New Cellulose based pH-Sensitive Hydrogel for Highly Efficient Dyes Removal in Water Treatment: Kinetic, Thermodynamic, Theoretical and Computational Studies

Loubna Jabir
Universite Mohammed Premier Oujda Faculte Pluridisciplinaire de Nador

Hayat elhammi
Universite Mohammed Premier Oujda Faculte Pluridisciplinaire de Nador

Mohammed Nor
Universite Mohammed Premier Oujda Faculte Pluridisciplinaire de Nador

Issam Jilal
Universite Mohammed Premier Oujda Faculte Pluridisciplinaire de Nador

Abderrahmane El Idrissi
Universite Mohammed Premier Oujda Faculte des Sciences

Hassan Amhamdi
Abdelmalek Essaadi University: Universite Abdelmalek Essaadi

Mohamed Abou-Salama
Universite Mohammed Premier Oujda Faculte Pluridisciplinaire de Nador

Youssef El Ouardi
Lappeenranta University of Technology: LUT University

Soufian El Barkany (✉ el_barkany@yahoo.fr)
multidisciplinary faculty of Nador https://orcid.org/0000-0003-3756-2237

Katri Laatikainen
Lappeenranta University of Technology: LUT University

Research Article

Keywords: Carbohydrate, Cellulose adsorbent, pH-sensitive Hydrogel, Dyes Removal, Water Treatment, Isotherms, Langmuir, Molecular dynamics (MD), Simulations

Posted Date: December 23rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1138998/v1
Abstract:

In this paper, a new green pH-sensitive cellulose based hydrogel (swelling rate ~ 1005 %) was successfully elaborated. However, the new EDTA crosslinked HEC was investigated as adsorbent materiel, which it showed high removal efficiency (~2000 mg.g⁻¹) to aquatic micropollutants, especially methylene blue as cationic dyes model. The synthesis of HEC-EDTA at high advanced crosslinking degree (up to 92 %) that confirmed using structural analyzes (FTIR and 13C CP/MAS-NMR), was cried out using DAEDT and DMAP as acyl transfer agent, where the lamellar morphology (2D- microstructure) was highly suggested basing on the average functionality of the reaction system. The kinetic study showed that the adsorption process was better described by pseudo-second-order kinetic, where the thermodynamic parameters exhibited a negative effect of temperature indicating a physical adsorption process. In addition, the adsorption capacity was studied according to the experimental conditions (pH, contact time, concentration, etc.), and the Freundlich model revealed a strong correlation to the experimental results indicating an energetic heterogeneity of the surface active sites. In the other hand, molecular dynamics (MD) simulations were conducted and optimized using COMPASS II, where the results showed a good agreement with the experiment, and that basing on the intermolecular Non-covalent interaction, molecular structure and cluster configurations.

Keywords: Carbohydrate, Cellulose adsorbent, pH-sensitive Hydrogel, Dyes Removal, Water Treatment, Isotherms, Langmuir, Molecular dynamics (MD), Simulations.

Introduction:
Organic pollutants are molecules defined by their properties of toxicity and persistence in the environment as well as their bioaccumulation; they have a harmful impact on human health and the environment, and they are very difficult to purify by natural biological degradation (Pagga and Brown 1986, Pelalak, Soltani et al. 2021). Depending on their reactivity, hazardous molecules (pesticides, dyes, hydrocarbons, phenol and its derivatives, etc.) accumulate in living tissues and their concentrations increase along the trophic chain. While most dyes are not directly toxic, a significant portion of their metabolites is very harmful (Naidja 2010). Indeed, their mutagenic, teratogenic or carcinogenic effects appear after degradation of the initial molecule into oxidation by-products, e.g. carcinogenic amine for azo (Tsuda, Matsusaka et al. 2000) and leuco derivative for triphenylmethanes (Culp, Beland et al. 2002). These carcinogenic groups (in electrophilic or radical form) attack the pyrimidic bases of DNA and RNA. Therefore, they cause an alteration of the genetic code with mutation and risk of cancer. As an example, azo dyes are characterized by the presence of azo group (–N=N–), where the breaking of the azo bonds leads to the formation of primary amines which cause methemoglobinemia that is characterized by an impediment of transport oxygen in the blood (Greene and Baughman 1996). At this stage, organic dyes that are resulted from anthropogenic activities released into the natural environment is estimated at between 15 and 20% of world production (Salah 2012). The organic dyes are among the pollutants, which pose a great risk to the environment particularly industrial effluents from textile activities, which often present a large pollutant load that is difficult to biodegrade, and which has harmful impacts on the environment and humans (Danel 1999, Rafatullah, Sulaiman et al. 2010, Gobi, Mashitah et al. 2011). However, the discoloration of textile effluents is often carried out on natural adsorbents, in particular activated carbon (Malik 2003), clay (Weng and Pan 2007) and phosphates (Barka, Qourzal et al. 2008).

Methylene blue (MB) is an intensively used cationic dye (Wilson 1907, Marr, Stewart et al. 1973, Dutta, Mukhopadhyay et al. 2001, Uddin, Islam et al. 2009, Huang, Chen et al. 2010, Rafatullah, Sulaiman et al. 2010, Sukumaran and Ramalingam 2011, Sbai, Oukili et al. 2016), derived from phenothiazine (Cenens and Schoonheydt 1988, Bolotin, Baranovsky et al. 2006), which occurs in several hydrated forms (Beer, Baumann et al. 2006, Rager, Geoffroy et al. 2012). It is commonly used as a model for an organic contaminant due to its stable molecular structure (Huang, Chen et al. 2010). During the last decades, remarkable efforts have been made to eliminate or reduce the polluting load of industrial effluents, including coagulation-fluctuation (Vandevivere, Bianchi et al. 1998, Barclay and Buckley 2000),
precipitation (Pan, Wang et al. 2016), Reverse osmosis (Li, Lin et al. 2011), Advanced oxidation processes (POA) (Andreozzi, Caprio et al. 1999, Crini, Badot et al. 2007, Chergui 2010), Aerobic (Hitz, Huber et al. 1978, Hu 1996, Cha, Doerge et al. 2001) and anaerobic (Al-Kdasi, Idris et al. 2004) treatments. However, these methods have shown limiting drawbacks and obstacles to their application, in particular the high cost; efficiency dependence to types of dyes i.e. azo, clogging of filters, generation of highly oxidizing radical species and the formation of more toxic intermediate compounds. However, the adsorption of organic dyes on solid supports remains very limited at the surface of the adsorbent, which requires optimum morphology with a large specific surface area. On the other hand, pH-sensitive hydrogels allow the penetration of the contaminated solution that increase the hydrogel-pollutant contact surface, and as a non-destructive technique, a simple modification of pH allows the regeneration of both the organic pollutant and the hydrogel without carrying out expensive subsequent regeneration and post-treatment operations of solid waste (Mckay, Ramprasad et al. 1987).

Faced to environmental constraints that impose the friendly environmental aspect of industrial processes, several studies are directed towards the development of materials of natural origin such as chitin (Cao, Pan et al. 2018), chitosan (Melo, Paulino et al. 2018, Kellner-Rogers, Taylor et al. 2019), cellulose (Senna, Novak et al. 2013, Senna, Novack et al. 2014, Melo, Paulino et al. 2018), etc. Yet, the thermal degradation of cellulose before its melting temperature limits its treatment by thermal processes, while its insolubility in almost all usual solvents constitutes the major obstacle to chemical modifications by simple reaction routes. However, the introduction of new functionalities into the saccharide structure of cellulose requires complex, expensive and toxic solvation systems (Jilal, El-Barkany et al. 2019). In this sense, the use of cellulosic derivatives as intermediate polymers such as cellulose acetate (TABAGHT, EL IDRISSI et al. , Tenorio-Alfonso, Sánchez et al. 2019), ethyl cellulose (Ma, Gong et al. 2018), and carboxymethyl cellulose (Naderi, Lindström et al. 2015, Li, Mei et al. 2016, Hasan, Waibhaw et al. 2018, Rao, Ge et al. 2018), ... has appeared profitable for the development of new families of cellulose adsorbents. Recently, HydroxyethylCellulose (HEC) as nonionic and water-soluble cellulose derivative has received remarkable attention with excellent performance properties as a thickener (Coryell 2017, Luo, Liu et al. 2018), binder (De Guzman and Balela 2019, Hämmer, Gassmann et al. 2019, Younes, El-sharkawy et al. 2019), emulsifier (Wang, He et al. 2020, Yang, Li et al. 2020), cement set retarder (Zhi, Ma et al. 2017, Liu, Wang et al. 2019), flocculent to colloidal
turbidity and heavy metals removal (Jilal, El Barkany et al. 2018, Chaouf, El Barkany et al. 2019, Jilal, El-Barkany et al. 2019), etc. HEC has a comparable chemical structure to that of cellulose, where the introduction of ethyl groups allows the intercalation of macromolecular chains, decreases the density of hydrogen bonds and increases reactivity via the increase in the density of primary hydroxyls. These structural properties solve the problem of solubility and therefore the feasibility of chemical modification, which has resulted in a wide variety of cellulosic materials based on HEC including heavy metal adsorbents (Choudhury, Majumdar et al. 2018, Jin, Easton et al. 2018) and dyes removal (Huang, Wu et al. 2019, Ning, Zhang et al. 2020).

In this paper, the results of structural analyzes (FTIR and 13C CP/MAS NMR) showed that the synthesis of new pH-sensitive hydrogel (HEC-EDTA) was carried out successfully, and applied with good performance as adsorbent of organic micropollutants in aquatic systems. In addition, the mean system functionality around the value 2 (≈ 2/AGU) strongly suggests a 2D-dimensional microstructure of HEC-EDTA, and therefore, sheet morphology is expected with good penetration of pollutant-carrying liquid. The adsorption capacity was studied according to the experimental conditions (pH, contact time, concentration, etc.) in order to optimize the adsorption capacity. In addition, the kinetic study showed pseudo-second-order kinetics, while the thermodynamic behavior showed a negative effect of temperature indicating a physical process of adsorption, with an energetic heterogeneity of the surface active sites that are proven by a strong correlation with the Freundlich model.

To our knowledge, the material discussed in this article has never been discussed in the literature, neither in terms of synthesis and characterization nor of application as an adsorbent sensitive to pH, hence the originality of this work. This article is part of a global energy storage study, where this material was used as precursor in the production of cathode compartments of ion batteries, which will be published soon.

Materials and methods:

Materials:

HydroxyethylCellulose (HEC, DS = 1.5) and methylene blue (MB) were obtained from Sigma Aldrich. Ethylenediaminetetraacetic acid (EDTA), 4-dimethylaminopyridine (DMAP) and dimethylsulfoxide (DMSO) were purchased from Riedel-de Haë. The other solvents and
chemicals are of analytical grade and were received from Sigma Aldrich where they were used without further purification.

Methods:

FTIR spectra are recorded between 400 and 4000 cm\(^{-1}\) on *FTIR-RShimadzu* type spectrometer using the pellets method, where 1% w of sample was finely ground with 99% w of spectroscopy grade KBr, 40 scans were performed for each analysis at 2 cm\(^{-1}\) resolution. The absorbance was calculated from Uv-vis spectra performed on *Uv-Shimadzu* type spectrophotometer using quartz cuvettes at the wavelength of 665 nm. UV-vis spectra were recorded in the wavelength range of 400 to 800 nm. Elemental analyses results were achieved using *Perkin Elmer Series II CHNS/O Model 2400* analyzer. \(^{13}\)C NMR spectra acquired with Cross-Polarization Magic Angle Spinning (solid-state CP/MAS 13C NMR) spectrum was recorded on a *Bruker DRX-400* spectrometer with a frequency of 100 MHz, and 1800 scans were recorded with the 90° pulse time of 4.85 \(\mu\)s at room temperature. The acquisition time and the delay time were 0.032 s and 2 s, respectively. The surface charge of materiel was evaluated using the zeta potential (\(\zeta\)) against pH (2 – 11) in Milli-Q water at 0.1%, and the results were recorded at 25 ± 0.1 °C using *Zetasizer Nano ZS (Malvern Instruments)*.

Preparation of HEC-EDTA:

3 g (13.16 mmol/AGU) of HEC in 40 ml of DMSO were slowly added by an addition funnel to 5 g (19.51 mmol) of EDTAD (prepared according to the method described by Capretta et al., (Capretta, Maharajh et al. 1995, Júnior, Gurgel et al. 2009, Senna, Novack et al. 2014) and 0.5 g (4 mmol) of DMAP as catalyst (acyl transfer reagent) dissolved in 15 ml of DMSO, and the reaction mixture was stirred for 4 h at 60°C. At the end of the reaction, HEC-EDTA was precipitated in acetone, filtered under vacuum, washed with acetone, thus a white powder was obtained which became gelatinous after washing with a saturated sodium bicarbonate solution of NaHCO\(_3\).

Measurement of swelling degree:

The swelling degree (S %) was determined according to ASTM, 1979 and ASTM1239-55. In short, the gels (0.1 g) were immersed in deionized water and taken out at different consecutive time intervals. After equilibrium, the swollen samples were separated using a 100-mesh filter-bag and dried to drain the excess water. Then, the swollen samples were
weighed and the swelling degree (S %) of the hydrogel was calculated from the following equation (eq. 1):

\[S(\%) = \frac{(W_e - W_i)}{W_i} \]

(eq. 1)

Wi and We are the initial weight of the dried hydrogel (g) and the weight of gel at equilibrium (g).

Adsorption experiment:

MB adsorption experiments on HEC-EDTA were performed in the range of initial concentrations of 10 to 600 mg.l-1 of aqueous BM solutions. The kinetic study was performed by varying the contact time from 0 to 40 min. The batches were carried out by stirring a quantity of 30 mg of HEC-EDTA gel in 10 ml of BM solution, and the pH was set at a value of 8 for 30 min as a contact time. The effect of pH (2 – 11) and gel dose (0.15 – 0.6 g.L⁻¹) on adsorption capacity were investigated. However, the thermodynamic study was carried out in a temperature range of 20 to 60 °C. The concentration of BM before and after adsorption was determined by measuring the absorbance of the solution at \(\lambda_{max} = 662 \) nm, while the adsorption capacity per unit mass of HEC-EDTA and the removal rate (R %) were calculated from the equation 2 and 3, respectively.

\[q = (C_0 - C_e).V/M \]

(Eq.2)

\[R(\%) = 1 - \frac{C_e}{C_0} \]

(Eq.3)

Where, q (mg.g⁻¹) is the equilibrium adsorption capacity at thermodynamic equilibrium, \(C_0 \) (mg.L⁻¹) and \(C_e \) (mg.L⁻¹) are the initial and the equilibrium concentration of the BM solution, respectively. V (L) is the volume of the BM solution and M (g) is the weight of the HEC-EDTA adsorbent.

Results and discussions:

Synthesis and characterization of HEC-EDTA:

The crosslinking of HEC by EDTA was carried out to modify its hydrophilic character and to prevent its solubility in water, where this modification allows HEC-EDTA to be used as an adsorbent for the present micropollutants in aquatic environments (liquid-solid extraction). In this study, the crosslinking was carried out by the creation of ester bridges between the
primary hydroxyl groups of HEC and EDTA. However, to increase the reactivity of the
carboxylic functions of EDTA, a trans-anhydridation reaction between EDTA and acetic
anhydride was carried out. The functionalization of HEC was carried out in DMSO as
homogeneous medium in the presence of DMAP as esterification agent, where a notable
increase in the viscosity of the reaction medium was noted during the reaction, which
indicates the supramolecular crosslinking of the cellulosic chains (Fig. 1a). EDTA crosslinked
HEC hydrogel was recovered in its acidic form by precipitation in acetone and frequent
washing with the same solvent and deionized water. In addition, to release the carboxylate
functions, the treatments of HEC-EDTA powder with a saturated sodium bicarbonate solution
(and then by deionized water until the filtrate neutralization) have caused a radical change in
the appearance of the product that became, more and more, gelatinous.

Fig. 1b shows the kinetic study of swelling of the HEC-EDTA hydrogel at 25 °C. The
significant swelling rate observed from the first contact with the solvent (H₂O) at 40 min can
be attributed to the highly hygroscopic character of the sodium EDTA and its instability when
exposed to moisture (Gbadamosi, Famuwagun et al. 2018). In addition, the hydrophilic
behavior of HEC and its good solubility in the aquatic environment significantly improved the
water absorption of the hydrogel, as well as the crosslinking by EDTA prevented the water
solubility of HEC which could improve the steric stability to retain more water in the network
(Calcagnile, Sibillano et al. 2019), and consequently, the rate of swelling increased gradually
with the time of immersion to reach a maximum value of 950 to 1005 % after 35 min. In the
case of functional hydrogels, intended for ecological applications including processes for
removing the pollutant load from industrial effluents, the high swelling and the hygroscopic
nature rate increases the internal surface area for the better penetration, which allows more
adsorption sites to be fully exposed to pollutant (Elbedwehy and Atta 2020).
Fig. 1: a) HEC-EDTA synthesis reaction scheme and b) Degree of swelling against emersion time of EDTA crosslinked HEC hydrogel

Fig. 2a represents the FTIR spectra of untreated (EDTA) and treated EDTA (EDTAD). However, the treatment of EDTA with acetic anhydride showed a remarkable changes in the general vibrational aspect of EDTA, where the appearance, on the EDTAD spectrum, of new
absorption bands between 1761 cm\(^{-1}\) and 1809 cm\(^{-1}\) assigned to the anhydride carbonyl (CO) vibrations (symmetric and antisymmetric), indicating that the trans-anhydridation reaction between EDTA and acetic anhydride was carried out successively. Fig. 2b shows the vibrational spectra (FTIR) of unmodified HEC and HEC-EDTA before and after saponification using a saturated sodium bicarbonate solution.

Fig. 2. FTIR spectra of (a) acid and anhydride forms of EDTA and (b) HEC-EDTA and saponified HEC-EDTA
The spectrum of HEC indicates a strong adsorption band intensity at 3412 cm\(^{-1}\) characteristic of the OH hydroxide group of polysaccharides structures \((Pradeep 2009)\), while a distinguished band around 1355 cm\(^{-1}\) was attributed to the deformation vibrations in the plane of the OH function of the alcohol group \((Zafar, Aqil et al. 2007)\). The absorption band located at 1060 cm\(^{-1}\) corresponds to COC stretching vibration in glucopyranose \((Silverstein, Bassler et al. 1991)\), where that around 1120 cm\(^{-1}\) has been attributed to the asymmetric CO vibration \((Zare, Motahari et al. 2018)\).

The spectrum corresponds to HEC-EDTA highlights the esterification reaction via the appearance of new absorption bands characteristic of grafted entities (EDTA). However, the band observed at 1689 cm\(^{-1}\) is attributed to the acid carboxylic carbonyl groups (CO), while the band located at 1630 cm\(^{-1}\) corresponds to the deformation of naturally absorbed water. The appearance of a new absorption band located at 1738 cm\(^{-1}\) corresponds to the carbonyl ester group reveals the successful grafting of EDTA on HEC. After saponification, the shift of the band attributed to the acid carbonyl from 1689 cm\(^{-1}\) to 1589 cm\(^{-1}\), indicating the transformation to the carboxylate form \((\text{COO}^-, \text{Na}^+)\) under the action of \(\text{NaHCO}_3\), is another strong indication of the incorporation of the carboxylic functions on the surface of the cellulotic material (HEC). The creation of the negatively charged character (carboxylate) is an encouragement to consider HEC-EDTA as a candidate to be effective adsorbent for the removal of cationic dyes like BM.

Fig. 3. Solid-state CP/MAS \(^{13}\text{C}\)-NMR spectrum of HEC-EDTA
The solid-state CP/MAS 13C NMR spectrum of HEC-EDTA (Fig. 3) reflects the various structural modifications of HEC resulting from EDTA crosslinking reaction. The number of Hydroxyethyl groups (DS) in the starting material (HEC) is estimated in our previous papers around $DS_{HEC} \approx 1.5$, based on the integrations of proton signals, on the 1H NMR spectra, of C6-methylene cellulose and grafted methylene Hydroxyethyl (Jilal, El Barkany et al. 2018, Chaouf, El Barkany et al. 2019), and this result is exploited in the following steps to calculate the degree of substitution of EDTA in this work (DS_{EDTA}). Signals of broad-ringed cellulose skeletal carbon (HEC) are recorded between 60 and 105 ppm (Jilal, El Barkany et al. 2018). However, the appearance of a new methylene carbon signal at 71.2 ppm (**) is attributed to the chemical shift of typical methylene carbon signals of HEC detected at 61.3 ppm (*), that is a strong signal of the change in the (*) carbon chemical environment, caused by EDTA chemical modification of HEC, where also a positive result of successful grafting reaction is shown. Furthermore, the value of $DS_{EDTA} (\approx 0.8)$ was calculated from 13C NMR spectrum of HEC-EDTA sample shown on Fig. 3, and based on the integrations of the carbonic signals I * (≈ 0.26) and I ** (≈ 0.30), using the following equation (Eq. 4):

$$DS_{EDTA} = 1.5 \frac{I^{**}}{I^{**} + I^*} \quad (eq. \ 4)$$

The 13C solid NMR spectrum (Fig. 3) reveals evidence of grafting and crosslinking reaction by examining the ratio of signal integrations of carbonyl esters binding EDTA entities grafted to HEC chains, which are located at 176.8 ppm (4), and those of free carbonyl acids detected at 179.1 ppm (5). Values close to I_4 (0.23) and I_5 (0.25) indicate a high crosslinking density. Besides, the degree of crosslinking ($Dc \%$) is estimated to be around 92 % using the equation 5 (eq. 5) :

$$Dc(\%) = \left(3 - 4 \frac{I_5}{I_5 + I_4}\right) \times 100 \quad (Eq. \ 5)$$

This trend, corresponding to the high level of crosslinking, is confirmed by the closest values of the integrations of the signals attributed to the methylene carbons of the grafted EDTA at 52.6, 55.6 and 58.6 ppm (Fig. 3) assigned to the EDTA carbons (1), (2) and (3), respectively. Furthermore, the integration ratio close to the value of 1 between the two typical peaks (2) in α-ester and (3) in α-acid is a strong indication of the predominance of the crosslinked form of the hydrogel.
Besides the NMR, spectral results of HEC-EDTA reported in Fig. 3 confirm those obtained by FTIR vibrational spectroscopy (Fig.2a). In addition, the proposed structure of the new hydrogel developed in this paper is confirmed and completed by the study of the elemental profile for a D_{EDTA} of 0.8, and the results are reported in Table 1. Before getting into the study of the elemental profile, there is a need to note that the elemental composition is very sensitive toward the structure and bonding variability of hydrogel network. However, experimental data from the elemental analysis of hydrogel (HEC-EDTA$^{\exp}$) showed that the EDTA crosslinking reaction of HEC, under homogeneous conditions, slightly decreased the proportion of carbon (from 47.37 to 47.23 %) and hydrogen (from 7.02 to 6.36 %), where the appearance of higher nitrogen content (3.05 %), compared to the HEC starting material (0.00 %), could prove the introduction of EDTA as a crosslinking agent.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>N</th>
<th>H</th>
<th>D_{EDTA}</th>
<th>Dc %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEC</td>
<td>47.37</td>
<td>0.00</td>
<td>7.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>HEC-EDTA$^{\exp}$</td>
<td>47.23</td>
<td>3.05</td>
<td>6.36</td>
<td>0.80</td>
<td>92.0</td>
</tr>
<tr>
<td>HEC-EDTAth*</td>
<td>47.22</td>
<td>3.39</td>
<td>6.30</td>
<td>0.80</td>
<td>100</td>
</tr>
<tr>
<td>HEC-EDTAth0</td>
<td>45.60</td>
<td>5.01</td>
<td>6.08</td>
<td>0.80</td>
<td>0.00</td>
</tr>
</tbody>
</table>

exp: Synthesized in this work, th: Completely crosslinking and th0: Without crosslinking

Table 1. Elemental analysis of HEC (DS0) and EDTA-HEC (DS0.8)

On the other hand, the theoretical elemental compositions (HCN) of the hydrogel (HEC-EDTAth) of the extreme values at the level of degree of crosslinking (HEC-EDTAth* for Dc = 100 % and HEC-EDTAth0 for Dc = 0 %) have been calculated. Thus, it was noted that the elemental analysis profile for the same degree of substitution ($D_{\text{EDTA}} = 0.80$), and for a crosslinked polyfunctional samples (as in the case of polysaccharides), is strongly affected by the degree of crosslinking (Dc %). This result can be explained considering the superficial and the core network EDTA distribution in hydrogel materials. Since, in highest degree of crosslinking, the sharing of each EDTA unit between two AGUs is more considered, while in the materials with lower Dc%, each AGU keeps its EDTA unit. In the case of HEC-EDTA, it is acceptable to have a greater values of Nitrogen content (5.01 %) for a free system (without crosslinking) and around half (3.39 %) in the case of a fully crosslinked system, indicating that the EDTA moiety is inversely proportional to the degree of crosslinking. In fact, the elemental analysis experimental data were very close to those theoretical characterizing a fully crosslinked system at a D_{EDTA} value equal to 0.80. This also confirms the high Dc % value of 92 % characteristic of the gelatinous system in this work. In comparison with the
results that are published recently (Zannagui, Amhamdi et al. 2020), drastic differences can be
caused, by the variation of the values of DS and Dc %, in terms of physicochemical properties
particularly the powder-gel aspect, water solubility, swelling, accessibility, etc.

Application of HEC-EDTA to dyes removal in Water Treatment

Effect of contact time and kinetic study

The adsorption kinetic describes the variation of the concentration of adsorbate in the
solution as a function of contact time. In order to determine the mechanism limiting the
kinetics of the adsorption process, three models were applied during this study, the pseudo-
first order, the pseudo-second order and the interparticle diffusion models. Fig. 4a shows the
contact time effect on the evolution of MB adsorption capacity of HEC-EDTA, where the
initial concentration of cationic dye (C0) was set at 300 mg. L⁻¹, pH8 and 30 mg of gel-
adsorbent. The adsorption kinetic behavior of MB on HEC-EDTA is characterized by a high
rate in the initial stage (first 10 min) indicating a high accessibility to the adsorption sites, and
then adsorption process progressed with low increasing of the adsorption capacity to reach the
equilibrium. The time to equilibrium was 30 min as the optimal contact time, and the
maximum adsorption capacity was around 953 mg.g⁻¹.

At the kinetic level, in the pseudo first order model, the adsorption rate is proportional to
the variation of the adsorption capacity between the equilibrium and at the t time (Eq. 6), k₁ is
the rate constant (min⁻¹). By integrating and applying the initial conditions (t₀=0 → qₜ=q₀=0
and t=tₑ → qₜ=qₑ) the previous equation takes the linear following form (Eq. 7), k₁ and qₑ are
obtained by plotting ln (qₑ – qₜ) against time. On the other hand, the pseudo second order
model gives the adsorption rate proportionally to the square variation of the adsorption
capacity between the equilibrium and at the t time (Eq. 8), k₂ is the rate constant (g.mg⁻¹.min⁻¹).
However, the linear form (Eq. 9) of the previous equation (eq. 8) was obtained by
integrating and applying the initial conditions (t₀=0 → qₜ=q₀=0 and t=tₑ → qₜ=qₑ), qₑ and k₂
are obtained by plotting t/qₜ = f(t).

\[
\frac{dq_{t}}{dt} = k_{1}(q_{e}-q_{t}) \quad (eq.\ 6)
\]
\[
ln(q_{e}-q_{t}) = lnq_{e} - k_{1}t \quad (eq.\ 7)
\]
\[
\frac{dq_{t}}{dt} = k_{2}(q_{e} - q_{t})^{2} \quad (eq.\ 8)
\]
\[
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t
\]
(eq. 9)

\[
q_t = k_{int} t^{1/2} + C
\]
(eq. 10)

To investigate the kinetic profile of MB adsorption onto HEC-EDTA gel, the kinetic data were fitted according to the linear form of pseudo-first-order and pseudo-second-order kinetic models, hence the conventional linear regression of the kinetic results for the two kinetic models are shown in Figure 4a. The comparison of the coefficient correlation (R) of the linear regression was carried out to confirm the validity of the kinetic models and to examine absorption kinetic process. Thus, kinetic parameters results of the two models, summarized in Table 2, show that the pseudo-second-order kinetic model provided better correlation, with high coefficient of determination value \(R^2 \sim 0.9998\), than that of pseudo-first-order kinetic model \(R^2 \sim 0.9870\). Moreover, the calculated \(q_e\) value derived from pseudo-second-order (table 2) is consistent well with the experimental value, which indicates that the MB adsorption process kinetic on EDTA crosslinked HEC gel was better described by pseudo-second-order kinetic model.

<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th>(q_e) (mg.g(^{-1}))</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pseudo-first order</td>
<td>0.132</td>
<td>49.15</td>
<td>0.9870</td>
</tr>
<tr>
<td>pseudo-second order</td>
<td>6.8 (10^{-3})</td>
<td>957.9</td>
<td>0.9998</td>
</tr>
</tbody>
</table>

Table 2. Kinetic parameters of pseudo-first-order and pseudo-second-order kinetic models for MB adsorption onto HEC-EDTA gel

Meanwhile, the study of intraparticle scattering was performed basing on Weber-Morries intra-particle diffusion model \((Mabel, Sundararaman et al. 2019)\) described by eq. 10, where \(k_{int}\) is the rate constant of intraparticle diffusion model (mg.g\(^{-1}\).min\(^{-1/2}\)), and \(C\) is a constant involved in the thickness of the boundary layer of the intraparticle diffusion model (mg.g\(^{-1}\)). Figure 4b shows linear fitted data of intraparticle diffusion kinetic model, where the kinetic parameters (\(k_{int}\) and \(C\)) were derived from the slope of the linear part of the intraparticle model plots and intersection point at the origin, respectively.

According to Weber-Morris intraparticle kinetic model, the adsorption process is strictly controlled by intraparticle diffusion if \(q_t\) variation against \(t^{1/2}\) is straight line. So, the apparition of three regions of linearity, shown on Fig. 4b, is a strong indication of that the intraparticle diffusion is not the only rate limiting step in the adsorption process. Whereas, the
first step ($t^{1/2}$ between 0 and 1 min$^{1/2}$) showed an interparticle diffusion behavior, characterized by a steep slope ($k_{int(1)} = 832 \text{ mg.g}^{-1}.\text{min}^{-1/2}$), and correlated to the diffusion of MB from the bulk solution to the boundary layer surrounding on the external adsorption surface of the adsorbent. During first contact, the low recovery rate and the high density of active accessible sites, on the external surface of HEC-EDTA (that can be occupied by adsorbate), makes this step the fastest process (Han, Wang et al. 2011), and therefore a rate controlling step.

Whereas, the second linear part ($t^{1/2}$ between 1 and 2.5 min$^{1/2}$) indicated by a slight slope ($k_{int(2)} = 91 \text{ mg.g}^{-1}.\text{min}^{-1/2}$) compared to the previous step, indicates the gradual decrease in the adsorption rate, where the change in adsorption process turns from interparticle diffusion to intraparticle one. Indeed, when the gel external surface adsorption sites (HEC-EDTA) are consumed, the adsorbate molecules (MB) penetrate and anchor into the pore sites via an
intraparticle diffusion, and this under the osmotic pressure generated by the different concentration gradients of dye molecules in the solution, which drove the filling and diffusion through additional internal surfaces (Liu, Tian et al. 2019). Although, the last linear part showed a very low slope ($k_{int(2)} = 6 \text{ mg.g}^{-1}.\text{min}^{-1/2}$) indicating the stability of the capacity adsorption, and that the adsorption system has reached equilibrium.

Gel dose, initial concentration and pH effects

The adsorbent dose effect is an important parameter to enhance the absorption capacity for dye removal, and to understand the mechanism profile of adsorption process. However, the variation of the adsorption capacity (q_e) against gel dose ($0.1–0.6 \text{ g.L}^{-1}$, $C_0 = 600 \text{ mg.L}^{-1}$ and $pH = 8.0$) was illustrated on Figure 4c. However, it can be seen that the adsorption capacity slightly increased with increasing of gel dose from 0.1 to 0.3 g.L$^{-1}$, where the adsorption capacity moved from 1902 to 1923 mg.g$^{-1}$, while the MB removal ratio (R%) increased from 53.88 % to 73.44 % and to 96.15 % for 0.17, 0.23 and 0.3 g.L$^{-1}$ gel doses, respectively. Then, beyond 0.3 g.L$^{-1}$, the change in the adsorption capacity of MB was inversely proportional to the gel dose, where the ability to eliminate MB decreased from 1923, 1196 and 1142 mg.g$^{-1}$ to 971 mg.g$^{-1}$ with increasing gelatinous load from 0.3, 0.41, 0.48 to 0.6 g.L$^{-1}$. In addition, the calculated values of the removal rate (R %), in the adsorbent dose range higher than 0.3 g. L$^{-1}$, were optimal and greater than 90%.

This behavior can be explained by adsorption resistance, which results from resistance to mass transfer between external and internal surface under osmotic pressure, which affecting the value of driving forces. Hence, faced with the high availability of vacant sites, adsorption would easily reach equilibrium, while other more active sites will not be available and this because of their aggregation and the lengthening of the diffusion path, and consequently, the decrease in the total available surface and the reduction in the adsorption capacity of the material. In addition, it is evident that the low rate of recovery of the active sites causes a low adsorption capacity. At light of this phenomenon, figure 4c shows an overview of the influence of gel dose on the elimination capacity of MB, so the dose 0.3 g.L$^{-1}$ was selected as an optimal value, indicating that the active sites can be used efficiently, leading to a higher adsorption capacity.

The initial dye concentration is another significant factor that determines the effectiveness of the adsorption process. However, the effect of the initial concentration of the MB solution
on the adsorption ability of HEC-EDTA is shown in Fig. 4c, where the experiments were carried out within the initial concentration range of 50–600 mg L\(^{-1}\) (25 °C, pH8, gel dose : 0.3 g L\(^{-1}\)). Keeping all the other parameters constant, the results indicate that the adsorption capacity increased linearly over the initial concentration range of 50 – 600 mg L\(^{-1}\), suggesting that the qe values greatly depended on the initial concentration of MB solution. Indeed, increasing the dye initial concentration induce concentration gradient, that generates motrice forces pushing MB towards the adsorbent internal area. On the other hand, more than the difference is large in MB concentration between the solution bulk and the adsorbent area, the migration rate is greater, where increasing the concentration gradient promotes a high probability of collision between MB molecules and active sites on the adsorbent surface. Furthermore, in front of the continuous increase of the adsorption capacity against initial concentration of the organic dye, the formation of the multilayers is strongly suggested. This suggestion can be confirmed by the irrationality of models describing the single-layer adsorption, in particular the Langmuir model (Fig. 5a).

The pH of dye solution is an extensive factor that affecting the efficiency of absorption process, where drastically affect both the electrical behavior and the charge density of the adsorbent and the adsorbate, thus governing the adsorbent–adsorbate interaction mechanism. To investigate the pH solution effect on the adsorption efficiency, 0.3 g L\(^{-1}\) gel dose was used to 600 mg. L\(^{-1}\) MB initial concentration solution at room temperature (25 °C), where the pH solution (2 – 11) was adjusted using HCl and NaOH solution. The results in Figure 4d implied that the adsorption capacity is greatly depended on pH value variation, where at low pH values (2 – 4), low qe values were obtained and that were attributed to the protonation surface of the adsorbent, indicating a high effect of protonic competition. Above pH = 4, the adsorption capacity increased progressively with an inflection point at ranges of pH6, where the pKa value of the majority of carboxylic acids, indicating the saponification of the carboxylic acid functions, and therefore the activation of active sites in the form of carboxylate functions. At this point, the maximum qe value was reached and it did not show a significant value change of qe (2000 – 2150 mg·g\(^{-1}\)).

To confirm the suggestions previously proposed, the zeta potential of swollen gel at different solution pH was investigated. The results, shown in Figure 4c, indicate that HEC-EDTA hydrogel was characterized by PZC corresponding to an isoelectric point of zeta potential at pH = 3.42, where the surface of the adsorbent was neutral and no characteristic
adsorption occurred. Considering the typical crosslinking agent and its specificity, EDTA is a
hydaprotonic system representing a distinct proton distribution as a function of pH. The first
two acidities of EDTA are anchored to the polymeric chain, which explains its positive
behavior of zeta potential, and that is due to the protonation of the amine forms into
ammonium. Therefore, the increase in pH initiated the release of the other two acidities that
neutralize the ammonium charge to the PZC. Beyond that, the adsorption capacity continues
to increase, indicating the activation of the active carboxylic sites, reaching 1653 mg.g⁻¹ and
1923 mg.g⁻¹ at pH values of 7 to 8. At this stage of pH values, the contribution of first
structural amine (pKa5 = 6.13) of EDTA to the adsorption mechanism is suggested. This zone
is characterized by a strong decrease in zeta potential to a value close to -30 mV, which
indicates the predominance of electrostatic interactions in the adsorption mechanism, as well
as the carriers of the free doublets, in particular the amine and alcohol functions via sharing of
their electronic densities. Subsequently, the second structural amine (pKa6 = 10.37) shows
practically no activity (weak increase of qe which reaches 2180 mg.g⁻¹ at pH = 11), this is due
probably to the high alkalinity of the solution where the competitiveness between hydroxide
ions and active sites for MB is widely considered.

Adsorption isotherms

The modeling of adsorption isotherms were widely explored to elucidate the adsorbate-
adsorbent interactions, in particular to the interpretation of the concentration effect on the
dyes adsorption efficiency on solid supports in solution. However, Langmuir, Freundlich,
Temkin and Elovich are commonly used isotherm models describing the adsorption
phenomenon to understand adsorbate-adsorbent interactions. In the Langmuir isothermal
model, the adsorbed molecule is located on a well-defined and specific site of the adsorbent
material (localized adsorption), and each site is only capable of binding to one adsorbent-
molecule. The adsorption energy distribution of all adsorption sites is identical and
independent of the adjacent adsorbed molecules (homogeneous surface and no adsorbate-
adsorbate interaction) (Langmuir 1918). Equation 11 gives the linear form of the Langmuir
isotherm model.

\[
\frac{C_e}{q_e} = \frac{1}{k_l q_m} + \frac{C_e}{q_m} \quad (Eq. 11)
\]
C_e is the concentration of the MB aqueous solution of at equilibrium (mg.g$^{-1}$), q_e is the adsorption capacity at equilibrium (mg.g$^{-1}$). k_l is the Langmuir equilibrium constant that indicates the interaction level between the adsorbed molecules and the adsorbent surface, and q_m is the maximum adsorption efficiency (mg.g$^{-1}$). The separation factor is a very useful and characteristic factor of the Langmuir model ($R_l = 1/(1 + K_l C_0)$, the value of $R_l > 1$ indicates that the adsorption is unfavorable, if $0 < R_l < 1$ the adsorption is favorable while the zero value of R_l indicates that the adsorption is irreversible.

The relationship of classical isothermal Freundlich model is interpreted and proposed first by Saussure, and later popularized by Freundlich (Freundlich 1907). However, the linear form of power function (Eq. 12) describing the Freundlich isotherm model is commonly considered an empirical proposition, which gives an excellent description of the experimental isotherms obtained for solution phase adsorption (Weber Jr, Voice et al. 1983). In order to establish a theoretical basis linking the adsorption capacity and the physicochemical or/and molecular properties of adsorbent–adsorbate system, the Freundlich model has excited several lines of research. While, finding a theoretical description and introducing new concepts made the objective, especially order of fractal reaction (Skopp 2009), multilayer adsorption (Halsey 1948) and heterogeneity of the binding energy (Deliyanni, Peleka et al. 2007) and the surface potential (Sips 1948).

$$\ln q_e = \ln K_f + \frac{1}{n} \ln C_e \quad (eq. 12)$$

Recently, Na has shown, based on the Gibbsian interpretation of thermodynamics describing the Freundlich isotherm, that the solution phase adsorption is mainly controlled by the capillary effect of surface tension, and therefore the adsorption capacity can be quantitatively related to the molecular properties of adsorbate. In addition, analyzing the experimental values of $1/n$ (adsorption intensity, indicates the adsorbate affinity towards the adsorbent) and K_f (Freundlich equilibrium constant) reported in the literature (Abe, Hayashi et al. 1982, Xia and Ball 1999), Na demonstrated the linear correlation between the inverse of the Freundlich power, n, and the molecular size of the adsorbate. Hence, the linear correlation between the Freundlich power and the logarithm of the equilibrium constant was discovered, revealing the existence of an isocapacity concentration (ICC) for the adsorption (Na 2020).
Fig. 5: (a) The experimental results of adsorption of MB on HEC-EDTA illustrated according to theoretical models (Langmuir, Freundlich, Temkin and Elovich), (b) variation of lnK and ΔG against 1 / T and T, (c) Illustration of the regenerability steeps of HEC-EDTA and (d) variation of adsorption and dye removal capacities against regenerability cycle number.

Temkin assumes that the heat of adsorption of all molecules in the cover layer decreases linearly with the degree of coverage [ref], this variation may be linked to side interactions between adsorbed molecules (adsorbent-adsorbate interactions) [ref]. However, the Temkin adsorption isotherm is characterized by a uniform distribution of surface binding energies (Kavitha and Namasivayam 2007). The Temkin isotherm is expressed by the equation 13, where, \(q_e \) is the equilibrium adsorption efficiency (mg.g\(^{-1}\)), \(C_e \) is the equilibrium adsorbate concentration (mg.L\(^{-1}\)), \(R \) is the universal gas constant (J.mol\(^{-1}\).K\(^{-1}\)), \(T \) is the temperature (K), \(b \) is the adsorption energy dependence constant and \(K_t \) is the equilibrium constant (L.mg\(^{-1}\)).

\[
q_e = \frac{RT}{b} \ln K_t + \frac{RT}{b} \ln C_e \quad (eq. 13)
\]
Elovich model differs from that of Langmuir regarding the evolution of adsorption sites, where the density of available sites varies during adsorption, which implies adsorption in several layers (Hadj Salah 2012). The Elovich isotherm is expressed by the equation 14, where \(q_m \) (mg.g\(^{-1}\)) is the maximum adsorption capacity and \(K_e \) is the Elovich constant (mg\(^{-1}\)).

\[
\ln \frac{q_e}{C_e} = \frac{q_e}{q_m} + \ln(k_e q_m) \quad (eq.14)
\]

Figure 5a illustrates the experimental isothermal results of MB adsorption on HEC-EDTA, fitted according to the theoretical models of Langmuir, Freundlich, Temkin and Elovich. However, a strong correlation was observed for the Freundlich isotherm model, indicating its validity with a high coefficient of determination value \((r^2 = 0.9976) \), that is an indication of the reliability of the data and a good degree of reproducibility. This great correlation in a strong indication of the heterogeneity of active surface of material, and the MB adsorption was carried out in multilayer process. This result is in good agreement with the proposed structure where the presence of the different adsorbent sites with heterogenic reactivity in nature. Furthermore, in the crosslinking reaction conditions of HEC by EDTA, especially the value of the average functionality of crosslinking system \((f = 1.75) \), is highly probable to suggest the formation of a two-dimensional network with different suggested active sites. In particular, the carboxylic functions (-COO-), the amines (-N˂) and alcohols (-OH) functions can interact by their free electronic-doublets as negative charges liable to create electrostatic bonds with the MB (Wang, Zhao et al. 2018, Ning, Zhang et al. 2021).

The Freundlich constants \((K_f = 22.42 \text{ mg.g}^{-1}) \) which is a measure of the degree of adsorption and the exponent of non-linearity \((1/n =1.44) \) can be determined from the slope and intercept of the \(\ln qe = f(\ln Ce) \) plot (linear red curve on Fig. 5a). However, the high value of \(K_f \) suggests a high degree of heterogeneity (Somera, Cuazon et al. 2019), where to interpret the value of \(1/n \) found in this work, it is important to highlight some efforts discussing the relationship between this constant and the mechanism of adsorption process. Therefore, the value \(1/n \) derived from the Freundlich equation serves to describe the linearity of adsorption, or alternatively the degree of curvature of the isotherms described in the concentration range tested. In a nonlinear mode, the plot is linear for up to 50% max saturation and then becomes nonlinear. Although the Freundlich equation provides important information regarding sorption of particles, but it has limited by the empirical aspect and its validity only up to a certain concentrations, above which it becomes nonlinear (K.Singh...
2016). However, the Freundlich model linearity has often been attributed to the unit value of
the adsorption intensity \((n=1)\). Whereas, the non-linearity was associated with the
hydrophobic behavior and to the hydrophobicity degree of the adsorbate molecules, where the
adsorption process is controlled by the solubility level (ref). A unit value of \(1/n\) was assigned
to the homogeneous distribution of adsorbent sites, involving a type C isothermal distribution.
While, values ranging from 0.7 to 1.0 showed a decrease in adsorption capacity with
increasing of the concentration of the adsorbate molecules, which corresponds to the L-type
isotherm profile, where much curved isotherms were encountered for \(1/n\) values less than 0.7.

Unusually, values greater than 1 \((1/n>1)\) have been the subject of scientific debate with
many gray areas about their meaning, several interpretations of which have been surmounted
to the surface. Some authors have linked the small value of \(n\) to the competitive effect, at low
concentrations, between the different constituents of the adsorbate system or to solvent
competition. On the light of this, Wu et al. have shown that systems anionic with the law
competitive solute concentrations show similar \(n\) values to that of the single solute \((n = 0.33 < 1)\), this finding suggests that the competitive effect is insignificant when are added in low
concentrations (Wu, Lo et al. 2000, Wu, Kuo et al. 2002). A comparison study, performed by
Wu et al., of the \(n\) values in single solute system with that in binary solute system, showed
that a more significant competitive effect results in a higher \(n\) value but a lower \(K\) value (Wu,
Kuo et al. 2002). In addition, the same results were observed in the case of competitive
adsorption with a Freundlich isotherm or in the case of heavy metals (Park, Ok et al. 2016,
Zhang, Wei et al. 2016, Wang, Liu et al. 2018), or organic matter on solid supports (Yu, Wang
et al. 2016, Conde-Cid, Ferreira-Coelho et al. 2019, Wang, Fang et al. 2019, Conde-Cid,
Fernández-Sanjurjo et al. 2020). Moreover, Dada et al. considered the \(1/n\) Freundlich value
as an indicating parameter of the surface heterogeneity degree, where small values of \(1/n\)
indicating that a large level of heterogeneity is expected (Dada, Olalekan et al. 2012). Further
on, Senthil Kumar et al. linked the value \(n<1\) to the chemical nature of the adsorption process,
while \(n>1\) means that a physical process nature of MB dye adsorption onto Sulfuric Acid –
Treated Orange Peel (Senthil Kumar, Fernando et al. 2014). However, according to Mohan et
al., \(1/n\) above one indicates a cooperative adsorption process (Mohan and Karthikeyan 1997,
Dada, Olalekan et al. 2012), and is an adsorption validity index if \(n\) is between one and ten
(Goldberg 2005). At \(1/n < 0.1\), the adsorption isotherm approaches irreversible isotherm
(Worch 2012, Saadi, Saadi et al. 2015), etc.
Faced to this ambiguity and the absence of an interpretation based on acceptable theoretical usefulness of this famous model, almost all of the authors agree that the value of 1/n can classify adsorption isotherms as concave (1/n > 1) and convex (1/n < 1) functions. The first one showed the direct proportionality of sorption energy to the surface concentration, where the convex demonstrated that the adsorption energy is inversely proportional to the surface concentration (Can, Ömür et al. 2016). Therefore, the obtained value for 1/n (1.44), in this work, is greater than unity thus, indicating a heterogenous sorption energy distribution.

In addition, S-type adsorption, according to the classification of Giles et al. for solution phase adsorption isotherms (Giles, Smith et al. 1974), is most considered to adsorbing adsorbate containing a polar functional group on adsorbent hydrogels. This was observed even for high values of 1/n, which can reach about ten (between 2 and 12) (Gu and Zhu 1990, Yurdakoç, Seki et al. 2005, Khandelwal, Narayanan et al. 2020). This correspondence can be attributed, at low concentrations, to the difference between the force of diffusion – swelling of solvent versus the force of concentration gradient and mass transfer of solute (Kaşgöz and Durmus 2008, Narayanan, Nethran et al. 2014, Bai, Zhang et al. 2016, Du and Piao 2018, Saraydın, Işıkver et al. 2018).

Thermodynamic study and regenerability

The effect of temperature on the adsorption capacity was studied within the temperature range between 20 and 60 °C (C0 = 300 mg.L⁻¹, contact time = 30 min, pH8 and 0.3 g.L⁻¹). However, the linear curves representing the thermal profiles of the adsorption equilibrium constant (lnK = f (1 / T)) and of the Gibbsian energy variation (∆G = f (T)) are shown on Figure 5b. As can be seen that, increasing temperature was inversely influenced the evolution of LnK, which indicates the increase in the rate constant of the reverse reaction of adsorption, where the adsorption equilibrium moves in the opposite direction. This profile is accompanied by a similar decrease in the adsorption capacity, indicating the physisorption nature of adsorption process, where the stability of the physical adsorbent-adsorbate bonds is low compared to the thermal energy supplied to the system, and consequently, the breakdown and shift of equilibrium towards favoring desorption. Similarly, the increase in the Gibbs energy (ΔG) value of the of the adsorption reaction, increasing temperature (Figure 5b), is a strong indication of the physical aspect of the adsorption process. This behavior of free energy confirms the previous result and justifies the changes in the equilibrium constant with
temperature. The Gibbs energy change of the adsorption reaction was estimated from Equation 15:

$$\Delta G = -RT \ln K \quad (\text{Eq. 15})$$

Where ΔG is the variation of free energy (KJ.mol$^{-1}$), R is the universal gas constant, T is the temperature (K) and K is the equilibrium constant. The values of the enthalpy (ΔH) and the entropy (ΔS) can be calculated from the Van't Hoff Equation (Eq. 16):

$$\ln K = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} \quad (\text{Eq. 16})$$

The thermodynamic parameters of the adsorption, ΔH and ΔS, can be determined by plotting $\ln K$ vs $1/T$. The negative values of ΔG confirm the spontaneous behavior of the adsorption process, while negative enthalpy value of ΔH (-45.58 KJ.mol$^{-1}$) shows the exothermic nature of the reaction. In addition, the negative entropy value of ΔS (-120.31 J.mol$^{-1}$.K$^{-1}$) indicates an increase in the molecular order and a significant decrease in the degree of freedom of the solute molecules (MB), when fleeting from the solution to the adsorbent surface connection. The apparent activation energy value (E_a/R) was estimated from the experimental data, using the modified Arrhenius equation related to the surface coverage (θ) and the sticking probability, that quantifies the potential of an adsorbate to remain on the adsorbent indefinitely (Horsfall Jrn and Spiff 2005, Aljeboree, Alkaim et al. 2015, Thabet and Ismaiel 2016, Labidi, Salaberria et al. 2019). However, the surface coverage was calculated according to the following relation: $\theta = 1 - C_e/C_0$, where C_0 and C_e are initial and equilibrium MB concentrations, respectively. Yet, plotting $\ln (1 - \theta)$ against $1/T$ gives a linear plot with a slope of E_a/R, which E_a/R value was found to be -4.7 KJ.g.mol$^{-1}$. The negative value of E_a confirms that the MB adsorption process is exothermic in nature, and indicates that lower temperatures were favorable for the MB removal by adsorption using HEC-EDTA adsorbent. Therefore, these results complement the previous ones and confirm that the process of sorption of MB is physisorption. In addition, the low values of E_a suggest that adsorption is a diffusion-controlled process.

Even with their adsorption efficiency, adsorbents must be inexpensive, regenerated, and present a green approach, which encourages their use at the industrial level. It is therefore desirable to have economically viable methods for removing cationic dyes, in particular by adsorbents based on environmentally and friendly raw materials. In this context, HEC-EDTA
hydrogel have an exceptionally high adsorption capacity for MB. The procedure of recovering
the organic dyes, during the adsorbent regeneration step, is easily accomplished by eluting the
gelatinous mass with adequate 0.1 M aqueous acid solution (Hu, Liang et al. 2018, Wang,
Zhang et al. 2020, Ning, Zhang et al. 2021). In this paper, the study of the regenerability and
reusability of elaborated HEC based hydrogel, was carried out for 0.5 g of HEC-EDTA-BM
(qe ~ 950 mg.g-1) in a 10 mL column, eluted with 0.1 M aqueous HCl solution (Fig. 5c).
Figure 5c shows that the upward flow of acid causes discoloration of the adsorbent, while the
solution collected at the outlet of the column has become colorless after adding a volume of
acid that does not exceed 10 mL. Regeneration results from the release of BM under the
action of the acid, which causes the protonation of the carboxylate and amino functions on the
surface of the HEC-EDTA adsorbent, and consequently, eliminates the electrostatic
interactions between BM and HEC -EDTA.

Reusability is one of the important properties of the adsorbent for practical application,
especially to dyes removal in wastewater treatment. The adsorption–desorption flow chart and
adsorption–desorption cycles are exhibited in Figure 5d. As shown in Fig 5c, after five
adsorption–desorption cycles, the adsorption capacity still maintained at around of the
original adsorption capacity. Hence, a slight decrease after five consecutive adsorption–
desorption cycles (for 6th and 7th cycle), but the dye removal still exceeded 90% to the initial
adsorption. High adsorption efficiency and long life cycle of HEC-HEC hydrogel, provides
promising material as ecofriendly regenerable adsorbent with high-performance and excellent
practical value for industrial applications.

Theoretical and Computational Study

MD simulations for the analyzed structures were conducted with the Adsorption Locator
module imbedded in Materials Studio2017 software (Amrhar, Berisha et al. 2021). Force field
parameterizations were calculated and optimized using COMPASS II (Biabangard, Nazari et
al. 2021). The considered structures for this work were: i) Periodic HEC-EDTA system
consists of HEC oligomers containing 6 monomers grafted by EDTA according to the
experimental discussed results above (degree of substitution (DS) and degree, crosslinking
(Dc %) and two conjugated bases of carboxylic groups by EDTA, and ii) Cationic MB ions
optimized using DFT methods (Pelalak, Soltani et al. 2021). However, the initial charges
implemented were Hirshfeld charges. The charge partitioning by Hirshfeld method shows that
S atom has a positive charge of 0.1504e, and N has a negative charge of 0.1471 e (Li, Zhang et al. 2018).

Adsorption simulation was carried out on two stages, adsorption of 12 MB+ on the surface of HEC – EDTA layer of 6 monomers, followed by MD simulations to achieve the optimal results. MD simulations have been conducted as NPT ensemble giving the experimental conditions (Guo, Zhang et al. 2020). Temperature and pressure were controlled using the Nose-Hoover and Berendsen method respectively, with all simulations performed at 298.15 K and at 1 bar. The motion equations were integrated using the velocity verlet integrator method with a time phase of 1 fs. Lennard-Jones encounters were handled with possible 15 Å cut-offs and Periodic boundary conditions have been applied in all directions, and 10 ps long MD Simulations have been used for the studied systems.

Fig. 6: MD Adsorption simulations of MB+ on HEC-EDTA
The molecular structures of MB+ and HEC-EDTA were examine in terms of intermolecular Non-covalent interactions including Pi-Pi interactions, anion-Pi interactions and electrostatic interactions, and sub-structural molecular clusters. However, MD simulations results showed that the adsorption process was better described by non-covalent interactions between methylene blue and EDTA on the adsorption, especially the electrostatic collisions which given the possibility to create regioselective clusters around EDTA-carboxylates (Stîngă, Băran et al. 2021). At first, the results of MD simulation reveal the tendency of MB+ to be adsorbed on EDTA surface, as expected this is due to electrostatically interaction between cationic MB ions and anionic EDTA-carboxylate groups (Fig. 6). Electrostatically interactions (between MB+ and O-) and Pi-cations (between aromatic rings and MB-) led to the formation of the major molecular clusters. On the other hand, the Pi-Pi interactions (between Phenyl groups themselves and between Phenyl groups and carbonyl oxygen) and the Pi-cation interactions (between delocalized MB+ and carboxylic conjugate groups) sustain sub structural clusters (Fig. 2, 3) (Khalaf, Hamed et al. 2021).

Molecular structure and cluster configurations

Molecular dynamics simulations indicated the formation of specific configurations of MB-EDTA clusters on specific HEC-EDTA surface areas. The region selectivity of MB+ adsorption observed on Fig. 1 is due to non-covalent interactions discussed above, where the repulsive forces between grafted EDTA$^{2-}$ give reason to the apparition of new structural orientations and configurations. These steric arrangement in the new chemical environment induced a new redistribution of bond strengths, where the formation of cavities (Fig. 7a) allowing the MB+ absorption in several geometric possibilities (clusters), which explains the high adsorption capacity of HEC-EDTA material to cationic dyes. Yet, the orientation of MB+ was finding selective (i.e. Phenyl rings toward O- by anion - Pi interaction) (Fig. 7).
Fig. 7: Submolecular clusters MB-EDTA interactions (Dashed lines: Non-covalent interactions).

Fig. 8: Proposal MB adsorption mechanism on HEC-EDTA

In addition, the contribution of repulsive forces (i.e. repulsive forces, cation-Pi and Pi-Pi interaction) to the formation of MB + clusters is strongly suggested. However, the Pi-Pi interaction of phenyl rings leads to ring stacking, consequently inducing the formation of MB + aggregates. With regard to the excess repulsive charges, this is compensated by a negative EDTA charge. Thus, the results correlate with experimental evidence and explained them in
terms of molecular adsorption, and in good agreement with thus recently published in the
literature (Mohammed, Lian et al. 2021) (Fig. 8).

Conclusion

New EDTA crosslinked cellulose derivative based material was successfully elaborated,
and investigated as new green and efficient adsorbent-hydrogel to cationic dyes removal. In
this paper, the synthesis of HEC-EDTA at high advanced crosslinking degree (up to 92 %),
was cried out using DAEDT and DMAP as acyl transfer agent, where the lamellar
morphology (2D-dimensional microstructure) was suggested from the average functionality of
the reaction system. The proposal structures were confirmed using structural analyzes (FTIR
and 13C CP/MAS NMR). The adsorption process was better described by pseudo-second-
order kinetic. However, the study of thermodynamic parameters exhibited a negative effect of
temperature indicating a physical adsorption process. In addition, the Freundlich model
revealed a strong correlation to the experimental results, which is a solid indication to
ergetic heterogeneity of the surface active sites. Molecular dynamics simulations were
investigated to confirm the experimental results and the good agreement was shown. The high
adsorption efficient of HEC-EDTA to cationic dyes was attributed, basing on the MDs results,
to the formation of specific configurations of MB-EDTA clusters, where the non-covalent
interactions is predominant. In addition, the repulsive forces between MB entities and
between MB and grafted EDTA$^{2-}$ give reason to the apparition of new structural orientations
and configurations (electrostatic cavities), thus increase the adsorption efficiency.

Acknowledgements

We thank greatly the anonymous reviewers for their careful review and valuable
suggestions on the manuscript. The authors are thankful to the Head of Oujda's chemistry
department, Prof. Abdelmonaem TALHAOUI, for providing all the facilities and subsidies
necessary to carry out the research work of this article. Our warm thanks are addressed to
Prof. Gharibi EL KHADIR, Director of the Solid Mineral Solid Chemistry Laboratory –
Oujda, for his sincere and persistent contributions and devoted cooperation.

References

Abe, I., K. Hayashi, T. Hirashima and M. Kitagawa (1982). "Relationship between the Freundlich adsorption
constants K and 1/N hydrophobic adsorption.” Journal of the American Chemical Society 104(23): 6452-
6453.

Structure, Properties and Mechanisms of Toxicity." Engineered Nanoparticles.

Structure, Properties and Mechanisms of Toxicity: 343-450.

