Supplementary files for:

Blood RNA sequencing confirms upregulated BATF2 and FCGR1A expression in children with autism spectrum disorder

Irena Voinsky¹, Yazeed Zoabi²,³, Noam Shamron²,³,⁴, Moria Harel⁵, Hanoch Cassuto⁵, Joseph Tam⁶, Sirish Bennuri⁷, Shannon Rose⁷, Richard E. Frye⁶, Adi Aran⁵,⁶, David Gurwitz¹,⁴

¹Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

²Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

³Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel

⁴Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel

⁵Shaare Zedek Medical Center, Jerusalem 91031, Israel

⁶Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel

⁷Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR, USA

⁸Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA and Section of Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, USA

Correspondence:
Adi Aran, Shaare Zedek Medical Center, Jerusalem 91031, Israel. Email: aaran@szmc.org.il and David Gurwitz, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. Email: gurwitz@tauex.tau.ac.il

Supplementary Table S1: Primers used for real-time qPCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>GGAGCGAGATCCCTCCAAAT</td>
<td>GGCTGTTGTCATCTCTCATGG</td>
</tr>
<tr>
<td>RPLP0</td>
<td>AGCCCAGAACACTGGTCTC</td>
<td>ACTCAGATTCTCAATGGGCC</td>
</tr>
<tr>
<td>SERPING1</td>
<td>CTTGTCTCTCTCAATGCTATC</td>
<td>CCACAGGGTACTTCTGTATT</td>
</tr>
<tr>
<td>EFHC2</td>
<td>ATGGCCGGACATTCAGATTT</td>
<td>GGCTCTACGTTGTTCTCACAACCT</td>
</tr>
<tr>
<td>BATF2</td>
<td>CCTCATGCTCTTTGGACTAGG</td>
<td>TGTGTGAAACCTGGGGTGAAG</td>
</tr>
<tr>
<td>CDC20</td>
<td>AGACCCTGCGTTACATTTTCTCTC</td>
<td>GCCAGTACATTTCCAGAATCTC</td>
</tr>
<tr>
<td>FCGR1A</td>
<td>CGCTACACATCATCGCAGGAATA</td>
<td>GCCCATGTGAAAGGAGAGTAAGA</td>
</tr>
<tr>
<td>MT2A</td>
<td>CCGCTCCCAAGATGTAAGA</td>
<td>CACGGTGCCGTTGTACATAA</td>
</tr>
<tr>
<td>ISG15</td>
<td>CGCAATACCCACCCCGAATCG</td>
<td>GCCCATGTGAAAGGAGAGTAAGA</td>
</tr>
<tr>
<td>FBXO6</td>
<td>ATCCCTACGAAATGCTCCTAAG</td>
<td>CCAACAGGAAGTAGTCAGGCG</td>
</tr>
<tr>
<td>LINC00869</td>
<td>CATCCAAAAGTACTCGCTACTCT</td>
<td>CACCTCTCCCCCTCCTGTATCT</td>
</tr>
<tr>
<td>LY6E</td>
<td>GGGAAATCTCGTGACATTGGC</td>
<td>ACACCAAACATTGAGCGCTCTCT</td>
</tr>
</tbody>
</table>
Supplementary Table S2: Real-time qPCR analyses compared PBMC gene expression levels in children with ASD vs. either all neurotypical controls (left); only their neurotypical siblings (middle) or only unrelated neurotypical children (right). N shows numbers for neurotypical controls/ASD for each comparison. Outlier samples were removed. Note that SERPING1 was the only significant gene showing differential expression in PBMCs from the ASD group and their neurotypical siblings (bold fonts).

<table>
<thead>
<tr>
<th>Gene</th>
<th>ASD vs. all neurotypical controls</th>
<th>ASD vs. sibling controls</th>
<th>ASD vs. unrelated controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>p-value</td>
<td>FD</td>
</tr>
<tr>
<td>SERPING1</td>
<td>30/17</td>
<td>0.389</td>
<td>0.71</td>
</tr>
<tr>
<td>BATF2</td>
<td>36/17</td>
<td>0.291</td>
<td>0.84</td>
</tr>
<tr>
<td>EFHC2</td>
<td>28/18</td>
<td>0.057</td>
<td>1.44</td>
</tr>
<tr>
<td>CDC20</td>
<td>30/17</td>
<td>0.275</td>
<td>1.23</td>
</tr>
<tr>
<td>FCGR1A</td>
<td>32/17</td>
<td>0.992</td>
<td>0.98</td>
</tr>
<tr>
<td>MT2A</td>
<td>32/17</td>
<td>0.222</td>
<td>1.18</td>
</tr>
<tr>
<td>ISG15</td>
<td>33/18</td>
<td>0.395</td>
<td>0.89</td>
</tr>
<tr>
<td>FBXO6</td>
<td>35/19</td>
<td>0.214</td>
<td>1.20</td>
</tr>
<tr>
<td>LINC00869</td>
<td>32/18</td>
<td>0.568</td>
<td>1.03</td>
</tr>
<tr>
<td>LY6E</td>
<td>34/18</td>
<td>0.396</td>
<td>1.10</td>
</tr>
</tbody>
</table>
Supplementary Table S3: Summary of Spearman correlation test of top 10 RNA-seq genes and serum endocannabinoids in (a) ASD samples only; (b) neurotypical controls; (c) ASD and neurotypical controls combined. Outlier samples were removed. P-value is two-tailed; N, XY pairs. Serum endocannabinoid levels are taken from Aran et al. 2019. Correlations with p<0.05 are shown in bold fonts.

<table>
<thead>
<tr>
<th>A.</th>
<th>ASD</th>
<th>SERPING1</th>
<th>EFHC2</th>
<th>BATF2</th>
<th>CDC20</th>
<th>FCGR1A</th>
<th>MT2A</th>
<th>ISG15</th>
<th>FBXO6</th>
<th>LINC00869</th>
<th>LY6E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (XY Pairs)</td>
<td>22</td>
<td>33</td>
<td>30</td>
<td>25</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>28</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>OEA</td>
<td>p.val</td>
<td>0.4166</td>
<td>0.9617</td>
<td>0.0302</td>
<td>0.3610</td>
<td>0.7452</td>
<td>0.2111</td>
<td>0.7679</td>
<td>0.7148</td>
<td>0.2676</td>
<td>0.8491</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>0.1824</td>
<td>-0.00869</td>
<td>0.3962</td>
<td>0.1908</td>
<td>0.06305</td>
<td>0.231</td>
<td>0.05524</td>
<td>0.07225</td>
<td>0.202</td>
<td>0.03626</td>
</tr>
<tr>
<td>PEA</td>
<td>p.val</td>
<td>0.0637</td>
<td>0.9199</td>
<td>0.8702</td>
<td>0.5284</td>
<td>0.7093</td>
<td>0.7767</td>
<td>0.9764</td>
<td>0.4859</td>
<td>0.0779</td>
<td>0.2635</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>-0.01822</td>
<td>0.05131</td>
<td>-0.06855</td>
<td>-0.1323</td>
<td>0.005348</td>
<td>0.1257</td>
<td>0.3162</td>
<td>0.2004</td>
<td>-0.01822</td>
<td>-0.06855</td>
</tr>
<tr>
<td>AEA</td>
<td>p.val</td>
<td>0.64</td>
<td>0.1019</td>
<td>0.2843</td>
<td>0.6634</td>
<td>0.7127</td>
<td>0.2963</td>
<td>0.816</td>
<td>0.3895</td>
<td>0.1845</td>
<td>0.3628</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>-0.1056</td>
<td>-0.2898</td>
<td>0.202</td>
<td>-0.09154</td>
<td>0.07144</td>
<td>0.1938</td>
<td>-0.04355</td>
<td>-0.1692</td>
<td>-0.2407</td>
<td>-0.1722</td>
</tr>
<tr>
<td>OS</td>
<td>p.val</td>
<td>0.1571</td>
<td>0.4824</td>
<td>0.3038</td>
<td>0.8096</td>
<td>0.8451</td>
<td>0.1035</td>
<td>0.4987</td>
<td>0.6617</td>
<td>0.047</td>
<td>0.2331</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>0.3123</td>
<td>0.1267</td>
<td>0.1942</td>
<td>0.05077</td>
<td>-0.03793</td>
<td>0.298</td>
<td>-0.1262</td>
<td>0.08648</td>
<td>0.3537</td>
<td>0.2245</td>
</tr>
<tr>
<td>2AG</td>
<td>p.val</td>
<td>0.4934</td>
<td>0.7297</td>
<td>0.7516</td>
<td>0.4038</td>
<td>0.5758</td>
<td>0.3308</td>
<td>0.4973</td>
<td>0.9098</td>
<td>0.296</td>
<td>0.1326</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>0.1542</td>
<td>-0.0625</td>
<td>-0.06029</td>
<td>-0.1746</td>
<td>0.1084</td>
<td>-0.1806</td>
<td>0.1266</td>
<td>-0.02244</td>
<td>0.1906</td>
<td>0.281</td>
</tr>
<tr>
<td>AA</td>
<td>p.val</td>
<td>0.9106</td>
<td>0.1811</td>
<td>0.973</td>
<td>0.5828</td>
<td>0.9697</td>
<td>0.0718</td>
<td>0.0399</td>
<td>0.083</td>
<td>0.645</td>
<td>0.2182</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>-0.02541</td>
<td>-0.2386</td>
<td>-0.00645</td>
<td>-0.1154</td>
<td>0.007389</td>
<td>0.3278</td>
<td>-0.371</td>
<td>-0.3333</td>
<td>-0.08468</td>
<td>0.2316</td>
</tr>
<tr>
<td>B. Control</td>
<td>SERPING1</td>
<td>EFHC2</td>
<td>BATF2</td>
<td>CDC20</td>
<td>FCGR1A</td>
<td>MT2A</td>
<td>ISG15</td>
<td>FBX06</td>
<td>LINC00869</td>
<td>LY6E</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>OEA</td>
<td>0.1881</td>
<td>0.4680</td>
<td>0.6042</td>
<td>0.2311</td>
<td>0.9887</td>
<td>0.7372</td>
<td>0.0540</td>
<td>0.5092</td>
<td>0.9384</td>
<td>0.8357</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>-0.3251</td>
<td>0.1772</td>
<td>-0.1311</td>
<td>-0.3064</td>
<td>-0.0049</td>
<td>0.08246</td>
<td>-0.4941</td>
<td>-0.1614</td>
<td>0.01961</td>
<td>-0.05263</td>
<td></td>
</tr>
<tr>
<td>PEA</td>
<td>0.9659</td>
<td>0.8700</td>
<td>0.5764</td>
<td>0.1842</td>
<td>0.0617</td>
<td>0.9398</td>
<td>0.7802</td>
<td>0.6045</td>
<td>0.7264</td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.01053</td>
<td>0.03910</td>
<td>-0.1368</td>
<td>-0.3382</td>
<td>-0.4489</td>
<td>-0.01805</td>
<td>-0.07353</td>
<td>0.1233</td>
<td>0.08596</td>
<td>-0.7298</td>
<td></td>
</tr>
<tr>
<td>AEA</td>
<td>0.4415</td>
<td>0.9248</td>
<td>0.3515</td>
<td>0.1156</td>
<td>0.8869</td>
<td>0.7865</td>
<td>0.1619</td>
<td>0.349</td>
<td>0.3553</td>
<td>0.6576</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>-0.1877</td>
<td>-0.02256</td>
<td>-0.2263</td>
<td>-0.3971</td>
<td>0.03612</td>
<td>0.06466</td>
<td>-0.3554</td>
<td>0.2211</td>
<td>0.2246</td>
<td>-0.1088</td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td>0.9205</td>
<td>0.4237</td>
<td>0.7753</td>
<td>0.3568</td>
<td>0.7851</td>
<td>0.3907</td>
<td>0.2853</td>
<td>0.7005</td>
<td>0.6785</td>
<td>0.4907</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>-0.02456</td>
<td>0.1895</td>
<td>-0.07018</td>
<td>-0.2377</td>
<td>0.06914</td>
<td>0.203</td>
<td>-0.2745</td>
<td>-0.09173</td>
<td>0.1018</td>
<td>-0.1684</td>
<td></td>
</tr>
<tr>
<td>ZAG</td>
<td>0.1408</td>
<td>0.1408</td>
<td>0.5617</td>
<td>0.8835</td>
<td>0.7048</td>
<td>0.5395</td>
<td>0.0137</td>
<td>0.4778</td>
<td>0.101</td>
<td>0.9602</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>-0.3509</td>
<td>0.3414</td>
<td>0.1421</td>
<td>-0.03922</td>
<td>0.09598</td>
<td>-0.1459</td>
<td>0.5931</td>
<td>0.1684</td>
<td>0.3877</td>
<td>-0.01228</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>0.2206</td>
<td>0.7527</td>
<td>0.2797</td>
<td>0.8686</td>
<td>0.2875</td>
<td>0.2272</td>
<td>0.6322</td>
<td>0.1838</td>
<td>0.9488</td>
<td>0.5375</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.2947</td>
<td>-0.07519</td>
<td>-0.2614</td>
<td>-0.04412</td>
<td>-0.2652</td>
<td>0.2827</td>
<td>-0.125</td>
<td>-0.3098</td>
<td>-0.01579</td>
<td>0.1509</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. ASD and controls</th>
<th>SERPING1</th>
<th>EFHC2</th>
<th>BATF2</th>
<th>CDC20</th>
<th>FCGR1A</th>
<th>MT2A</th>
<th>ISG15</th>
<th>FBX06</th>
<th>LINC00869</th>
<th>LY6E</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEA</td>
<td>0.8055</td>
<td>0.8063</td>
<td>0.6085</td>
<td>0.8773</td>
<td>0.4609</td>
<td>0.0957</td>
<td>0.8464</td>
<td>0.7617</td>
<td>0.2714</td>
<td>0.384</td>
</tr>
<tr>
<td>r</td>
<td>0.04385</td>
<td>-0.0352</td>
<td>0.075</td>
<td>-0.02455</td>
<td>-0.109</td>
<td>0.2358</td>
<td>-0.02902</td>
<td>0.04494</td>
<td>0.1554</td>
<td>-0.1271</td>
</tr>
<tr>
<td>PEA</td>
<td>0.24</td>
<td>0.8426</td>
<td>0.5492</td>
<td>0.1955</td>
<td>0.0098</td>
<td>0.152</td>
<td>0.1997</td>
<td>0.5513</td>
<td>0.2708</td>
<td>0.0216</td>
</tr>
<tr>
<td>r</td>
<td>0.207</td>
<td>-0.02851</td>
<td>-0.08766</td>
<td>-0.2038</td>
<td>-0.3693</td>
<td>0.2035</td>
<td>0.1905</td>
<td>0.08816</td>
<td>0.1556</td>
<td>-0.3275</td>
</tr>
<tr>
<td>AEA</td>
<td>0.5675</td>
<td>0.1005</td>
<td>0.5462</td>
<td>0.2127</td>
<td>0.2017</td>
<td>0.1744</td>
<td>0.9186</td>
<td>0.9259</td>
<td>0.7398</td>
<td>0.0481</td>
</tr>
<tr>
<td>r</td>
<td>-0.1016</td>
<td>-0.2326</td>
<td>-0.08382</td>
<td>-0.1963</td>
<td>-0.1876</td>
<td>0.1932</td>
<td>-0.01532</td>
<td>-0.01379</td>
<td>-0.04717</td>
<td>-0.2839</td>
</tr>
<tr>
<td>OS</td>
<td>0.1573</td>
<td>0.8367</td>
<td>0.3639</td>
<td>0.9647</td>
<td>0.9271</td>
<td>0.1147</td>
<td>0.1111</td>
<td>0.7004</td>
<td>0.0471</td>
<td>0.6837</td>
</tr>
<tr>
<td>r</td>
<td>0.248</td>
<td>0.02959</td>
<td>0.1326</td>
<td>-0.00705</td>
<td>0.01357</td>
<td>0.2236</td>
<td>-0.2354</td>
<td>0.05699</td>
<td>0.2767</td>
<td>0.05969</td>
</tr>
<tr>
<td>ZAG</td>
<td>0.6372</td>
<td>0.9362</td>
<td>0.3366</td>
<td>0.4241</td>
<td>0.3184</td>
<td>0.0741</td>
<td>0.4127</td>
<td>0.9947</td>
<td>0.0571</td>
<td>0.1239</td>
</tr>
<tr>
<td>r</td>
<td>0.08388</td>
<td>-0.01149</td>
<td>0.1402</td>
<td>-0.1267</td>
<td>0.1471</td>
<td>-0.2523</td>
<td>-0.1223</td>
<td>0.000977</td>
<td>0.2655</td>
<td>0.2228</td>
</tr>
<tr>
<td>AA</td>
<td>0.5781</td>
<td>0.1857</td>
<td>0.8734</td>
<td>0.6996</td>
<td>0.7157</td>
<td>0.0708</td>
<td>0.0314</td>
<td>0.0242</td>
<td>0.6809</td>
<td>0.0995</td>
</tr>
<tr>
<td>r</td>
<td>0.09885</td>
<td>-0.1883</td>
<td>-0.02337</td>
<td>-0.06134</td>
<td>-0.05395</td>
<td>0.2551</td>
<td>-0.3143</td>
<td>-0.325</td>
<td>-0.0584</td>
<td>0.2381</td>
</tr>
</tbody>
</table>
Supplementary Figure. S1: Real-time qPCR measurements for whole blood RNA expression levels in ASD and control children (Israeli cohort). Box plots show mean ± SEM RNA levels for neurotypical control vs. ASD whole blood samples. Outliers were removed and analysis was done using a non-parametric Mann Whitney test. As shown, p values for gene expression (qPCR measurements) in ASD vs. control blood samples indicated lack of significant differences for the presented genes.
Supplementary Figure. S2: RNA expression by real-time qPCR in PBMCs from children with ASD and all neurotypical control children (U.S. cohort). Graphs show mean ± SED for control and ASD samples for each of the top 10 genes found by RNA-seq of whole blood samples from the Israeli cohort. Outliers were removed and analysis was done using a non-parametric Mann Whitney test. No significant differences in gene expression were found between ASD and control PBMCs (p>0.1 for the 10 tested genes).
Supplementary Figure S3: Correlations for whole blood \(LY6E\) expression levels with serum palmitoylethanolamide (PEA) levels in children with ASD and neurotypical controls (Israeli cohort). Correlations are shown for (a) neurotypical control children (N=19); (b) ASD children (N=30). The r and p values for each correlation plot (Spearman test) are shown in each panel. PEA levels were taken from Aran et al. 2019. See Methods for further details.
Supplementary Figure S4: Correlations for whole blood mRNA expression levels with serum endocannabinoid levels in children with ASD and neurotypical controls combined (Israeli cohort). Correlations are shown for (a) FCGR1A and palmitoylethanolamide (PEA); (b) LY6E and PEA; (c) FBXO6 and arachidonic acid (AA); (d) ISG15 and AA; (e) LINC00869 and oleoyl serine (OS); (f) LY6E and anandamide (AEA). The r and p values for each correlation plot (Spearman test) are shown in each panel. Open circles indicate control children, while closed circles indicate ASD children; individual findings for whole blood mRNA expression and serum EC levels were combined for controls (open circles) and children with ASD (closed circles) for calculating r and p values for each correlation. Endocannabinoid levels were taken from Aran et al. 2019.