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A Lagrangian Turbulence and Structure Functions
The difference between the Eulerian and the Lagrangian description of fluid flow is the frame of
reference of the observer (measurements) of the flow. In the Eulerian description the observer is
stationary and the fluid flows by him or her. In the Lagrangian frame of reference the observer
travels with the flow and make his or her measurements in this traveling frame of reference. The
mathematical description in the Eulerian frame is the conventional Navier-Stokes equation, but in
the Lagrangian frame it is the Navier-Stokes equation with the material derivative Du

DT = ∂u
∂t +u ·∇u

where the time variable T is the Lagrangian time, u is the fluid velocity and t the Eulerian time.
The Lagrangian description is natural for the droplet/aerosols transmission, since the natural frame
of reference is the one traveling with the droplet/aerosol, to see where it originates and where it
ends up.

The Eulerian description is the traditional description of homogeneous turbulence, see [4, 9],
and boundary turbulence, see [15, 7]. When particles or fluid droplets, such as the droplet/aerosols
carrying the coronavirus, are entrained in the (air) flow, the Lagrangian description is more appro-
priate. We want to travel with (in the frame of reference of) the turbulent cloud and see how the
droplet/aerosols interact with the cloud and each other. We want to determine if and where the
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droplet/aerosols settle on the ground or on surfaces, or if they remain airborn. In the latter case, we
want to determine to what destinations they are carried by the turbulent flow of air. The strength
of the turbulence in the flow is given by the dimensionless Reynolds number Re = uL

ν
, where L is

a typical spacial dimension of the flow and ν is the kinematic viscosity. In practice, one uses the
Taylor-Reynolds number Reλ = uλ

ν
, where λ is the correlation length in the flow. We will use the

approximation Reλ ≈
√

10Re.
To compute the Richardson probability density function (PDF), see Appendix B, for the

droplet/aerosols that are passive scalars, we must construct the Lagrangian velocity structure func-
tions (LVSF) [14, 1],

Sp(τ) = 〈|u(T + τ)−u(T )|p〉= 〈|δu|p〉,

for p = 2, where τ is a temporal lag-variable measuring the time passed between two observations
of the flow, and 〈·〉 is an ensamble average over many measurements.

The Kolmogorov-Obukhov theory determines the scaling laws in Lagrangian turbulence, for
small τ,

Sp ∼ C̃p(ετ)p/2,

see [12, 11], where ε is the dissipation rate in the flow, and C̃p are constants, that are not univer-
sal, but depend on the configuration of the flow. In particular, for p = 2, we get S2 ∼ C̃2ετ, see
[14]. Although the Lagrangian turbulent flow follows these scaling laws for τ sufficiently small,
it quickly deviates from the predicted scaling exponents and approaches values of the scaling ex-
ponents that are more similar to their values in Eulerian turbulence [14]. In between, there is a
"passover" interval where the values of the exponents dip significantly below either their initial or
eventual values, see [14].

In [1], the authors adapt the methods developed in [7], for boundary layer turbulence, to com-
pute all the Lagrangian velocity structure functions. In [7] they had encountered a similar "passover
region". This was the buffer region separating the viscous from the inertial layer in pipe and bound-
ary turbulence. The authors were able to overcome this obstacle by adapting a "spectral function"
introduced in [8] to compute the mean velocity in boundary and pipe flow, and generalize it to also
model the buffer layer. This explains the shape of the scaling exponents observed in simulations
and experiments [14]. We use these results, for S2 = 〈|δu|2〉 in Lagrangian turbulence, see Figure
8, applied to the restaurant, see Figure 7.

B The Richardson Scaling
Diffusion of droplets or particles was modeled by Richardson [13] who assumed that the diffusivity
is,

DR =
d〈r2〉

dt
= k0ε

1/3〈r2〉2/3,

based on empirical evidence where r(t) is the particle separation at time t. The solution of this
equation gives

〈r2(t)〉= g ε t3,
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Figure 1: The initially exhaled (left) and subsequently propagated (right) spatial distributions of
droplet displacement.

where g= k3
0/27 is called the Richardson constant. This is know as Richardson diffusion. Obukhov

[12] gave a derivations based on the Kolmogorov-Obukhov scaling

DR =
d〈r2〉

dt
= τ(r)〈(δu)2〉,

where δu is the Lagrangian velocity difference, so 〈(δu)2〉 is the second Lagrangian structure
function and τ(r) is the eddy turnover time. Now according to the Kolmogorov-Obukhov Theory,
〈(δu)2〉=C2ε2/3r2/3 and τ(r) = ε−1/3r2/3, so

d〈r2〉
dt

= τ(r)〈(δu)2〉=C2ε
1/3r4/3.

The solution is
〈r2(t)〉= C2

27
ε t3,

or g = C2
27 . This holds for η << r0 < 〈r2(t)〉1/2 << L, where η is the Kolmogorov constant and L

is the system size. ro is the initial particle separation.
In addition to this region, there is a ballistic regime derived by Batchelor [3]. In this regime

the particles separate linearly in t depending on the initial velocity. For the initial separation of
the particles r0 very small, first there is a ballistic region and at a later time the particles separate
exponentially. This marks the beginning of the Richardson diffusion.

We assume that the droplet/aerosols are passive scalar, or that they are simply carried along by
the flow without influencing the flow itself. The probability density function, for the separation r
of the passive scalars, satisfies the partial differential equations (PDE)

∂tP(r, t) = r−2
∂rr2C||(r)∂rP,

where C|| is the longitudinal correlation function. With C|| ∼ Dr4/3 and P0(r, t0) = δ(t − t0), the
PDE has an explicit solution in the large time limit, see [10] and [2],

PRic(r, t)≈
r2

〈r2(t)〉3/2 exp
(
−d(

r
〈r2(t)〉1/2 )

2/3
)
,
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Figure 2: The experimental and simulated compensated second structure function S2/(ετη), from
[5], (left) and the theoretical model of S2/(ετη) (right).

where d is a constant determined by D. This assumes that the velocity field is stochastic, incom-
pressible, homogeneous and isotropic and δ correlated in time.

The Richardson scaling allows us to express the Richardson probability density function (PDF)
in terms of the structure functions. Namely, using the above to set r2 = C2

27 εt3, we get that C̃2 =

C4/3
2 /3, and

〈(δu)2〉=C2ε
2/3r2/3 =

C4/3
2
3

εt,

so
〈r2(t)〉= 1

C3
2ε2
〈(δu)2〉3.

A substitution into the PDF above gives

PRic(r, t)≈
C9/2

2 ε3r2

〈(δu)2〉9/2 exp

(
−9

4
ε2/3C2r2/3

D〈(δu)2〉

)
, (B.1)

using the value d = 9
4D from [2]. D is the coefficient in the Richardson law

r2/3 =
2
3

Dt =
C1/3

2
3

ε
1/3t,

so D = 1
2ε1/3C1/3

2 .
In Figure 8, we compare the compensated second structure function S2/(ετη), from experi-

ments and simulations, from [5], with the theoretical model of S2/(ετη) used in this paper.

C Computation of the Richardson Coefficient
The second Lagrangian structure function is

S2(r, t) =
4

C2 ∑
k∈Z\0

[ C
2 ck(1− e−2λkt)

|k|2/3 + 4π2ν

C |k|
2/3+ 4

3
+

|dk|2(1− e−λkt)

|k|2/3 + 8π2ν

C |k|
2/3+ 4

3 + 16π4ν2

C2 |k|2/3+ 8
3

]
×(|sin2(πk · r)|),
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RH 21% 35% 51% 65% 81%
kd 0.0031 0.0078 0.016 0.024 0.028

Table 1: The viral decay coefficient kd = 1/timed for five values of relative humidity (Influenza
A), from [16] Table 3.

by the stochastic closure theory, see [6]. At t = ∞ and for r small we get

S2(r,∞) =
4π2/3

C2 ∑
k∈Z\0

[ C
2 ck

1+ 4π2ν

C |k|
4
3
+

|dk|2

1+ 8π2ν

C |k|
4
3 + 16π4ν2

C2 |k|
8
3

]
r2/3

=
4π2/3

C2 ∑
k∈Z\0

[ C
2 b2

(b2 + |k|m)2
1

(1+ 4π2ν

C |k|
4
3 )

+
a2

(a2 + |k|m)2
1

(1+ 8π2ν

C |k|
4
3 + 16π4ν2

C2 |k|
8
3 )

]
r2/3,

where we have used the models ck =
b2

(b2+|k|m)2 and dk =
a2

(a2+|k|m)2 from [9], for the coefficients ck

and dk.
The Taylor-Reynolds number for the restaurant in Guangzhou is Reλ = 705, the distance from

the infected person to the wall with the air-conditioner is 3 meters, the air velocity in that direction
is 0.25 m/s. The parameters C,a,b and m depend on the Reynolds number, we interpolate them
from the values computed in [9], to get C = 5.574, a = 6.508, b = 0.076 and m = 1.000. The value
of ε = 1.2 is obtained from [5] at Reλ = 690, this is close to our value of 705. With this information
we can compute the coefficient C2 in the structure function S2(r) =C2(705)r2/3, namely

C2 =
4π2/3

5.5742 ∑
k∈Z\0

[2.787×0.0762

(0.0762 + |k|)2
1

(1+ 4π2ν

5.574 |k|
4
3 )

+
6.5082

(6.5082 + |k|)2
1

(1+ 8π2ν

5.574 |k|
4
3 + 16π4ν2

5.5742 |k|
8
3 )

]
= 0.489.

This gives the exponent in the Richardson PDF,

d =
9

4D
=

9

2C1/3
2 ε1/3

= 5.376.

D The Aerosol Concentration
The life-time of the SARS-CoV-2 Coronavirus in aerosols is affected by relative humidity (RH)
but the exact relationship is not known yet. The dependance is presumed to be similar to that of
Influenza A and we use the values for Influenza A, from [16] Table 3, as a proxy. The RH values
and the corresponding values of kd are given in Table 1.

In Figure 9, we show the aerosols concentrations as a function of time corresponding to the
values in Table 1. The first two value of RH (left figure) give concentrations bounded below by a
quadratic polynomial, the last three (right figure) give concentrations bounded below by a quintic
polynomial. In all of these cases the aerosol concentration is rapidly increasing over the span of
one hour.
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Figure 3: (Left) The aerosol concentration for one hour, top (blue) solution of the ODE, RH
21%, bounded below by a quadratic polynomial (scarlet), bottom (green) solution of the ODE,
RH 35%, bounded below by a quadratic polynomial (yellow). (Right) The aerosol concentration
for one hour, top (blue) solution of the ODE, RH 51%, bounded below by a quintic polynomial
(scarlet), middle (red) solution of the ODE, RH 65%, bounded below by a quintic polynomial
(green), bottom (yellow) solution of the ODE, RH 81%, bounded below by a quintic polynomial
(light blue).
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Figure 4: (Left) The aerosol concentration, for one hour with ventilation, solutions of the ODE,
top (red) 6 ACH , middle (blue) 10 ACH (8 l/s per person), bottom (yellow) the ventilation that
works 52 ACH. (Right) The aerosol concentration after one hour as a function of ventilation. The
leftmost point corresponds to 60 ACH.
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Figure 5: (Left) The aerosol concentration as a function of time and ventilation. The peak corre-
sponds to poor ventilation, the low edge of the plateau to a safe (52 ACH) ventilation.

In Figure 10, we show the effect of ventilation. Because of the density of people in the restau-
rant, it is difficult to ventilate. A strong ventilation 6 ACH only reduces the concentration to 0.86
in one hour, a value that is still highly contagious. Basing the ventilation on the number of people
in the contaminated part of the restaurant, 8 liters per second per person, does a little better but still
leaves the concentration at almost 0.5 after one hour. This was the improvement in ventilation that
we discussed in the Discussion Section above. Increasing the ventilation to 52 ACH finally brings
the concentration down below the acceptable level 0.1, see the left hand side of Figure 10. On
the right hand side of Figure 10 we show the aerosol concentration after one hour as a function of
increasing ventilation. This figure makes it clear the restaurant is difficult to ventilate and requires
60 ACH before the contamination is mostly eliminated.

In Figure 11, we show the aerosol concentration as function of ventilation and time. It is clear
that with little or no ventilation the concentration quickly builds up to very contagious levels but is
brought sharply down by increasing the ventilation. However, to bring it to safe levels requires a
very strong ventilation.

We have used used the Lagrangian computation to find the parameters in the ODE ??. But this
was only to find the volume of the contaminated pyramid, see Figure ??. Once the Lagrangian
cloud is found much more can be done. In particular, with ventilation, a configuration of restaurant
tables can be found that makes next neighbor infection unlikely. In principle, we can even simulate
how the aerosol cloud enters the ventilation system and is spread by, it on the average.
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