Establishment and Validation of a Prognostic Signature for Lung Adenocarcinoma Based on Metabolism-related Genes

Zhihao Wang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Kidane Siele Embaye
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Qing Yang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Lingzhi Qin
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Chao Zhang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Liwei Liu
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Xiaoqian Zhan
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Fengdi Zhang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Xi Wang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Shenghui Qin (✉ 2015tj0147@hust.edu.cn)
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

https://orcid.org/0000-0002-0275-133X

Primary research

Keywords: Lung adenocarcinoma, Metabolism-related genes, Prognostic, The Cancer Genome Atlas

DOI: https://doi.org/10.21203/rs.3.rs-113480/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Given that dysregulated metabolism has been recently identified as a hallmark of cancer biology, this study aims to establish and validate a prognostic signature of lung adenocarcinoma (LUAD) based on metabolism-related genes (MRGs).

Methods: The gene sequencing data of LUAD samples with clinical information and the metabolism-related gene set were obtained from The Cancer Genome Atlas (TCGA) and Molecular Signatures Database (MSigDB), respectively. The differentially expressed MRGs were identified by Wilcoxon rank sum test. Then, univariate Cox regression analysis were performed to identify MRGs that related to overall survival (OS). A prognostic signature was developed by multivariate Cox regression analysis. Furthermore, the signature was validated in the GSE31210 dataset. In addition, a nomogram that combined the prognostic signature was created for predicting the 1-, 3- and 5-year OS of LUAD. The accuracy of the nomogram prediction was evaluated using a calibration plot. Finally, Cox regression analysis was applied to identify the prognostic value and clinical relationship of the signature in LUAD.

Results: A total of 116 differentially expressed MRGs were detected in the TCGA dataset. We found that 12 MRGs were most significantly associated with OS by using the univariate regression analysis in LUAD. Then, multivariate Cox regression analyses were applied to construct the prognostic signature, which consisted of six MRGs (ALDOA, CAT, ENTPD2, GNPNAT1, LDHA, and TYMS). The prognostic value of this signature was further successfully validated in the GSE31210 dataset. Furthermore, the calibration curve of the prognostic nomogram demonstrated good agreement between the predicted and observed survival rates for each of OS. Further analysis indicated that this signature could be an independent prognostic indicator after adjusting to other clinical factors. The signature was found to be associated with various clinicopathological features. Finally, we confirmed six MRGs protein and mRNA expression in six lung cancer cells and firstly found that ENTPD2 might played an important role on lung adenocarcinoma cell lines clone formation and migration.

Conclusions: We established a prognostic signature based on MRGs for LUAD and validated the performance of the model, which may provide a promising tool for the diagnosis and prognosis in patients with LUAD.

Background

Lung cancer is one of the most commonly diagnosed cancer types with high mortality worldwide in men and women[1]. Lung adenocarcinoma (LUAD), which is considered a highly molecular heterogeneous disease, is a prevalent pathological subtype of lung cancer with an average 5-year survival rate of only 15%-17%. Molecular targeted therapy for LUAD has been widely accepted in recent years, and the epidermal growth factor receptor (EGFR) gene, the anaplastic lymphoma kinase (ALK) gene, and the Kirsten rat sarcoma viral oncogene (KRAS) gene is an important target of LUAD[5-7]. Despite great clinical improvements in the molecular basis, diagnosis and treatment modalities of LUAD, the recurrence rate...
still remains high, and the survival rate remains poor[4, 8]. As LUAD has the tendency of early metastasis, and most of them are found at advanced stages, which may be the most important cause of high mortality in LUAD patients[9, 10]. There is an urgent need, therefore, to develop more reliable and more effective biomarkers for the early detection, diagnosis, prognosis and monitoring of LUAD.

Dysregulated metabolism has been recently identified as a well-recognized hallmark of cancer biology, meeting cancer cell the requirements of rapid proliferation and preferential survival[11, 12]. In the 1920s, Otto Warburg first discovered that cancer cells vigorously take up glucose and convert pyruvate into lactate despite the presence of sufficient oxygen, a phenomenon now widely termed aerobic glycolysis, or the Warburg effect[13, 14]. This phenomenon not only provide a niche for the survival and proliferation of tumor cells, but also has a profound effect on the tumor microenvironment[15]. In addition, it has recently been reported that high concentrations of lactate in the tumor microenvironment are associated with distant metastasis and poor prognosis in a multitude of cancers, including LUAD[16, 17]. There is general agreement that the metabolic processes plays an important role in the pathogenesis and progression of lung cancer. However, few studies have comprehensively analyzed the relationship between metabolism-related genes (MRGs) and the diagnosis, risk stratification, prognosis, and survival of LUAD by high-throughput biomarker sequencing.

In the present study, we constructed a prognostic signature based on MRGs from The Cancer Genome Atlas (TCGA) database, which was further validated in the GSE31210 dataset to explore an efficient metabolic biomaker for the more accurate stratification management of LUAD. In addition, a nomogram that combined the prognostic signature was created for predicting the 1-, 3- and 5-year OS of LUAD. The accuracy of the nomogram prediction was evaluated using a calibration plot. Finally, cox regression analysis was applied to identify the prognostic value and clinical relationship of the signature in LUAD.

Materials And Methods

Data collection

The transcriptomic and the corresponding clinical data of patients with lung adenocarcinoma (LUAD) were downloaded from The Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) database and the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) database. The RNA-seq data, including 497 LUAD and 54 adjacent non-tumor cases from TCGA database and 174 LUAD cases from GSE31210 dataset were examined. The metabolism-related genes (MRGs) were identified from the metabolic pathway-related gene sets of “c2.cp.kegg.v7.0.symbols” in gene set enrichment analysis (GSEA). MRGs can be further analyzed only when they are included in the above data sets.

Differentially expressed MRGs and enrichment analysis

The differentially expressed metabolism-related genes (MRGs) in LUAD and normal tissues were detected using the R package limma and the Wilcoxon test method[18]. |logFC|>1 and adjusted P<0.05 were considered as significant. To explore the characteristic biological function and potential pathways of
these MRGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were carried out with R package clusterProfiler[19]. Functional categories with a false discovery rate (FDR) smaller than 0.05 were presented.

Construction of the metabolism-related signature for LUAD

To avoid the interference of irrelevant factors, patients with follow-up time less than 2000 days and more than 0 day were included. The 426 LUAD samples with survival information in the TCGA dataset were taken as the training set for constructing the prognosis risk model, and the 174 LUAD samples with survival information in the GSE31210 dataset were explored for external validation. Firstly, univariate Cox analysis was used to screen out MRGs associated with the overall survival (OS) of patients with LUAD, and only MRGs with a P value < 0.001 were selected for subsequent analyses. To avoid the prognostic signature overfitting and narrow the genes for prediction of the OS, Lasso Cox regression was carried out using R “glmnet” package. MRGs detected via Lasso algorithm were evaluated by step wise multivariate Cox regression analysis. By weighting the estimated Cox regression coefficients, the model of tumor-related metabolism genes risk was constructed[20]. The prognostic metabolism-related gene signatures were shown as risk score = \(\sum (\beta_i \times Expi) \), where \(\beta_i \), the coefficients, represented the weight of the respective signature and \(Expi \) represented the expression value. Based on the risk score formula, patients were assigned into low-risk group and high-risk group with the median risk score as the cut-off point. The Kaplan-Meier (K-M) survival curve was used the log-rank test to evaluate the differences in survival rate between the two groups. Furthermore, the receiver operating characteristic (ROC) curve was implemented by R “survival ROC” package[21] and the corresponding area under the ROC curve (AUC) was measured to assess the sensitivity and specificity of the metabolism-related signature.

Validation of the metabolism-related signature for LUAD

To verify the prognostic value of metabolism-related signature, we used the GSE31210 dataset as the validation cohort. The same formula was used to calculate the risk scores for each patient. Survival and ROC curve analyses were implemented as described above. Finally, According to the results of multivariate Cox regression analysis, a nomogram for predicting the likelihood of 1-year, 3-year and 5-year OS was constructed by R “rms” package. The calibration plots were used to evaluate the prognostic accuracy of the nomogram.

Analysis of these crucial MRGs expression level

Differential expression of these hub MRGs at the transcription level were examined by matching cancer and adjacent normal tissues from the TCGA database. For further validation of our analysis, The Human Protein Atlas (HPA) online database (http://www.proteinatlas.org/) was applied to identify the expression of these MRGs at the translational level [22].

Association of the prognostic signature and clinicopathological features
In addition, Univariate and multivariate analyses were used to estimate the effect of risk scores on overall survival and the clinicopathologic features (age, gender, clinical stage and pathological grading). We also explored the correlation between the expression of these MRGs and several clinical features.

Clonogenic assay and Western blot analysis. Clonogenic assay and Western blot analysis were performed as described previously[23, 24].

Quantitative real-time PCR. Total RNA was extracted with the TRizol Reagent (Invitrogen Carlsbad, CA, USA), and the concentration was measured using an ultraviolet (UV) spectrophotometer (UV-1201; Shimadzu Corporation, Kyoto, Japan). Reverse transcription (RT) was performed as described previously[24]. Real-time PCR was conducted using the SYBR-Green PCR kit (Takara, Osaka, Japan) in a Rotor-Gene 3000 machine (Corbett Life Science, Sydney, Australia). The quantitative analysis of the transcription of CAT, LDHA and ENTPD2 was described previously[24]. Each reaction was performed in a 25μL volume containing 2μL of cDNA, 0.5μL of 10μM per each primer, and 12.5 μL of the 2× SYBR-Green mixture. CAT: For: 5’-AGA TGC GGC GAG ACT TTC-3’, Rev: 5’-CAA CTG GGA TGA GAG GGT AG-3’. LDHA: For: 5’-CTG TAT GGA GTG GAA TGA ATG-3’, Rev: 5’-GAT GTG TAG CCT TTG AGT TTG-3’. ENTPD2: For: 5’-GAC GCT GGT TCT TCA CAC -3’, Rev: 5’-CTC TTT GGG CAC ATC CTG-3’.

Statistical analysis

All statistical analyses were performed by version 3.6.1 of R software(https://www.r-project.org/) and version 5.28.1 of Perl software (http://www.perl.org). The Wilcoxon test was used to compare two paired groups. The Kaplan-Meier survival curves were compared with the log-rank test. If not otherwise stated, data were considered to be statistically significant with P value <0.05.

Results

Identification of differentially expressed MRGs in LUAD

According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway-related gene sets, a total of nine hundred and forty-four MRGs were obtained from the gene sets of “c2.cp.kegg.v7.0.symbols”. We matched these genes with the sequence data of LUAD related mRNA in the TCGA database and GSE31210 dataset, and only common mRNAs were used. Considering the cutoff criteria (adjusted P value <0.05 and |log FC| > 1.0), 116 differentially expressed MRGs, which consist of 31 downregulated and 85 upregulated MRGs(Fig.1), were selected for subsequent analysis.

Functional enrichment of the differentially expressed MRGs

To investigate the potential functional implication of these MRGs, 116 differentially expressed MRGs were further analyzed by GO functional enrichment analysis and KEGG pathway enrichment analysis. A total of 431 GO terms and 42 pathways were identified (adjusted P<0.05). The top 30 enrichment GO analysis and top 30 enrichment KEGG analysis were displayed in Figure 2. The top enriched GO terms in biological processes were carboxylic acid biosynthetic process and organic acid biosynthetic process,
and those in cellular components were mitochondrial matrix, ficolin-1-rich granule lumen, and ficolin-1-rich granule, in terms of molecular function, genes were mostly enriched in terms of co-factor binding. In the KEGG pathway enrichment analysis, these genes were shown to be significantly associated with signaling pathway related to material synthesis and material metabolism, such as “biosynthesis of amino acids”, “arginine and proline metabolism”, “glycolysis/gluconeogenesis”, “carbon metabolism” and et al.

Establishment of metabolism-related prognostic signature for LUAD

To identify MRGs associated with OS, a univariate Cox proportional hazard regression analysis was initially performed on 116 differentially expressed MRGs in the TCGA database. The result showed that 12 MRGs were significantly associated with the OS (Fig.3a; P <0.001). Of the survival-related MRGs, 10 genes (ALDOA, TPI1, PKM, LDHA, GPI, PFKP, RRM2, TYMS, GNPNAT1, and ENTPD2) were considered risk factors (all P<0.001; HRs, 1.0026-1.1103) and that their overexpression may reduce survival; overexpression of the remaining two genes (CAT and FBP1) (all P<0.001; HRs, 0.9747 and 0.9907, respectively) may improve the survival of patients. The Lasso regression analysis was then used to remove MRGs that may be highly related to other MRGs(Fig.3b-c). Furthermore, a prognostic signature model was established based on multivariate Cox regression analysis. Finally, six MRGs were confirmed and applied to establish a metabolism-related signature(Fig.3d). A prognostic model was constructed to evaluate the prognosis of each patient as follows:Risk score = (0.001709×expression value of ALDOA) + (-0.01187×expression value of CAT) + (0.082279×expression value of ENTPD2)+(0.030344×expression value of GNPNAT1)+ (0.003499×expression value of LDHA)+(0.018476×expression value of TYMS).

Then, the risk score of each patient was calculated according to this prognostic model. Based on the median risk score, 426 LUAD patients were classified into a high risk group (n = 213) and low risk group (n = 213). The risk score, survival status and gene expression heatmap of these prognostic MRGs are presented in Fig 4a-c. Kaplan-meier log-rank test indicated that patients in the high risk group showed markedly poorer overall survival than those in the low risk group (Fig. 4d). Areas under the curve value of the signature predicting the 1-, 3- and 5-year OS rates were 0.73, 0.703 and 0.854, indicating that this prognostic model exhibited a good sensitivity and specificity (Fig.4e).

Validation of the metabolism-related prognostic signature for LUAD

The GSE31210 dataset including 174 LUAD samples were used for the validation of the metabolism-related signature. According to the median risk score, we divided patients into high risk (n = 78) and low risk groups (n = 96). Consistent with the results derived from the TCGA database, the Kaplan-Meier curve demonstrated that patients in the high risk group exhibited markedly poorer overall survival than those in the low risk group (Fig. 5d). Areas under the curve value of the signature predicting the 1-, 3- and 5-year OS rates were 0.654, 0.705 and 0.725 (Fig.5e). A nomogram for predicting 1-, 3- and 5-year OS of patients with LUAD was constructed with the six prognostic genes that had most significant values in multivariate analysis(Fig.6a). In
addition, the calibration curve of the prognostic nomogram demonstrated good agreement between the predicted and observed survival rates for each of OS(Fig.6b-d).

Analysis of these crucial MRGs expression level

To explore the six hub genes at the transcription level, the mRNA expression levels were analyzed using the TCGA database. The results demonstrated that the expression of ALDOA, ENTPD2, GNPNAT1, LDHA, and TYMS in LUAD tissues were all higher than those of adjacent tissues, while the expression of CAT was lower than those of adjacent tissues(Fig.7). To assess the six hub genes at the translational level, the protein expression levels were analyzed using the HPA database. The results showed that the protein level of ALDOA, ENTPD2, GNPNAT1, LDHA, and TYMS were higher in LUAD tissues than in normal tissues, matched their mRNA expression levels(Fig.8). There is no difference between LUAD tissues and normal tissues for the protein level of CAT(Fig.8b).

Clinical value of prognostic signature

Univariate and multivariate Cox regression analysis was conducted to evaluate the independent prediction ability of metabolism-related prognostic signature between the signature and other common prognostic factors, including age, gender, histological grade, pathological stage and TNM stage. Although univariate Cox analysis indicated that pathologic stage, T stage, N stage and our model were markedly associated with OS (Fig.9a; p<0.001), after the multivariate analysis, only metabolism-related prognostic signature(p<0.001) and pathological stage (p<0.007) can be used as an independent prognostic factor (Fig.9b). To further evaluate the clinical value of MRGs, the relationship between MRGs prognostic indicators and clinical features were investigated, and the results indicated that ALDOA, ENTPD2, GNPNAT1, LDHA, and CAT were differentially expressed in patients with various clinical features (Fig.10). To validate the clinical value of the metabolism-related prognostic signature, the association between the risk score and clinical characteristics were subsequently assessed, and the results demonstrated that high risk scores were positively associated with survival status, gender, N stage, and pathologic stage in patients with LUAD (Fig.10).

Experimental validation

The protein expression levels of ALDOA, ENTPD2, LDHA, TYMS and CAT were investigated in 5 lung cancer cell lines (A549, H460, H1299, H1975, PC9), normal airway epithelial cells (16HBE) as control. The same with the results we have got from bioinformatics, ALDOA, ENTPD2, LDHA, TYMS were significantly increased in 5 lung cancer cell line, comparing with in 16HBE. CAT was significantly decreased in 5 lung cancer cell line, comparing with in 16HBE. The gray value of protein bands were quantified (Figure 11).

The mRNA expression levels of CAT, ENTPD2 and LDHA were also investigated in 6 lung cancer cell lines (A549, H460, H1299, H1975, PC9, Lewis), normal airway epithelial cells (16HBE) as control. The results were also same with protein, ENTPD2 (Figure 12a) and LDHA (Figure 12b) were significantly increased, while CAT (Figure 12c) was significantly decreased, comparing with in 16HBE.
Since ENTPD2 may be a good prognostic marker and therapeutic target for cancer patients, especially those receiving immune therapy[25]. We used ENTPD2 inhibitor POM-1 in 5 lung cancer cell line, found that it could inhibit the formation of colonies in A549 and PC9, decreased colony-forming were also observed in H460, H1299 and H1975, Which were lung adenocarcinoma cell lines (Figure 13b). The protein expression of ENTPD2 in 4 cell lines were confirmed by western blot after use POM-1 (Figure 13a). Most important, we found POM-1 can inhibit the migration of 5 lung cancer cell lines (Figure 13c).

Discussion

LUAD, which is highly heterogeneous in morphological characteristics and remarkably variable in prognosis, is the most prevalent subtype of non-small cell lung cancer (NSCLC) [4, 26]. More and more attention has been recently paid to the key role of gene signatures based on specific correlation in predicting the prognosis of LUAD because of the rapid advances in high-throughput technologies and bioinformatics methodology [27-30]. Moreover, the identification of novel gene signatures that predict the prognosis of patients is beneficial for the choice of treatment regimens and the improvement of survival rate [31, 32].

In recent years, interest in dysregulated metabolism of cancer has been growing [33]. Accumulating evidence showed that MRGs play a key role in cancer development and progression[34]. Therefore, the identification of novel MRGs has lately become a hotspot in cancer research, both as a biomarker and potential therapeutic target. In this study, a total of 116 differentially expressed MRGs, which consist of 31 downregulated and 85 upregulated MRGs, were detected in the TCGA dataset. We found that 12 MRGs were most significantly associated with OS by using the univariate regression analysis in LUAD. After conducting the LASSO regression and multivariable Cox regression analyses, a novel prognostic signature which consisted of six MRGs(ALDOA, CAT, ENTPD2, GNPNAT1, LDHA, and TYMS) was established. Based on the gene signature, LUAD patients were classified into a high risk group and low risk group. Patients in the high risk group, which had a survival rate lower than 15%, showed markedly poorer overall survival than the low risk group. The time-dependent ROC analysis demonstrated that the area under the curve (AUC) for 1, 3, and 5 years were 0.73, 0.703, and 0.854, respectively, indicating that this prognostic signature had good sensitivity and specificity. The prognostic value of this signature was further successfully validated in the GSE31210 dataset. Moreover, the calibration curve of the prognostic nomogram demonstrated good agreement between the predicted and observed survival rates for each OS. Further analysis indicated that this signature could be an independent prognostic indicator after adjusting to other clinical factors. Finally, the signature was found to be associated with various clinicopathological features.

Furthermore, six genes in this prognostic signature were selected as crucial MRGs including aldolase A (ALDOA), catalase(CAT), ectonucleoside triphosphate diphosphohydrolase-2(ENTPD2), glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1), lactate dehydrogenase A (LDHA), and thymidylate synthetase(TYMS). ALDOA is an important enzyme involved in the glycolysis pathway that is highly expressed in a wide range of cancers[35]. Some studies also proved that the overexpression of ALDOA
may contribute to tumorigenesis and the progression of cancers through modulation of HIF-1α signaling[36, 37]. Our results showed that ALDOA may be a tumor-promoting gene in LUAD. Abnormal expression or decreased activity of CAT can lead to an increase in intracellular ROS concentration, which directly or indirectly induces tumorigenesis[38, 39]. Consistently, our study found that compared with normal tissues, the mRNA level of CAT in LUAD tissues was down-regulated. ENTPD2 is ectonucleotidase with extracellular facing catalytic domain, which can convert extracellular ATP to ADP. A study by Chiu et al revealed that blockade of ENTPD2 could significantly inhibit cancer cells growth and effectively improve the efficiency and efficacy of immune checkpoint inhibitors in vivo experiments [25]. GNPNAT1, a member of the GNAT protein superfamily, was a key enzyme in the metabolic pathway of N-acetylglucosamine(GlcNAc) synthesis[40]. Zhao et al. reported that the overexpression of GNPNAT1 could promote the infiltration and adhesion of lung cancer cells[41]. LDHA catalyzes the conversion of pyruvate to lactate with concomitant oxidation of NADH to NAD+, which plays an essential role in metabolic pathways of the cancer cells[42]. Recently, accumulating evidence showed that the overexpression of LDHA can promote the production of lactate, thus contributing to the acidification of the tumor microenvironment, which may limit the effect of anti-PD-L1 therapy[43, 44]. TYMS, a rate-limiting enzyme during the DNA synthesis, plays an important role in catalyzing the methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP)[45]. High levels of TYMS expression are related to worse responses to 5-FU, shorter survival times and other adverse clinical behaviors in a variety of solid tumors[46, 47]. Since only patients with low expression of TYMS can respond to 5-FU, individualized chemotherapy regimens can be selected according to the expression of TYMS and tumor classification[48].

In this study, six MRGs prognostic indicators were identified for the first time to be possibly associated with the survival outcome of LUAD. We also confirm the protein and mRNA expression in 5 lung cancer cells by some experimental validation. To obtain a deep understanding of the selected genes, the functional annotation analyses of ENTPD2 were performed. ENTPD2 belongs to enzymes nucleoside triphosphate diphosphohydrolase family (NTPDase). NTPDase1(CD39) was played a key role in turning an ATP-mediated immune-stimulating into an adenosine-mediated immunosuppressant tumor microenvironment (TME) involving the coordinated control of inflammatory responses and tumor-associated antigen-specific T cell immunity[49]. While over-expression of ENTPD2 was a poor prognostic indicator for HCC, ENTPD2 inhibition was able to mitigate cancer growth and enhance the efficiency and efficacy of immune checkpoint inhibitors[50]. In this study, we confirmed ENTPD2 played an important role on cell clone and migration in LUAD for the first time.

However, we should acknowledge that there are some limitations in the present study which should be addressed in future studies. First, the potential selection bias could not be ruled out because of the transcriptomic and the corresponding clinical data of patients with LUAD were obtained from public database. Second, the robustness of the prognostic signature must be validated in large prospective studies.
Conclusion

In summary, we identified a novel signature based on MRGs that could be applied to analyze the prognostic of patients with LUAD, and verified by the data from the GEO databases and experimental validation. Meanwhile, we firstly developed the function of ENTPD2 on cells colon and migration in 5 lung cancer cell lines. This signature may provide valuable information either for diagnosis or developing novel therapeutic options for LUAD patients in the future.

Abbreviations

TCGA: The Cancer Genome Atlas; GEO: Gene Expression Omnibus; LUAD: Lung adenocarcinoma; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: False discovery rate. MRGs: metabolism-related genes; ROC: Receiver operating characteristic; HR: Hazard ratio; CI: Confidence interval. TNM: Tumour size/lymph nodes/distance metastasis, a tumour staging system used in oncology and constructed by the American Joint Committee on Cancer and the Union for International Cancer Control;

Declarations

Acknowledgements

None.

Authors’ contributions

Funding

This research was supported by a Grant from the National Natural Science Foundation of China (Grant 81700012; to Shenghui Qin)

Data availability statement

All data generated or analyzed during the present study was downloaded from TCGA database, GEO database and HPA database.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests
All authors declare no conflict of interests.

Author details

1 Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. 2 Department of Pharmacy, Hiser Medical Center of Qingdao, Qingdao 266033, China. 3 Department of Pathology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430030, China.

References

invasive ability of human pancreatic cancer cells via the stabilization of oncoprotein c-MYC. *Carcinogenesis* 2018, **39**(12):1548-1559.

