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Abstract
Background: Parkinson’s disease (PD), a severe neurodegenerative disorder, and idiopathic rapid eye
movement (REM) sleep behavior disorder (iRBD), a parasomnia recognized as the prodromal stage of
synucleinopathies (including PD), both lack reliable, non-invasive biomarker tests for early intervention
and management.

Objectives: To investigate whether plasma extracellular vesicle (EV)-associated sncRNAs could
discriminate PD and/or iRBD patients from healthy individuals.

Methods: We optimized a cDNA library construction method, EVsmall-seq, for high throughput
sequencing of sncRNAs associated with plasma EVs. We profiled EV-sncRNAs from the plasma of 60
normal controls, 56 iRBD patients, and 53 PD patients, and constructed a support vector machine (SVM)
classifier to identify the informative miRNA features to distinguish PD and/or iRBD patients from healthy
individuals.

Results: First, a sixteen-miRNA signature was found to distinguish PD patients from healthy individuals
with 88% sensitivity, 90.43% specificity, and 89.13% accuracy. Second, a three-miRNA signature was
found to distinguish iRBD patients from healthy individuals with 96% sensitivity, 86.36% specificity, and
91.49% accuracy. Third, tweenty 20 miRNAs were found consistently increased or decreased in
expression from healthy subjects to iRBD to PD patients, which might be linked to PD development
through iRBD.

Conclusions: Current study provides a valuable and highly informative dataset of EV-associated sncRNAs
from plasma of iRBD and PD patients. We identified miRNA signature features that could serve as
minimally-invasive, blood-based surveillance biomarkers for distinguishing iRBD or PD from healthy
individuals with high sensitivity, specificity, and accuracy. 

Background
Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting
approximately 1% of people over the age of 60 globally, and imposes increasingly heavy social and
economic burdens on aging societies1,2. Idiopathic rapid eye movement (REM) sleep behavior disorder
(iRBD) is a parasomnia characterized by the loss of normal atonia during the REM stage of sleep which
results in overt motor behaviors that frequently represent the enactment of dreams3. In the past decade,
iRBD has been established as one of the earliest and most specific prodromal signs of α-
synucleinopathies, including PD, dementia with Lewy bodies, and multiple system atrophy3. Thus,
accessible and reliable biomarkers for early diagnosis of PD and iRBD are urgently needed to identify
candidate therapeutic targets and to monitor disease progression during therapeutic interventions4,5.

Currently, the diagnosis of PD mostly relies on clinical symptoms, which hampers the detection of the
earliest phases of the disease, the time at which treatment may have the greatest therapeutic effect. A
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variety of biomarkers for diagnosing PD are under investigation, including factors based on pathological,
imaging, biochemical, and genetic data4. Biofluid biomarkers have markedly expanded over past 5 years,
including α-synuclein, lysosomal enzymes and neurofilament light chain in CSF6,7. Blood biomarkers,
such as α-synuclein, are also under investigation; whereas its quantities are strongly influenced by red
blood cell (RBC) contamination and haemolysis, which limit the utility for diagnostic purposes8. Besides,
although non-invasive neuroimaging techniques can provide in-depth information about brain structure
and function, these methods require major investments in infrastructure which limit their wide clinical
deployment9. Therefore, a minimally invasive test for early detection of iRBD and PD and for monitoring
disease progression still poses a major challenge.

In consideration of potential biomarkers, microRNAs (miRNAs) are small non-coding RNAs (sncRNAs)
that are generally expressed in all eukaryotic cells and which perform critical regulatory functions at the
posttranscriptional level. Cellular miRNAs released into body fluids can be readily detected, making them
ideal biomarkers for diagnosis of various diseases10. Previous studies have reported that salivary miR-
153 and miR-223 can be used as biomarkers for idiopathic PD11, while serum miR-221 is a potential
predictor of PD12. In addition, circulating brain-enriched miRNAs have been used to distinguish idiopathic
and genetic PD13. However, all of these studies used reverse transcription followed by real-time
quantitative PCR (RT-qPCR) method to measure the relative expression of a few miRNAs in bodily fluids.
Since this method detects a limited number of known miRNAs and is also inefficient in distinguishing
miRNAs with similar sequences14, the most diagnostically informative miRNAs could be potentially
overlooked.

Extracellular vesicles (EV) are nano-scale, membrane-enclosed particles released from (possibly) all
eukaryotic cells to transport proteins, lipids, RNAs, and DNA fragments15, a process shown to have
important biological functions16,17. EVs have been found in serum, plasma, urine, saliva, cerebrospinal
fluid, and breast milk15. Moreover, the EV membrane effectively prevents degradation of the enclosed
miRNAs by ribonucleases that are abundant in biofluids18,19. These features of EV-associated miRNAs
cumulatively enhance miRNA biomarker reliability compared with unprotected, cell-free, miRNAs20–23.
However, the full spectrum of EV-associated miRNAs present in the plasma of iRBD and PD patients
remains unknown, and characterizing the miRNA population in PD or iRBD patients may unveil several
effective diagnostic biomarkers. In this study, we used high throughput sequencing to profile the EV-
associated sncRNA population in plasma of iRBD and PD patients. Here, we report several such
candidate miRNA biomarkers for diagnosis of iRBD and PD patients.

Methods
Study population

A total of 169 participants were included in this study and divided into three groups: 60 healthy
individuals, 56 patients with iRBD, and 53 patients with PD. The healthy individuals were community
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volunteers without neurodegenerative disorders. The diagnosis of iRBD was made based on video-
polysomnography evidence according to standard International Classification of Sleep Disorders-II
criteria. All iRBD patients were examined by neurologists to exclude those with motor signs of
parkinsonism or secondary causes. The diagnosis of PD was performed according to the International
Parkinson and Movement Disorder Society (MDS) diagnostic criteria by at least two neurologists skilled
in movement disorders24, and all of the patients were diagnosed as idiopathic PD.

This study was approved by the ethics committee of Ruijin Hospital affiliated with the Shanghai
JiaoTong University School of Medicine and was carried out at the Department of Neurology and Institute
of Neurology of Ruijin Hospital. All participants or their guardians provided written informed consent.

Clinical assessment

For iRBD and PD patients, essential demographic and clinical information, including a study
questionnaire for motor and nonmotor manifestations of their disease, was collected and documented.
The motor subscale of the Unified PD Rating Scale (UPDRS) was used to evaluate motor symptoms and
ON medications. iRBD symptoms and their severity were evaluated by the REM Sleep Behavior Disorder
Screening Questionnaire (RBDSQ). Nonmotor symptoms and autonomic dysfunction were evaluated by
the Non-Motor Symptom Questionnaire (NMSQ) and Scale for Outcomes in PD-Autonomic (SCOPA-AUT),
respectively. Depressive state was measured using the 17-item Hamilton Depression Rating Scale
(HAMD); the Sniffin’ Sticks 16-item test (SS-16) was performed to assess olfactory function.

Plasma sample collection

Plasma samples (0.5-1 ml) were collected from subjects in the fasting state. For each blood collection, 2
ml of venous blood was collected into 10-ml BD K2EDTA Vacutainer tubes (BD; Cat# 367525) to prevent
coagulation. The anticoagulant-treated blood samples were immediately inverted several times and
transferred to 2-ml conical tubes (Eppendorf; Cat# 0030120094). To obtain plasma, blood samples were
centrifuged at 1,300 × g for 10 min at room temperature (RT). The upper layer containing plasma was
transferred to new tubes and centrifuged twice at 2,500 × g for 15 min at RT to obtain platelet-poor
plasma (PPP). Each plasma supernatant was carefully transferred to fresh 1-ml tubes and then stored at
-80 °C until further use.

EV isolation and RNA extraction

Frozen plasma samples were thawed in a thermostat water bath for 2 min at 37 °C and then centrifuged
at 2,500 × g for 15 min at 4 °C to remove precipitated proteins and lipids. Approximately 0.5-1 ml of
plasma was used as the starting material for EV isolation with an exoRNeasy Midi kit (Qiagen; Cat#
77144) according to the manufacturer’s instructions. For EV-RNA extraction, 1 ml of TRIzol reagent
(Invitrogen; Cat# 15596026) was added to the column, which was centrifuged at 3,000 × g for 1 min.
Total EV-RNA was isolated by TRIzol reagent according to the manufacturer’s recommendations. The
RNA pellet was dissolved in 11 μl of deionized water treated with diethylpyrocarbonate (DEPC); 1 μl was
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used for yield measurement of EV-RNA by Quant-iT RiboGreen RNA Assay Kit (Thermo Fisher Scientific;
Cat# R11490); 2 μl was used for quality and size distribution examination by a 2200 Bioanalyzer (Agilent
Technologies, CA, USA). The remaining 8 μl was used for sncRNA library construction and sequencing.
For EV characterization, 1 ml of XE buffer was added to the column and centrifuged at 3,000 × g for 1
min. Eluates were concentrated by ultrafiltration using Amicon Ultra-0.5 ml Centrifugal Filters with a
molecular weight cutoff of 100 kDa (Millipore; Cat# UFC5003). EV was resuspended in 40 μl of
phosphate-buffered saline (PBS) and was ready for downstream applications, including transmission
electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting.

Transmission electron microscopy (TEM) analysis

Purified concentrated EV in PBS were mixed with an equal volume of 4% paraformaldehyde (PFA). Five
microliters of resuspended pellets were added to a formvar-carbon-coated EM grid and absorbed for 20
min in a dry environment. The grids were washed once with PBS for 1 min, followed by once with 1%
glutaraldehyde for 5 min and seven times with Milli-Q water for 2 min per wash. The grids were then
negatively stained with 2.5% uranyl-oxalate solution for 10 min and air-dried for 5 min under
incandescent light. Images were acquired on a Tecnai G2 Spirit TEM (FEI, The Netherlands) with a wide-
angle AMT 2k CCD camera operating at 120 kV at the Shanghai Institute of Biochemistry and Cell
Biology, Chinese Academy of Sciences.

Nanoparticle tracking analysis (NTA)

The particle size and concentration of purified EV in PBS were analyzed using a ZetaView PMX 110
(Particle Metrix, Germany) equipped with a 405-nm laser and a high-sensitivity sCMOS camera. The
ZetaView system was calibrated using 110 nm polystyrene particles. All measurements were performed
at RT. Furthermore, NTA measurement was recorded and analyzed at 11 positions for 60 seconds at a
frame rate of 30 frames/second. The result for each sample is presented as an average of the 3
measurements. Particle movement was analyzed using NTA software (ZetaView 8.04.02 SP2).

Western blotting

For protein analysis, the protein concentrations of purified EV in PBS were quantified using a
bicinchoninic acid (BCA) assay (Beyotime; Cat# P0010S). Ten micrograms of total protein of each
sample were denatured in 4× sodium dodecyl sulfonate (SDS) buffer at 95 °C for 5 min before separated
through 8% polyacrylamide SDS gels and transferred to nitrocellulose membranes. The membranes were
blocked with 5% (wt/vol) fat-free milk in PBS with Tween (PBST) for 1 hour at RT prior to incubation with
anti-Alix antibody (1:1000 dilution; Abcam; Cat# 186429), anti-CD63 antibody (1:200 dilution; Abcam;
Cat# 193349), anti-Calnexin antibody (1:1000 dilution; Abcam; Cat# 22595), and anti-GRP94 antibody
(1:500 dilution; Abcam; Cat# 108606). All primary antibodies were diluted in 5% fat-free milk, and blots
were probed overnight at 4 °C. The membranes were washed four times for 10 min and incubated with
HRP-conjugated secondary antibodies for 1 hour at RT. The secondary antibodies were goat anti-rabbit
IgG for Alix, GRP94, or Calnexin (1:5000 dilution; MultiSciences; Cat# GAR007) and goat anti-mouse IgG
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for CD63 (1:5000 dilution; MultiSciences; Cat# GAM007). The protein bands were detected with a Pierce
ECL western blotting substrate kit (Thermo Fisher Scientific; Cat# R32209).

Construction of the cDNA libraries from plasma EV-RNA

EV-RNA obtained from the plasma of healthy controls, iRBD patients, and PD patients was profiled by
EVsmall-seq. For each sample, 0.5 ng RNA per sample was used as input material for generating sncRNA
libraries. Ligation reaction for 5’ and 3’ adapters was performed according to the procedure described
previously with some modifications (manuscript in preparing). In brief, adapter-ligated RNA was mixed
with ProtoScript II Reverse Transcriptase, RNase Inhibitor, and reaction Buffer (NEB; Cat# M0358), and
incubated for 1 hour at 44 °C. After PCR amplification of RT products, the sequence-specific sgRNAs were
assembled with Cas9 to cleave self-ligating adapters and RNA contaminants in the libraries. The oligo
sequences of 3’adapter, biotin-RT primer, 5’adapter, adapter-sgRNA, ysRNA-sgRNA (Y RNA-derived small
non-coding RNA sgRNA), P5 primer, and P7 primer used for sncRNA library construction were listed in
Additional file 1. Size selection of PCR products was performed by high-resolution polyacrylamide gel
electrophoresis through 6% gels. For miRNAs, the bands corresponding to 135-145 bp were purified for
sequencing.

High throughput sequencing and data analyses of sncRNAs

All the cDNA libraries of sncRNAs were sequenced on NovaSeq (Illumina). We used cutadapt to clip
adapters and filter out low-quality reads25. Reads failing to match the adaptor or reads with lengths
shorter than 17 nt were discarded. Redundant sequences were collapsed as useful reads for further
analysis26. Then, we aligned the reads to reference sequences by bowtie27. The reads that matched the 5’
start site of annotated miRNAs and matched the 3’ ends with at most 3 nt deletions and/or 3 nt
additional sequences derived from pre-miRNAs were counted in the abundance of miRNAs. The miRNA
expression level was normalized by size factor28. SncRNAs with more than one annotation were
characterized in the following order: miRNA, ysRNA, tsRNA (tRNA-derived small non-coding RNA), rsRNA
(rRNA-derived small non-coding RNA), snRNA, snoRNA, lncRNA, and mRNA. Sequences that were not
annotated with any of the RNA categories above were classified as others. The miRNA expression profiles
in human tissues were downloaded from TissueAtlas29. The gene ontology enrichment analysis of
miRNA’ target genes was performed by miRPathDB30. miRNA’s target sites for corresponding genes were
predicted by TargetScan31.

Sources for sequences and genome assemblies

The genomic sequences of human (hg38) were downloaded from the University of California Santa Cruz
(UCSC) Genome Browser 32 (http://genome.ucsc.edu/). Known RNA sequences were retrieved from the
following databases: miRNA, miRbase (version 22.0)33; tRNAs, Genomic tRNA Database
(http://lowelab.ucsc.edu/GtRNAdb); Y RNAs, rRNAs, 5.8S, 18S, 28S and 45S from NCBI GenBank

http://lowelab.ucsc.edu/GtRNAdb/Mmusc
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(http://www.ncbi.nlm.nih.gov/), 5S from Ensembl (http://www.ensembl.org/index.html); and snoRNAs,
lncRNAs and mRNAs from Ensembl (http://www.ensembl.org/index.html).

Statistical analysis

We used the R software package for statistical analysis. Batch correction was conducted by limma34.
Differentially expressed miRNAs were calculated by limma34 (p value<0.05, fold change>1.4). We used
the prcomp package for principal component analysis (PCA), which was visualized by ggplot235.
Unsupervised hierarchical clustering analysis was conducted and visualized from pheatmap36. The
comparisons between two groups were performed with a Wilcoxon rank sum test, whereas comparisons
among three or more groups were performed with a Kruskal-Wallis rank sum test. The statistical tests
were performed and visualized by ggplot2 and ggpurb37. For the miRNAs with increasing expression in
the healthy-iRBD-PD hierarchy, the mean value of miRNA expression in each group has to meet the
condition of healthy < iRBD < PD and P value <0.05 based on the Kruskal-Wallis sum test; for the miRNAs
with decreasing expression in the healthy-iRBD-PD hierarchy, the mean value of miRNA expression in
each group has to meet the condition of healthy > iRBD > PD and P value <0.05 based on the Kruskal-
Wallis rank sum test.

Features were selected with the R package boruta to find all relevant variables for machine learning38.
Classification of different groups was carried out with the svm function in the R package e107139. The
log2-transformed normalized read counts of every miRNA were defined as the input data. Models were
trained on a training set (60% of data) and evaluated on a validation set (remaining 40% of the data),
with an equal distribution of individuals in the disease groups (Supplementary Table S1). The diagnostic
efficacy was evaluated by receiver operating characteristic (ROC) curve analysis for the training and
validation cohorts40. The comparison between areas under the curve (AUCs) of different classifiers was
evaluated by the bootstrap method with 100 iterations.

Results
Plasma sample collection and EV-RNA isolation

A total of 169 participants were enrolled in this study and subsequently divided into three groups
consisting of 56 iRBD patients, 53 PD patients, and 60 healthy individuals. The demographics and
clinical characteristics of the enrolled participants are listed in Table 1. No significant differences were
found in age distribution among the three groups, although the PD group contained a significantly higher
proportion of female subjects. Average disease duration for iRBD patients were 7 years, and 5 years for
PD patients. In addition, the iRBD patient group exhibited a higher average RBDSQ score than that of the
PD group (P < 0.001), while PD patients showed lower SS-16 (P = 0.03) and higher SCOPA-AUT (P =
0.001) scores, on average, than iRBD patients. The HAMD scores were higher in PD patients than in
healthy controls (P < 0.001). No significant differences in NMSQ and HAMD scores were observed
between iRBD and PD groups.

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
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Table 1
Demographic and clinical profiles of healthy, iRBD, and PD participants

Clinical parameters Healthy iRBD PD P value

No. of participants 60 56 53 /

Age 63.5±9.0 64.0±7.3 63.0±9.0 0.62

Sex (M/F) 35/25 34/22 25/28 <0.001

Disease duration (y) / 7.0±5.1 6.9±12.4 /

UPDRS III / / 30.6±18.0 /

RBDSQ / 8.1±3.2 4.4±3.2 <0.001

NMSQ / 7.0±3.9 8.2±3.4 0.09

SS-16 / 8.8±4.4 7.1±3.5 0.03

HAMD / 3.6±4.0 5.1±5.0 0.11

SCOPA-AUT / 7.8±4.7 14.4±12.9 0.001

UPDRS III: the Unified PD Rating Scale III; RBDSQ: the REM Sleep Behavior Disorder Screening
Questionnaire; NMSQ: Non-Motor Symptom Questionnaire; SS-16: the Sniffin’ Sticks 16-item test;
HAMD: the 17-item Hamilton Depression Rating Scale; SCOPA-AUT: Scale for Outcomes in PD-
Autonomic.

 

To ensure obtain high-quality plasma EVs from patients, we established a procedure for plasma sample
collection and protocols for EV isolation (Supplementary Fig. S1A, also see Materials and Methods). EVs
were isolated from patient plasma using an exoRNeasy Midi kit (Qiagen). The morphology and size
distribution of EVs were evaluated by transmission electron microscope (TEM) and nanoparticle tracking
analysis (NTA). The size of isolated EVs was ranged from 30 - 500 nm with a median diameter of 105 nm
(Supplementary Fig. S1B, C). Furthermore, enrichment for the EV markers Alix and CD63 was observed in
the EVs isolated from the plasma samples (Supplementary Fig. S1D). In contrast, Calnexin and GRP94
were undetectable in isolated EVs, which indicated the absence of contamination by endoplasmic
reticulum proteins (Supplementary Fig. S1D). Total EV RNA was then extracted using TRIzol reagent
instead of QIAzol, which is the gold standard for RNA extraction and highly efficient for isolating small
RNAs. Aliquots of purified EV RNAs were further analyzed by a Quant-iT RiboGreen RNA Assay Kit and
2200 Bioanalyzer. The EV RNA obtained from 0.5 milliliter (ml) of plasma ranged between 0.61 and 2.93
ng, and showed normal size distribution (Supplementary Fig. S1E) consistent with the previous study20.
Approximately 0.5 ng of EV-RNA that passed the quantity and quality control criteria was used for small-
RNA library construction and sequencing analyses.

Optimize sncRNA sequencing library construction method for low RNA inputs
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Profiling the relative abundance of specific sncRNAs by high throughput sequencing typically requires
tens of nanograms of total RNA41,42 and our initial attempts to construct a highly quality EV-associated
sncRNA library using commercially available kits were unsuccessful, mainly due to the effects of low
RNA inputs that result in 5’ and 3’ adapters generating the predominant ligation byproducts which
severely compromise subsequent PCR amplification and sequencing quality. We therefore optimized the
conditions for 5’ and 3’ adapter ligation and introduced an extra 5’ exonuclease treatment step that
effectively reduced adapter dimer formation. Previous studies have shown that Y RNA-derived small non-
coding RNAs (ysRNAs) can comprise the most abundant sncRNA type in plasma43,44, and the prevalence
of ysRNAs can significantly increase sequencing cost and interfere with the amplification of other, low
abundance sncRNAs during cDNA library construction. Since the sgRNA-guided Cas9 nuclease is capable
of cleaving double-stranded DNA bearing a protospacer adjacent motif (PAM) sequence both in vitro and
in vivo, we designed sgRNAs and introduced a Cas9/sgRNA in vitro cleavage step to reduce both the
ysRNAs (Supplementary Fig. S1F) and the adapter dimers (Additional file 1). The EV RNAs (0.5 to 2 ng)
treated with Cas9/sgRNA showed comparable and clear miRNA bands, indicating that we were able to
reduce the input of EV RNA to 1 ng or less (Fig. 1A). The Cas9/sgRNA in vitro cleavage step led to an
effective reduction of both ysRNAs and adapter dimer byproducts, enabled a straightforward PAGE-based
method for detection and recovery of miRNA products (~140 bp) (Fig. 1B, C). Although the Cas9/sgRNA
treatment couldn’t remove ysRNAs completely, the cleavage efficiency could be further increased by
raising the Cas9/sgRNA concentration in the reaction. The comparison of sequencing results between the
pairwise samples with or without Cas9/sgRNA treatment showed high correlations among miRNA
profiles (Spearman correlation coefficient ≥ 0.99) (Fig. 1D, E), which indicated that Cas9/sgRNA
treatment had no obvious effect on the individual miRNA abundance. Through these modifications, we
successfully reduced the total required EV-RNA inputs to 0.5 ng. We named this optimized library
construction method for sncRNA sequencing with low EV-RNA inputs as EVsmall-seq.
Sequencing EV-associated sncRNAs in plasma samples

We then used the EVsmall-seq for high throughput sequencing-based profiling of EV-associated sncRNA
expression in 169 human plasma samples. Each library was sequenced to a mean depth of 19 million
reads (median depth: 15 million) (Fig. 1F, Additional file 2), which is sufficient for the detection of low-
abundance sncRNAs with 0.5 ng input EV-RNAs (Supplementary Fig. S2). After low-quality and short
reads being discarded, the average proportion of high quality reads in these samples was 82.3% (Fig. 1G),
and 65.2% of these high-quality reads could be mapped to the reference sequence for sncRNAs (Fig. 1H),
indicating the overall high quality of the sncRNA libraries. We found that the miRNAs (17-24 nt), ysRNAs
(25-33 nt), tRNA-derived small non-coding (tsRNAs, 30-33 nt), and rRNA-derived small non-coding
(rsRNAs, 17-20 nt) were the most prevalent types of sncRNAs associated with EVs (Fig. 1I, Fig. 1J). On
average, 390 different miRNA species were detected in each sample (average normalized read count > 1,
expressed frequency of all samples > 25%) (Fig. 1K, Additional file 2-3).

Identification of PD-specific miRNA biomarkers
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We next sought to determine whether plasma EV-associated miRNA profiles could be used to distinguish
PD patients from healthy individuals. We identified a total of 89 upregulated and 38 downregulated
miRNAs unique to the PD patient group (Fig. 2A, B, Additional file 4). Unsupervised hierarchical clustering
and principal component analysis (PCA) of the differentially expressed miRNAs separated PD patient
samples from healthy controls with minor overlap (Fig. 2C). We then constructed a support vector
machine (SVM) classifier to distinguish PD patients. Feature selection from the training set (n=67)
identified 16 informative miRNAs (Additional file 5), including 10 upregulated miRNAs (miR-27b-3p, miR-
199a-5p, miR-151a-3p, miR-584-5p, miR-889-3p, miR-619-5p, miR-130b-5p, miR-197-3p, miR-4433b-5p,
and miR-4433a-3p) and 6 downregulated miRNAs (miR-182-5p, miR-96-5p, miR-155-5p, miR-150-5p, miR-
150-3p, and miR-3615). We then used a 5-fold cross-validation SVM algorithm to classify PD patients
from healthy individuals, which showed 100% sensitivity, 87.5% specificity, and 94.03% accuracy in the
training set (35 healthy controls and 32 patients with PD) and 88% sensitivity, 90.43% specificity and
89.13% accuracy in the validation data set (25 healthy controls and 21 patients with PD) (Fig. 2D). The
classifier could also identify patients with PD from healthy individuals in both the training (AUC=0.918;
95% CI, 0.913-0.922) and validation (AUC=0.913; 95% CI, 0.907-0.92) sets (Fig. 2E). These results
suggested that the 16 miRNA features from the sncRNA profile of PD patients could be used to
distinguish PD samples from healthy controls.

Identification of iRBD-specific miRNA biomarkers

Given the high risk of developing α-synucleinopathies by iRBD patients, such as PD, PD dementia,
dementia with Lewy bodies or multiple system atrophy, in addition to the high specificity and long interval
between iRBD onset and clinical manifestations of α-synucleinopathies, the prodromal phase of this
disorder represents a unique opportunity for potential disease interventions45. To identify patients in this
early stage of pathogenesis, we further explored whether EV miRNAs could distinguish iRBD patients
from healthy individuals. A total of 75 differentially upregulated and 46 downregulated miRNAs were
identified among the total plasma EV-associated sncRNAs expressed in iRBD patients compared with
healthy subjects (Fig. 3A, B, Additional file 6). Unsupervised hierarchical clustering and PCA based on the
differentially detected miRNAs separated iRBD patient samples from control samples with minor overlap
(Fig. 3C).

We performed feature selection (n=69) and resulted in a miRNA signature comprised of three informative
features. Specifically, miR-27b-3p was upregulated in the iRBD group, while miR-182-5p and miR-7-5p
were downregulated (Additional file 7). The diagnostic performance of this training set showed 97.14%
sensitivity, 88.24% specificity, and 92.75% accuracy (Fig. 3D). Independent validation of the training
model with a separate validation set (n=47) revealed 96% sensitivity, 86.36% specificity, and 91.49%
accuracy (Fig. 3D). Ultimately, this classifier could effectively distinguish iRBD patients from control
subjects in both the training (AUC 0.97; 95% CI, 0.967-0.972) and validation (AUC 0.969; 95% CI, 0.966-
0.973) datasets (Fig. 3E), which indicated that the three miRNA signature features could sufficiently
distinguish iRBD patients.
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Notably, the predicted targets of miR-7-5p, miR-27b-3p, and miR-182-5p, the signature miRNAs for iRBD,
were enriched in pathways such as ‘neuron projection’, ‘neurotransmitter secretion’, ‘generation of
neurons’, and ‘nervous system development’ (Supplementary Fig. S3), including α-Synuclein, NLRP3,
PINK1, and GDNF that have been previously shown to contribute to PD pathogenesis46–49. Moreover, we
found that some miRNAs in iRBD 3-miRNA or PD 16-miRNA signature were highly expressed in the
human brain, including miR-7-5p and miR-27b-3p (Fig. 3F), which suggested that those EV-associated
miRNAs may be secreted by neuronal cells in the brain. In addition, miR-199a-5p and miR-182-5p were
predicted to target the 3’UTR of several genes previously reported to contribute to PD pathogenesis, such
as ATP13A2 and SCARB24 (Supplementary Fig. S4).

Consistently altered EV miRNAs in a healthy-iRBD-PD hierarchy

To next investigate whether (and which of) these miRNAs might be linked to PD development through
iRBD, we compared the miRNA profiles in the plasma EVs derived from healthy, iRBD, and PD samples.
We found 20 miRNAs that consistently increased or decreased in expression from control to iRBD to PD
patients (Fig. 4A, B). In particular, let-7i-5p, miR-4433b-5p, miR-335-3p, miR-130b-5p, miR-766-3p, miR-744-
5p, miR-1301-3p, miR-4433a-3p, miR-889-3p, and miR-4433a-5p all significantly increased in transcript
abundance following the control<iRBD<PD hierarchy (Fig. 4A). By contrast, miR-10b-5p, miR-150-5p, miR-
342-3p, miR-186-5p, miR-192-5p, miR-361-3p, miR-155-5p, miR-3615, miR-150-3p, and miR-500a-3p all
decreased in expression following the order of control>iRBD>PD (Fig. 4B), which suggested that these
miRNAs could possibly participate in both iRBD and PD. Consistent with this hypothesis, miR-150-5p
expression was previously reported to be dysregulated during PD progression50. Extensive research
conducted on let-7 revealed that let-7 could be involved in regulating neuronal degeneration in PD51 and
recognized by TLR7 to promote inflammation and neuronal death52. In addition, the accumulation of let-7
could lead to increased α-synuclein expression and decreased autophagy53. Intriguingly, miR-10b-5p, miR-
342-3p, miR-186-5p, miR-361-3p, miR-155-3p, miR-130b-5p, and miR-744-5p also showed aberrant
expression levels in neurodegenerative diseases such as Alzheimer’s disease, multiple system atrophy,
and prion diseases54. However, other miRNAs, including miR-4433a-3p, miR-4433a-5p, miR-4433b-5p, and
miR-192-5p, have not been previously linked to PD and therefore warrant closer investigation.

Discussion
Accessible and reliable biomarkers for early diagnosis of PD and iRBD are urgently needed to identify
candidate therapeutic targets and to monitor disease progression during therapeutic interventions5. In
this study, we investigated the expression of sncRNAs associated with plasma-derived EVs from 169
individuals using an improved library preparation protocol for high throughput sequencing. Our analysis
revealed 16 EV-associated miRNA features that were diagnostically informative for PD, and three miRNA
signature features that could serve as biomarkers for iRBD. These results demonstrated that high
throughput sequencing-based detection and quantification of sncRNAs expression can provide more
informative profiles that include all types and relative abundance of sncRNAs and their sequence
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variants, thereby significantly improving the overall performance of machine learning diagnostic
classifiers and ultimately the AUC values of miRNA biomarkers11,13.

However, the current study also has several limitations. First, as a single-center study, it is uncertain
whether these predictive markers are applicable to other populations with different exposures to
environmental or genetic factors (i.e., ethnicity). Future work with larger cohorts from multiple centers is
required to confirm these results, ideally through a prospective validation study. Second, only the miRNA
signature was used in this study. A combination of miRNAs with v-PSG, neuroimaging, and
neuropathological assessment may improve the sensitivity and specificity of diagnosis for prodromal PD
(i.e., iRBD) and PD.

Conclusion
In conclusion, we established a cDNA library construction method, named EVsmall-seq, for high
throughput sequencing of sncRNAs in plasma-EV using a low as 0.5 ng of total RNA input and identified
miRNA signature features that could serve as biomarkers for distinguish iRBD and/or PD from healthy
individuals with high sensitivity and accuracy. Moreover, our study provides a valuable resource for
sncRNA profiles in plasma EVs from the plasma of iRBD and PD patients and reveals an effective and
non-invasive diagnostic strategy, with relevant biomarkers, for neurodegenerative diseases.
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Figure 1

Plasma EV-associated sncRNAs profiling by high throughput sequencing

A. Comparison of the miRNA bands generated from 0.5 to 2 nanograms (ng) of EV RNA from human
plasma. The miRNA band was approximately 140 bp and detected by 6% polyacrylamide gel
electrophoresis (PAGE). B. Comparison of cDNA library construction with or without Cas9/sgRNA
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treatment. For each plasma sample, 0.5 ng of total EV-RNA was used as the input, and the PCR
amplification products were analyzed by 6% PAGE. C. A boxplot of the percentage of ysRNAs among total
mapped reads in the cDNA library with (blue) or without (red) Cas9/sgRNA treatment. Each group has
four biological replicates. D. Representative scatter plot of miRNA expression in the cDNA library with (y-
axis) or without (x-axis) Cas9/sgRNA treatment. Each dot represents one miRNA species. The adjusted R-
squared value of the linear regression is shown in blue. E. Spearman correlation heatmap of miRNA
expression in the cDNA libraries treated with or without Cas9/sgRNA. The correlation coefficient of four
groups of paired samples is shown in the plot. Ctrl: without Cas9/sgRNA treatment, Cas9: Cas9/sgRNA
treatment. F. The sequencing depth of sncRNAs in healthy, iRBD, and PD samples. M: one million reads.
The mean and standard deviation of sequencing depth is shown in black. G, H. The percentage of high-
quality reads (G) or mapped reads (H) in healthy, iRBD, and PD samples. I, J. The average proportion (I)
and length distribution (J) of various types of sncRNAs in plasma-derived EVs. K. The number of detected
miRNA species in plasma EVs.
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Figure 2

EV-associated miRNA biomarkers for detecting PD

A. Unsupervised clustering heatmap of differentially expressed miRNAs for PD patients (blue) and
healthy individuals (red). Each row represents a differentially expressed miRNA. B. MA-plot of
differentially expressed miRNAs between PD patients and healthy individuals by transforming read
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abundance onto M (log2 fold change) and A (log2 average normalized read counts) scales. Up- or down-
regulated miRNAs are shown in red or blue, respectively. C. Three-dimensional scatter plot of principal
component analysis (PCA) for the differentially expressed miRNAs between PD patients and healthy
individuals. The percentage of variance explained by PC1, PC2, and PC3 are shown in the label. D.
Confusion matrix of the support vector machine (SVM) classifier for PD patients and healthy individuals
in the training set (left) and validation set (right). The sensitivity, specificity, and accuracy are shown at
the bottom. E. The receiver operating characteristic (ROC) curve of the SVM classifier in the training set
(Red, n = 67) and validation set (blue, n = 46). The values of area under the curve (AUC) and 95%
confidence interval (CI) are shown in the plot.
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Figure 3

EV-associated miRNA biomarkers for detecting iRBD

A. Unsupervised clustering heatmap of differentially expressed miRNAs of iRBD patients and healthy
individuals (red). Each row represents a differentially expressed miRNA. B. MA-plot of the differentially
expressed miRNAs between iRBD patients and healthy individuals. The up- or down-regulated miRNAs are
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shown in red or blue, respectively. C. Three-dimensional scatter plot of PCA for the differentially expressed
miRNAs between iRBD patients and healthy individuals. D. Confusion matrix of the SVM classifier for
iRBD patients and healthy individuals in the training set (left) and validation set (right). The sensitivity,
specificity, and accuracy are shown at the bottom. E. The ROC curve of the SVM classifier in training set
(red, n = 69) and validation set (blue, n = 47). The values of AUC and 95% confidence interval are shown
in the plot. F. The expression levels of PD- and iRBD-specific miRNA biomarkers in human tissues.

Figure 4

miRNAs with consistently increases or decreases in expression from healthy to iRBD to PD samples
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A, B. Violin plot of miRNAs with an expression that progressively increases (A) or decreases (B) from
healthy control to iRBD to PD samples. The P values of a Kruskal-Wallis rank sum test for comparisons
among three groups are shown in the boxplot for each miRNA. The mean and standard deviation of
miRNA expression levels are shown in black.
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