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Abstract

Calculating the magnitude of treatment effects or of differences between two graipscommon

task in quantitative science. Standard effect size measures based on differences, such as the
commonly used Cohen's, fail to capture the treatment-related effects on the data if the effects were
vis & (o § C sz vSE o S v ovdl XonparamairicSmeapkure oV effect size
obtained as the sum of two separate components and includes (i) the chauige ¢central tendency

of the group-specific data, normalized to the overall variability, aindtliie difference in the
probability density of the group-specific data. Results obtained on artificial data anurieah
biomedical data showed that impact outperforms Cohen's d by this additiomabaoent. It is

shown that in a multivariate setting, while standard statistical analyses and\Cjohe & v}§ o §}
identify effects that lead to changes in the form of data distributidimpact_correctly captures

them. The proposed effect size measure shares the ability to observe such an effeatagitime
learning algorithms. It is numerically stable even for degenerate distributions consistgiggular

values. Therefore, the proposed effect size measure is particularly well suited for data science and

artificial intelligence-based knowledge discovery from)higl heterogeneous data.



Introduction

Calculating the magnitude of treatment effects or group differences is a commomtagiantitative
biomedical science [1Effect sizes allow the quantification of the influence of independent variables
(features) on dependent variables (e.g. treatment results) [2]. They are also useful to describe
associations between features [3]. Several measures have been proposed and their use in biomedical
research remains an active research topic [3]. Among the most commonly used measures are
difference-based effect measures, among which Cohen's d [4] is frequently reported in the
biomedical literature. Since these measures are based on the difference in the central tenitheycy

do not indicate an effect if this parameter does not change. However, this means thatgaoeral
treatment-related effects on the data cannot be recorded if the effects are not reflected in the

central tendency.

For example, due to an action that changes a known and neutrally evaluated object, thetschje

split into two opposing parties who either welcome or reject the change. Althougiméremn values

of the evaluations before and after the action are similar, clearly visible group differencesecan
observed in different data distributions (Figure 1). While some of the liroitatiof Cohen's d's
original proposal [5] have been addressed in modified effect size measureasudbdges'g [6] or

"o ¢e+—{7]4these measures continue to focus on the central tendency and will not capture the
described effect. In contrast, a non-parametric comparison of the structure of the data niigltaal

more adequate quantification of an effect or a group difference.

We propose a novel effect size measure, called "impact", which captures effects a change the central
tendency of the data as well as effects that change the shape of the data distribution. ajpis m
increase its usefulness as a generic effect size measure for the initial exploration eofatadg

extensive data sets and provide a unifying description of effects on maffigredit and



heterogeneously distributed variables. Since typical two-class problems such athyheal"sick"

occur in biomedical research, an effect size measure that compares two groups is largely applicable.

Methods

Impact effect size measure

Design criteria for the proposed measure of effect size were, first, that the measure should not be
parametric. Secondly, the measure should be invariant to the scaifigh X and translation¢y[ A y

+ g of the dataX Third, if the changes in the probability distributions are negligible, it shmflect

only the change in the central tendency. Fourthly, changes in probability distrisushould be
recorded as consequences of treatment and, finally, the measure should be numerically stable,

especially if the variances of data $ébr its subgroups disappear.

Impact(X1, X2Qefines an effect size based on the difference in central tendency between two
groups or experimental condition¥1andX2, as subgroups of a data setL <s , :t = ‘tmpact_is

the sum of two separate measures of the effects comprising (i) the change in the centtahty of

the group-specific dataCTdiff(X1,X2hormalized to pooled variability and (ii) the difference in
probability density of the group-specific data, called morphic differeMmphDiff(X1,X2) Let

deltaM(X1,X2yenote the difference of the medians in the two subgroups,

@AHPsA:tLIA@B:t;FIA@E=J::s; Equation 1
and
%o (~Fe Equation 2

v}S SZ % &} Jo]SC ]-S Edicyidtgdeniricaly by a suitable estimation such as

the Pareto density estimation (PDE) [8]. The central tendency difference is then defined as
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%6 ®H A& N5afe: Equation 3

with GMD(X1,X2enoting the expected value of absolute inner difference&invhich has been
derived from'Jv][e u v ](([9 This has been shown to be an appropriate measure of the

variability of non-normal distributions [10] and is defined as
)/&::;L?S_A%@éé@s'ﬁF'l} Equation 4
with
OMNMMR ::s;5E)/&::t;5, EBB=Ns;Pr =J@ 8=N::t; Pr
)/&::s&:tLP )/&::;EB8=Ns;LrKN8=Nt;Lr; =J@ 83Rr Q
YEB=N;Lr SEPDrO Y's

Equation 5

The morphic difference describes the differences in the pdf¥Iénd X2 including a directional

factor related to the change in the centre of gravity c of the two pdfs

?PC@sa:tL e<%oe%; F?2C:t;; Equation 6
where cg(X) denotes the center of gravity of X.

IKNLD&EBB:tL ... %dat; ®: L@:Bt; FL@:Bs;; Equation 7

“rhpact_is then the sum of the central tilt difference and the morphic difference, which by its

definition fulfills the above mentioned design criteria:

+IL=2Ba:tL %6 @EBB:tE/KNLD&EBB::sa:t; Equation 8



Data sets

To evaluate the properties of the proposed effect size measure, to compare its results wathaho
Cohen's d and to assess its usefulness for two-class comparison problems, Brtifenairated and

empirically collected biomedical data sets were used, which contained all two groups.

Thefirst data set(Figure 1) was created with the property that both groups have the same means.
Six subsets were created with n = 2000 points, unless otherwise specifediXij= 1000 and i =

[X2]= 1000. The first subset had the property that the means and variances were the sdméhin
groups. The effect of an assumed treatment is that a standard unimodal normal distnit{ti{o,1))

is changed to a bimodal distribution containing 50 % of the dataéh eade. The second and third
subgroups were essentially the same, but contained 80 % of the data in ode amal 20 % in the
other mode. The data subset threg Was the data set twozXmirrored on the y axis:2X -%. The
fourth subset of data consisted of a standard normal distribution foantl a Gaussian distribution
with the same mean but with a standard deviation of four (N(0.4)). The fighafd sixth (¥ data
subset consisted of a normal distribution in one group and a chi-square distribin the other

group, with the same mean as the Gaussian distribution, and with X%.

The second data set(Figure 2) comprised subsets of two groups of n = 100 each, which were
generated to compare the impact with Cohen's d in different scenarios. Data sets were created in
which (i) both groups contained only a single value, a single value per braugfferent between
groups, different values but identical in both groups, different values but oalyiglly divided
between groups, the values from the previous subset multiplied by 10, or a consthgt m one
group and normally distributed values with a different mean in the other grbupddition, the data
set included data subsets with (ii) groups with the same mean but increasing variancegroape

but not in the other, and (iii) groups with the same variance but increasiegnnn one group but



not in the other. d Z § o35 A pe (}JE& A% EJu vS8e }u% E]JvP }EE o §

}Z v |[eFigure 3.

A third data set (Figure 4) was created to examine the properties of Cohen's d conipaitesl

] pact_measure for their behavior iamachine learning context (see experiments). It contained d
= 20 variables (characteristics) with group sizes ofnn = 1000. Ten variables were created as
standard normal distributions (N(0,1)) using the same random number generatof fatalsubsets.
The differences in these subsets should give values around zero in all effectrewedsve variables
consist of a subset drawn from a standard normal distribution, the other subsetsdvane from a
Gaussian distribution with mean = 3,...,7 and unit variance. For these variables, thenedfemires
should be significant and proportional to the difference in mean values. The lasthiwacteristics
consist of a subset drawn from a standard normal distribution, the other subsetsdrvanen from a
bimodal distribution, so that the mean value of these subsets is zero, i.e. noeliartge mean
values between the two subsets, but with significant and increasing changgeimprobability
distribution. An appropriate sorting of the characteristics in this data setescenhding order of
absolute effect size should be 15,...,11 (i.e. differences in the central tendency), then the variables
numbered 20,...,16 (differences in pdf) and then any order of variables 1 to 10 dnificsint

differences in the subsets).

A fourth data set (Figure 5) consisted of biomedical data obtained in a hematological context. It
comprises eight different immunological markers associated with the diagnosisiphbma from a

flow cytometric panel-based blood analysis. The measurements consist of a stibset1,494 cells
from healthy volunteers and a second subset of n = 1,302 cells fromhtymgp patients. Cell surface
molecules that provide targets for the immunophenotyping of the cells, i.e, CD&, CD8, CD11,

CD19, CD103, CD200 and IgM, were used as measurement parameters.



Experiments

The evaluations of Impact's features and its usefulness for feature selection werariprim

performed with the R software package (version 3.6.1 for Lihtig;//CRAN.R-project.org[11]) on

an Intel Core i9® computer running Ubuntu Linux 18.04.3 64-bit).

Data set 1(Figure 1) was used to show the differences between Cohen's d and ImaitfinT his
data set consists mainly of subsets, with no differences in the central tendency, bgmiicant
change in the shape of the distributions of the subsBtata set 2(Figure 2) was used to check the

numerical stability of the effect measures.

Data sets 2 and 3were used to evaluate the effects identified by "Impact” and Cohen's d in a
comparison scenario of machine learning and classical statistics, with the aim of raakaiges
according to their suitability for mapping group differences reflected in a shift in the central tendency
or in a change in the form of the data distribution. A ranking of 20 cheriatics ofdata set 3
(Figure 4) was made with regard to their differences between the groups. For eaablearbth
Mmpact_and Cohen's d were calculated. The variables relevant for group separation were then
picked by applying an item categorization technique to the calculated effect sizes of each
characteristic. This was implemented as a computed ABC analysis that met the basic requirements of
feature selection by filtering techniques [12]. The method easily scales to rydhmensional data

sets, is computationally simple and fast and independent of the classificatioritalg. The ABC
analysis aims at dividing a data set into three disjoint subsets named "A", "B" and "C". The set "A"
should contain the "important few", i.e. those elements that allow a maximigtdyo be achieved

with minimum effort [13, 14]. The ABC set B includes those elements where the indnegigert is
proportional to the increase in yield. The set "C", on the other hand, contains fir@l'tmany"”, i.e.

those elements with which the yield can only be achieved with a disproportioniatejg additional

effort. In the calculated version of the ABC Analysis, the set limits are determined by mathematical

8


http://cran.r-project.org/

calculations performed with the R-package "ABC Analysis'http:fcran.r-

project.org/package=ABCanalygls]).

Subsequently, the variables selected on the basis of a computed ABC analysis of thefVaipast

or Cohen's d were used in classification tasks. First, classification and regressiofC&&ss ) [16]
were created with variables as vertices, conditions on these variables as edges and classes.as leav
In the present form, the Gini impurity was used to find optimal (local) dichotmmdecisions.
Additionally, a random forest classifier [17, 18] was trained. This generates setdfavéerdi
uncorrelated and often very simple decision trees with conditions on featasegertices and classes

as leaves. The distribution of the features is random and the classifier refers to tbatynepte for

class membership. In the present analysis 500 decision trees were created consgjin{dyfeatures

as a standard of the R-library "carelitifps://cran.r-project.org/package=cargi9]), which was used

together with the R-library "doParallel'hifps://cran.r-project.org/package=doParallg§R0]). The

default settings were considered sufficient for the present demonstration purpose, ar@ sin
elsewhere [21] it was found that there is no penalty for "too many" trees, theofisker-adaptation

was considered low.

The classification tasks were performed in cross-validation runs using 100Atwite-Carlo [22]
resampling and data splitting into non-overlapping training (2/3 of the data)test data (1/3 of the
data). Classification performance was primarily evaluated as balanced accuracy [23, 24]. Other
secondary measures of average classification performance were test sensitivity and $peaifiti

negative and positive predictive values calculated using standard equations [25, 26].

The variable selection and the subsequent classification experiments with data set 3 were péerform
twice, once with all 20 variables as candidates for selection based on a calculated &5 amd
again with omission of variables 11 to 15 (third row of panels in Figuree. all variables, since the

central tendency varied considerably between the groups. To compare the data science-irdgsrmati

9
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based approach with a classical statistical approach, i.e. performing an analysis of vésiance
repeated measurements (rm-ANOVA) with "measurements”, i.e. the 20 variables, as the inter-theme

factor and "group" as the inter-theme factor. The focus in this artificial data set was on fiig abi

the statistical procedure to detect significant group differences on the basis oaralbles or the

E u *«3}(AE] o°+UA]83Z 8Z oA o }(re+38 §iXiAX dZ3Z o po §]
SPSS software package (version 26 for Linux, IBM SPSS, IBM Corp, Armonk, NY, USA,;

https://www.ibm.com/analytics/spss-statistics-software

Finally, experiments with the biomediaddta set 4(Figure 5) were carried out analogously, although
no predefined subsets as in data set 3 were excluded. In particular, the performance of GART an
random forest classifiers when trained with variables selected on the basis of either Cohan's d o

Impact was compared.

Implementation

The implementation of the impact effect size measurement in the R library "ImpactEffectsize"

(https://cran.r-project.org/package=ImpactEffects)zases the PDE of our R package "AdaptGauss"

(https://CRAN.R-project.org/package=AdaptGa(®g]). The effect size can be calculated with the

Impact(Data,Clsjunction. The input is expected to be a data vecata, and a bivalent integer
vector of class informatiorCls The output consists of all values calculated when the effect size was
estimated. The user can display the distributions of the data using either tie dPx standard
density estimation provided as an R-core function. The library uses addifionctions provided in

the R packages ‘RcppAlgos (https://cran.r-project.org/package=RcppAlgo$28]), “aTools_

(https://cran.r-project.org/package=caTools [29]), MatrixStats _ (https://cran.r-
project.org/package=matrixStats  [30]) % parallelDist_ [31] https://cran.r-

project.org/package=parallelD)st

10
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Results

Scaling and stability of effect sizes

The first data set served for introductory purposes and was intended to show that Impachize®g

an effect where Cohen's d leads to values close to zero (Figure 1). The réthitsecond data set
(Figure 2) show that Impact (i) provides values where Cohen's d is not defined, such a®scenari
where the data in one or both groups have a variance of zero, (ii) Impact scales pnoglkyrtio
Cohen's d, and (iii) Impact is scale-invariant, i.e., it gives the same value whalube of a data set

are multiplied by only one factor.

Data set 3 provides information on the relationship between Cohen's d andchmphat is, var0011

to var0015 represent an increasing effect on the differences in the group mean values. daséhjs
Cohen's d and Impact are perfectly correlated (Pearson correlation [32] ceeffick 0.998; Figure 3
middle panel). The variables var0001 to var0010 of data set 3 were obtaingpausamdom number
generator that produces standard normally distributed numbers. Therefore the effects should be
insignificant, i.e. around zero. Cohen's d yields absolute values less thdor Qtfese variables,
which for a small effect is below the proposed limit of d = 0.3.[B3s noteworthy that in this case
too, Cohen's d and Impact are proportional (Figure 3 left panel). The varia@816 to var0020 of
data set 3 show no change in the central tendency, while their distribution undergigedicant
changes. For all these characteristics, however, Cohen's d does not take Impact to zenanedns

that Cohen's d, unlike Impact, does not capture these effects (Figure 3, right panel).

Recognition of group differences with effects on the central tendency or on tils&idution form

The use of Cohen's d to point to group effects in the d = 20 artifigaltgrated variables of data set
3 resulted in an ABC set "A" containing only variables in which the groupeditfg a shift in the

central tendency (middle line of the panels in Figure 4). In contrast, when Impactisedsas the
11



basis for item categorization, the ABC set "A" contained additional variablefigh the groups
differed in the form of the pdf but had the same mean value (variables v&0@4r0019, and
var0020 in the bottom line of the panels in Figure 4). The training of B&RT and random forests

allowed a correct classification at equal performance with a median accuracy of 100 %ljTable

The picture changed when all variables in which the groups differed by a shift in the ¢tenti@hcy

were omitted. Cohen's then provided a rather random set of characteristics for the &B@'"s
(variables var0001, var0004, var0008, var0009) from the variables that designed to show no
group differences but a random variation between groups. In contrast, imdtapased selection, all
variables with the same means but different forms of the distributions were asdige members of

ABC set "A". As expected, training CART and random forests with the respective setshtds/bad

to a complete failure of classification for the variables selected on the basishehSad (median
classification accuracy 50 % similar to guessing), whereas correct classification was almost gomplete
possible (median classification accuracy 99.8 %) with the variables having siedlss but different

forms between the groups selected on the basis of the measure of impact effect size (Table 1).

For comparison, the classical statistical approach could, as expected, detecipadifference when

the full set of variables was available (Table 2). In contrast to the artificialigetete-based
approaches (random forests, CART), which had no problems separating the groups due to tbfe form
data distribution, the analysis of variance could not detect the group differenadyifv@riables with

the same central tendency were available, i.e. those with a group shift in the mesnoratted
(Table 2). The same was achieved by using several t-tests [34], which ordysigaificant group
differences for the variables with median shift but nut with the same mean but shape diffesen

(details not shown).

The use of Cohen's d to identify most of the group discriminating variables athend = 10

immunological markers of data set 4, related to lymphomas (Figure 5), rdsunltan ABC set "A"

12



containing CD8 and CD103. The classification accuracies obtained with CARIDmor farest based
classifiers were between 69 and 66 % (Table 3). When using Impact to identify the group
discriminating variables, a third marker CD4 was selected in addition to the awicens, also based

on the value of Cohen's d. This third marker increased the balanced classification accunac by

10% from the marker set selected on the basis of Cohen's d to 71-75% (T.able 3

Discussion

The processing of large amounts of data in the life sciences often implies a larggemwe.qg.
thousands of variables. In such an environment, visual inspection or manual analysisacbhbles

for their suitability to quantify treatment effects or group differences is not felasiThis increases
the need for robust calculations that are defined even in extreme cases, e.g. when the earidnc
subsets deteriorate to zero. However, the popular Cohen's d measure for effecs sinddfined in
this case and an algorithmic implementation of Cohen's d would yightegiictable values. This is
unacceptable if a measure of effect size is to be used for feature selection, that is, thtosetdé@
few relevant features from a large corpus of mostly irrelevant candidate features. Furtherino
order not to miss any important effects, as shown in this report, more than a comparistire of
mean values of the untreated and treated subgroups to which the Cohen'd measure is ligited

required.

An effect size measure is presented that captures changes in the central tendencies as well as
changes in the forms of data distribution. This is missed with the classical effect size medmn's Co

d. Demonstrations on artificial data and empirical biomedical data from real measuatenhave

shown that this additional property allows Cohen's d, as a typical classical effechesdzeire, to
outperform Cohen's d in the assessment of group differences when the global form of data

distribution is more relevant than the central tendency.

13



Impact regards the difference in central tendency as one of its compon@nidiff. The morphic
difference MorphDiff) as the second component takes into account changes in the shape of the
distribution. The scaling of these two components was chosen so that the absolute valthes of
CTdiffare unbound, while thorphDiffis between -1 and 1, which means that for large effect sizes
the Cohen's d style of effect size measutd diff dominates in the calculation of the Impact. If the
effects are small, i.e. the (normalized) central tendency is in a range from -1 to 1, the enorphi

difference in the effect size measure becomes more important.

Within these limits, it has been shown that Cohen's d is not able to detect effectsgRFgight),
while Impact is proportional to the amount by which the distribution has changeg@icdly
implementations of Cohen's d use the pooled variance for two subgroups [3byeudr, when this
pooled variance is used, it makes the calculation of Cohen's d dependent on theersiaég of the
two subgroups. The variance of the larger subgroup will dominate the pooled varantds
therefore crucial for unifying the central tendency. Impact, however, is completdgpendent of
the sizes of the two subgroups (treated versus untreated). This is particularly advantafjéoeis

treated group of patients is small.

Effect size measures, if not used for feature selection, are a basis for metaesadlynot reported

in the original publication, they are usually estimated from the reported measurescmtfat
tendency and variance. This can be achieved in a similar way for thesewpneasure, i.e. the
impact can be estimated from the parametric information on the variance. Howevenngysmiss

the difference in the shape of the distribution. Ideally, the original data ardadlaithat allow the

form of the distribution to be estimated, including possible multimdgahat is not covered by the
standard statistical measures usually reported in scientific papers. A very clear example {Table 2
showed that in some cases typical statistical analyses such as ANOVA with repeated measurement

are not able to detect differences in groups where a machine-learned classifierohdi$fiaulty in

14



doing so. Therefore, the proposed effect size measure is directed more towards a data sciénce an

machine learning context than statistical data analysis.

Conclusions

An effect size measure is proposed that, first, is robust to any type of datébdigin and, second,
believes that a treatment can have complex effects on the measured characteristics, either on the
central tendency or on the shape of the distribution, or on both. However, the estadlishe
characteristics of the Cohen's d remain intact when using the newly defined effectreasure
"impact’. Based on artificial and real empirical data, it was shown that a purely algarithm
procedure for feature selection can be used to find the most relevant features of data sets with this
new effect measure. Furthermore, the present experiments clearly show an advantage of the
machine-learned algorithms and the prosed effect size measure over classical statisticeésanaly

the standard Cohen's d-effect size measure for capturing complex treatment effects or group
differences. Impact has been shown to outperform Cohen's d and other statistical tools for data

analysis.
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Table 1 Performance measures of classifier% % 0] 5} « &« }( A E] o0 + » 0 § e Jv 38Z uPv]dpe 3( (B E YD vipEEX:
Two different machine-learned methods (classification and regression trees (CART) ad farests RF were applied on artificially created data comprising

two groups with sizes of n = 1000 and d = 20 variables (var0001 20areigure 2). Of these variables, in var0Q04ar0010 the means and variances were

randomly jittered between the two groups (upper two lines of panels in Figure 2jgriables va0011 var0015 the means differed substantially between

groups (third line of panels in Figure 2), and in var0®1&r0020 the groups had the same mean but one group the data was $piltnia distinct modes

whereas in the other group the data varied around the mean (bottom line of pandiginre 2. Results represent the medians of the test performance
measures from 100 model runs using random splits of the data set into training data (& ddita set) and test data (1/3 of the data set).

_ 00 % E u § EeeFigure 4i- Reduced set of parameters [¥, i i U i 0,20Y(seeFigure 4

YZ v Impact YZ v Impact
Selected features 11, 12, 13, 14, 1¢ 11, 12, 13, 14 1,4,8,9 16, 17, 18,19 20
(Var00..) 15, 18, 19, 20
CART RF CART RF CART RF CART RF
Sensitivity, recall 100 (99.1 100) | 100 (100 100) 100 (99.1 100) | 100 (100 100) 58.6 (8.3 100) 50.3 (44.7 - 55.6] 100 (99.7 100) | 100 (100 4100)
Specificity 100 (100 4100) 100 (100 100) 100 (100 4100) 100 (100 100) 41.7 (0 - 89.8) 50.3 (45.1 - 54.7] 99.7 (99.1 100) | 100 (100 4100)

Pos. pred. value, precision, 100 (100 -100) 100 (100 100) 100 (100 100) 100 (100 100) | 50 (44.6 53) 50.2 (47 - 53.4) | 99.7 (99.1 100) | 100 (100 4100)

Negative predictive value | 100 (99.1400) | 100 (100 100) 100 (99.1 100) | 100 (100 100) | 50.1 (47.3 -55.8) 50.2 (47.3 - 53.2] 100 (99.7 100) | 100 (100 100)

F1 100 (99.5100) | 100 (100 400) | 100 (99.5400) | 100 (100 100) | 53.9 (13.9 - 66.7) 50.2 (45.8 - 53.9] 99.8 (99.5100) A 100(100 -100)

Balanced Accuracy 100 (99.5100) | 100 (100 4100) 100 (99.5100) | 100 (100 4100) | 50 (47.3-53.1) | 50.2 (47.2 -53.3] 99.8 (99.5100) | 100 (100 100)

AUC ROC 100 (99.5100) | 100 (100 4100) 100 (99.5100) | 100 (100 4100) | 50 (47.2-53.4) | 50 (47.2-53.4) | 99.8 (99.5100) | 100 (100 100)




Table 2 Results of an analysis of variance for repeated measures (rm-ANOVA) appliethento
artificially created data set comprising two groups with sizes of n = 1060dan 20 variables
(var0001 - var0020, Figure 2). Of these variables, in var@9@10010 the means and variances were
randomly jittered between the two groups (upper two lines of panels in Figure 2), in variables va0011
t var0015 the means differed substantially between groups (third line of paméiggure 2), and in

var0016t var0020 the groups had the same mean but one group the data was spilt intdistinct

modes whereas in the other group the data varied around the mean (bottom line ofgan€igure

2).

rm-ANOVA 00 % E u § E(seeFigyredi- | Reduced set of parameter:

effects | €1UIVUToRDY(seeFigured
df F p df F D

Measure 19,3796 735.878 <6.65|1024 | 14,2792 0.139 1

Measure * Class | 19,3796 736.578 <6.65|1024 | 14,2792 0.228 0.999

Class 1,1998 917.764 3.23 1026 | 1,1998 0.001 0.978




Table 3Performance measures of classifiers applied to variables selected based on the magnitude of

13Z & }Z v[e }E 3Z Ju% § (( § different maphiBe-}earded} methods
(classification and regression trees (CART) and random foRBta/¢re applied on biomedical data
of a hematological context comprising a flow cytometry-based lymphoma reakB8, CD4, CD3
CD20Q CD11 CD20, IgM , CD19, and CD103 (marker names truncated for nosudésceasons)
from healthy subjects and patients (Figure 5). Results represent the medians of the test perderm
measures from 100 model runs using random splits of the data set into traiabag(2/3 of the data

set) and test data (1/3 of the data set).

Selected features

CD8, CD103

CD8, CD4, CD103

CART

RF

CART

RF

Sensitivity, recall

69.1 (51.4 - 82.6)

67.3 (57.6 - 73.1)

71.4 (61 - 80.1)

75.7 (67.8 - 81.9)

Specificity

70.5 (51.5 - 81.3)

64 (56.7 74)

69.7 (61.6 - 79.7)

74.2 (67.7 - 81.3)

Pos. pred. value, precision

69.9 (64.1 75)

66.1 (61.4 - 68.9)

71.6 (68.3 - 75.4)

75.5 (72.4 78)

Negative predictive value

69.4 (64.5 - 74.3)

65.6 (61.1 - 69.7)

71.4 (67 - 74.3)

75.3 (72.3 - 77.3)

F1

69.3 (58.9 74)

66.6 (60.1 - 70.5)

72 (64.9 - 76.3)

75.5 (70.7 79)

Balanced Accuracy

69.1 (65.6 - 71.3)

65.6 (62.6 - 67.9)

71.2 (68.5 - 73.2)

75.1 (72.8 - 76.8)

AUC ROC

70.7 (65.6 - 73.8)

70.8 (67.8 - 73.5)

71.1 (68.8 - 73.3)

82.7 (80.4 - 84.2)




Figure 1 Example cases where the two samples (red and)uddisplay no differences in mean but
possess clearly different data distributions (data setThe plots show the probability distribution
function (pdf) of the data (ordinate) along the ddterange (abscissa). The perpendicular lines
indicate the means for both data subsets. The colors correspond to the samptmlpd$. Please
note that the means are numerically identical but have been optically separatazhé pixel. The
figure has been created using the R software package (version 3.6.1 for hiu¥CRAN.R-
project.org/ [11]) using the 4 % | P ImpattEffectsize.

(https://www.kgu.de/zpharm/klin/research/ImpactEffectsize _0.1.0.tar.@RAN upload pending

w0
S 7| cohen'sd = 0.015, 2 | 1 Cohen’s d = -0.002, 2 _| Conen'sd=0.002,
Impact = -1.045 = i Impact = -1.287 = Impact = 1.287
1
i
e i w0
& &
= i =
h
i
o i
prl | Q i o
=] & 4 1 ]
= " =
z z : z
= = " =
z z z
2 3% | g2
£ e = 2 e
@ o ] &
i
g1 g : g
= = 1 =
1
I
1
o " w
g 1 g 4
i S
"
h
"
= g i g
8 4 g8 8
=3 a =]
T T T T T T T T T T T T T T T T
-15 -10 5 0 5 10 15 -15 -10 -5 0 5 10 -10 5 0 5 10 15
No change in means and SD Same means and 8D, different mode weights Negative, same means and SO, different made weights
: g . ‘
Cohen's d = 0.011, ! =i Cohen's d = -0.011, o Cohen's d = -0.024, 1
Impact = 1172 | Impact = -0.418 Impact = -1.029 !
<+
= 1 g |
i i i
| i
| i
| o4 |
| s s 1
@ \ s |
] I i
I ]
| 2 > i
§ ] gs £ ‘
& ! ' R
£ i £ 2o
S o 1 S w I3 1
oo | [ a |
| =} i
i i
| i
| i
| e | i
i S - ]
- I bt
(=3
i n i
I FI ]
| i
| e i
| i
I ]
i = i
s 4 \ g - = |
I 3
T T T T T T T T T T T
10 5 o El 10 5 0 5 10 15 10 5 o

Only change in SD Chi square and Gaussian distributicn Negative, chi square and Gaussian distribution


http://cran.r-project.org/
http://cran.r-project.org/
https://www.kgu.de/zpharm/klin/Research/ImpactEffectsize_0.1.0.tar.gz

Figure 2 Effect sizes expressed ag Z v [chrespectively Impact calculated fartificially created

data set (data set 2) comprising subsets of each two groups (red and blue) with idesitiealof n =

100. Left panel: Data subsets in which (i) both groups contained only one single value, ote sing
value per group but different between groups, various different values drritical in both groups,
various different values but only partly shared between groups, the values from the psesitset
multiplied with 10, or a constant value in one group and normdikgributed values with a different

mean in the other groupMiddle panel: Several data subsets with groups with the same mean but
increasing variance in one but not the other groiight panel:Data subsets with groups with the
same variance but increasing mean in one but not the other group. The figure has been created using

the R software package (version 3.6.1 for Lirbg://CRAN.R-project.org[11]) using the R package

MmpactEffectsize (https://www.kgu.de/zpharm/klin/research/ImpactEffectsize 0.1.0.tar.gZRAN

upload pendiny
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Figure 3 Relations between3Z ~/u% §_ (( 8 ]I u e<uE the diffeienv flata ]v
scenarios of data set 3 (Figure #gft panel: When data of both groups are randomly generated
normally distributed numbers with small between-group differences in maraoh variance (var0001

to var0010 of data set 3), the effects are small although still correlateddI®ipanel: When
differences in the group means increase (var0O01l to var001pY, v |- Vv fu% 8§ E % &E(
correlated. Right panel: With no change in the central tendency difference but gidtgrence

merely in the distribution of data }Z v [drtakes a value of zero in these cases, Impact measures

the effect. The dotted lines indicate linear regressions. The figure has been created using the R

software package (version 3.6.1 for Linotp://CRAN.R-project.orgf11]).
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Figure 4 & SUuE + o S]}v pe]vP ]8Z & AZAnidficially eBatéd data Edhprising
two groups (red and blue) with sizes of n = 1000 and d = 20 variables (d& &dtthese variables,

in var0001 t var0010 the means and variances were randomly jittered between the two groups
(upper two lines of panels), in variables va0O0tlxlar0015 the means differed substantially between
groups (third line of panels), and in var0018ar0020 the groups had the same mean but one group
the data was spilt into two distinct modes whereas in the other group the dat®d/around the
mean (bottom line of panelsB: Results of feature selection based on calculation of the effect size
followed by computed ABC analysis. The bar graphs show the effect size in desceddmd loe
relevant features, i.e., those in ABC sets A and B, are shown in blue color. The &gureen
created using the R software package (version 3.6.1 for Limipx{/CRAN.R-project.org[11]) using

the Z % | P ImpéattEffectsize

(https://www.kgu.de/zpharm/klin/research/ImpactEffectsize _0.1.0.tar.@RAN upload pendipg
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Figure 5 Biomedical data of a hematological context comprising a flow cytometry-basgghtyma
makers CD3, CD4, CD8, CD11, CD19, CD103, CD200 and IgMngoaiprise subset of n = 1,494
cells from healthy subjects (red) and a second set of n = 1,302 celldyirgshoma patients (blue)
(data set 4). The figure has been created using the R software package (\&6sibrior Linux;

http://CRAN.R-project.org/  [11]) using the Z % | P ImpdactEffectsize

(https://www.kgu.de/zpharm/klin/research/ImpactEffectsize 0.1.0.taf. GRAN upload pendipg
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Figure 4

*IEXYVI WIPIGXMSR YWMRK IMXEAV %YXIRTEME BR]-QYECAH HEXEVQ

ERH FPYl [MXL WMAIW SJ R ! IWERBXEIWIXEVMEPAIWI ZEVMEF
ZEV XLI QIERW ERH ZEVMERGIWHIZIXMERHSIQPJ[S MXSNYTW YTI
TERIPW MR ZEVMEFPIW ZE s JDEWIH WXYLHWXERWMHENWP] FIX[IIR

TERIPW ERH MR ZEV « ZEV | WEIQKVIFERW YK RKRLKVSYT XLI
X[S HMWXMRGX QSHIW [LIVIEW MREKXEZEYXUH BWSYWRHXXLIHQIER F¢
& 6IWYPXW SJ JIEXYVI WIPIGXR SR KEWIHI BERXGCER G YPEABIIH F]
EREP]WMW 8LI FEV KVETLW WLBGDIRHMRIKGY WIM” I8 MIRVHR | Z E RKRJ ¢
WIXW % ERH & EVI WLS[R MR FR/YFIGE BGSNE ELH WXWMRKEXLI 6 WSR

JSV OMRY\ LXXT '6%2 6 WNRKGXLEBKTEXGAEKI S-QTEGX)JJIC
LXXTW [[[ OKY HI "TLEVQ OPMR GDWHEYVYBL -QDEOXKIMNI'6%2 YTPS



Figure 5
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