of odontogenesis may lead to complete deformation of the tooth, causing an odontoma-like formation10.

Involvement of the crown occurred more often than root involvement or alterations in eruption. This may be attributed to the close relationship between the deciduous tooth root and the permanent tooth crown, and the fact that most traumatic injuries occur between one and four years of age, during the development of the permanent crown5.
Some studies found that the types of trauma that cause the most sequelae are intrusions, followed by avulsions. Von Arx et al. found that more than half of cases with intrusive luxation developed permanent tooth malformations, but found no alteration of the permanent tooth in any case of coronoradicular fracture. Andreasen et al. injury to the permanent tooth is evident, since the socket is fractured or compressed. In the case of avulsion, the slight rotational motion caused by the root curvature may injure the tissues that separate the temporary tooth from the bud of the developing permanent tooth. Fracture of the alveolar bone, in addition to the dental injury, significantly increases the frequency of subsequent alterations in the permanent teeth.

Other studies, such as those by Guedes de Amorim et al. and Ribeiro do Espirito Santo et al., found no significant relationship between the type of trauma and the consequences in the permanent teeth.

Due to their position in the dental arch, the upper incisors are the teeth most affected by trauma. They are the most exposed teeth, especially in cases where they are protruding or there is lip incompetence. The next most affected teeth are the upper and lower lateral incisors, and the upper canines, albeit with a large statistical difference.

Reports show that the severity of sequelae varies depending on the child’s age. Several studies analyzed the relationship between the child’s age at the time of trauma and sequelae in permanent teeth. Damage secondary to trauma appears to be considerably greater when it occurs at a younger age. Studies report a higher percentage of permanent teeth abnormalities in patients aged <2 years at the time of trauma. A high risk of sequelae in this age group may be associated with incomplete bone and permanent teeth. According to Von Arx et al., except for enamel discoloration, all other types of developmental alterations were, to some extent, correlated with the time when the lesion occurred in the primary teeth. The fact that enamel mineralization maturation continues until the time of eruption explains why enamel discoloration may affect all age groups.

Machado Lenzi et al. also found a lower prevalence of sequelae in children aged 5–7 years, while no 8-year-old with trauma presented sequelae.

Epidemiological studies of dental trauma provide important data on prevalence and associated factors, which may aid the development of clinical action and prevention protocols. Early treatment of trauma helps avoid further consequences on the tooth involved and its successor.

Conclusions

Children with dental trauma of the primary teeth should receive check-ups for the diagnosis and treatment of possible sequelae until the eruption of the permanent teeth.

The frequency of revisions will depend on the severity of the dental trauma, being more frequent the greater the severity. Intrusion is the trauma that causes the most damage and alterations in enamel development the most frequent sequelae.

References

Figure 1

Studies were selected in three phases (Figure 1). First, we considered only the title. Secondly, we considered the article abstract. If the abstract did not provide sufficient information to decide on study inclusion, we reviewed the full article before making a final decision. Articles written in languages other than English, Spanish or German were discarded. Thirdly, we considered the full text of the article. Two authors (C.S., L.C.) carried out the three selection phases independently and resolved disagreements by consensus. In cases where consensus was not reached, the authors consulted a third author (A.V) who helped reach consensus.