Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a □ Confirmed

☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

☐ The statistical test(s) used and whether they are one- or two-sided

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

☐ A description of all covariates tested

☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

☐ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) and variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted. Give P values as exact values whenever suitable.

☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

☐ Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Thermo Fisher Scientific: EPU v.4; Tomography v.4; MAPS v.3

Data analysis

Amira 2020.2 - Gatan: GMS v.3 - UCSF Chimera v.1.13 and X - Relion: Gaussian Picker; 3.1 (beta); Motioncor2 - CTFFIND 4.1.18 - IMOD 4.11 - Zeiss Zen Blue 3.4 • Adobe: Photoshop 2021; Premiere Pro 2020

For manuscripts utilizing custom algorithms, software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third-party data, please ensure that the statement adheres to our policy.

Provide your data availability statement here.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [x] Life sciences
- [] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose these points even when the disclosure is negative.

- **Sample size**: Single samples were chosen. It is not uncommon in structural biology, since e.g. no cell is similar. Also the samples were more to show the variety of samples that are usable for the device we made than to draw biological conclusions from.
- **Data exclusions**: No data was excluded from the studies.
- **Replication**: Replication of results took place during the development of the device and results were used as a rationale for improving the device to its final state. Replication of data after this was done once or twice with similar results.
- **Randomization**: Not relevant, since we did not do any statistical studies.
- **Blinding**: Not relevant, since we did not do any statistical studies.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>Antibodies</td>
</tr>
<tr>
<td>[x]</td>
<td>Eukaryotic cell lines</td>
</tr>
<tr>
<td>[x]</td>
<td>Palaeontology and archaeology</td>
</tr>
<tr>
<td>[x]</td>
<td>Animals and other organisms</td>
</tr>
<tr>
<td>[x]</td>
<td>Human research participants</td>
</tr>
<tr>
<td>[x]</td>
<td>Clinical data</td>
</tr>
<tr>
<td>[x]</td>
<td>Dual user research of concern</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x]</td>
<td>ChIP-seq</td>
</tr>
<tr>
<td>[x]</td>
<td>Flow cytometry</td>
</tr>
<tr>
<td>[x]</td>
<td>MRI-based neuroimaging</td>
</tr>
</tbody>
</table>

Antibodies

- **Antibodies used**: IgG1 DNP monoclonal antibodies (gift from collaborators, preparation as described reference below)
- **Validation**: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002344

Eukaryotic cell lines

Policy information about cell lines

- **Cell line source(s)**: 17Clone1 mouse cells
- **Authentication**: Not authenticated
- **Mycoplasma contamination**: Cell lines tested negative for mycoplasma
- **Commonly misidentified lines (See ATCC register)**: n.a.