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Supplementary experiments
Because the regression model based on the health dataset used in the main text had a low-prediction score, we also applied our framework on a non-health dataset and another simple health dataset.

Evaluation on real estate dataset
We obtained a dataset from the UCI Machine Learning Repository1,2. This dataset was used to conduct a regression analysis of the house price of a unit area based on six continuous explanatory variables of real estate data. There were no missing values in the dataset. The dataset was randomly split into training data (80%) and test data (20%).
The trained regression model yielded a root-mean-square error (RMSE) of 6.78 and an R-squared value of 0.735 in the test data (Supplementary Fig. 5a). A surrogate model was constructed by hierarchical Bayesian modeling using the original data and the predicted values of the regression model. The lowest WBIC value was obtained when the number of mixture components was two (Supplementary Fig. 5b).
Subsequently, path planning was performed using the surrogate model. Among the six explanatory variables, X1 (the transaction date) was a variable that was difficult to intervene. Therefore, X1 was fixed, and the remaining five variables were selected as intervention variables. The unit cell size of the grid was set to 0.2  in the training data for each explanatory variable. We executed the path search algorithm with L = 20,000 for each instance, and the path with the highest predicted value was acquired. The histogram of the actionability score for each instance is shown in Supplementary Fig. 5c. The actionability scores were greater than zero in 75/82 instances, and the median was 5.25. 
From these results, we have demonstrated that our framework can be applicable to datasets with higher regression model scores.

Evaluation on public dataset for disease progression
To evaluate the feasibility of our framework on another small health dataset, we used a public dataset on diabetes progression3,4. This dataset was used to conduct a regression of the quantitative measure of diabetes progression one year after the baseline from nine continuous and one discrete explanatory variable (Supplementary Table 2). The dataset is openly available on Trevor Hastie’s Software page at https://web.stanford.edu/~hastie/Papers/LARS/. This dataset contains no missing values. The dataset was randomly split into training data (80%) and test data (20%).
The feature importance of the trained model is shown in Supplementary Fig. 6a. The regression model yielded an RMSE value of 62.19 and an R-squared value of 0.246 in the test data (Supplementary Fig. 6b). A surrogate model was constructed by hierarchical Bayesian modeling using the original data and the predicted values of the regression model. The lowest WBIC value was obtained when the number of mixture components was two (Supplementary Fig. 6c).
Subsequently, path planning was performed using the surrogate model. Regarding the intervention variables, five variables were selected from the top of the feature importance of the regression model: body mass index (BMI), blood pressure, T-cells, high-density lipoproteins, and lamotrigine (Supplementary Fig. 6a). The remaining variables were fixed. The unit cell size of the grid was set to 0.2  in the training data for each explanatory variable. We executed the path search algorithm with L = 20,000 in each instance, and the path with the lowest predicted value was acquired. The histogram of the actionability score for each instance is shown in Supplementary Fig. 6d. The actionability scores were greater than zero in 83/87 instances, and the median was 2.06. Examples of the paths planned by using the proposed framework are shown in Supplementary Fig. 7. This experiment indicates the feasibility of using the proposed framework in planning actionable paths to improve the predictions of the regression model.
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[image: ]Supplementary Figure 1. Detailed workflow of proposed framework.
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Supplementary Figure 2. Generation of synthetic dataset. The three, three-dimensional (3D) normal distributions generated 200 data points that consisted of x1, x2, and x3. Subsequently, a response variable was set to the sum of x1, x2, and x3 with Gaussian noise ( = 2). The synthetic dataset consisted of a total of 600 data points with explanatory variables (X1, X2, and X3) and a response variable.
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Supplementary Figure 3. Results of the proposed framework on synthetic dataset. a Plot for prediction vs. true response variable. b Widely applicable Bayesian information criterion (WBIC) values of the stochastic surrogate models with 1–8 mixture components. c Histogram of actionability scores at different instances. The unit cell size of the grid was set to 0.5  in the training data for each explanatory variable. The path search algorithm was executed with L = 20,000 for each instance and acquired a path with the lowest predictive value. An actionability score of zero indicates that the actionability of the optimal path is equivalent to that of the baseline path.
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Supplementary Figure 4. Plots of optimal paths in 3D for the Iwaki Health Promotion Project (IHPP) dataset. The instances respectively correspond to the instances in Fig. 6 of the main text.
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Supplementary Figure 5. Results of proposed framework on real estate dataset. a Plot for prediction vs. true response variable. b WBIC values of the stochastic surrogate models with 1–8 mixture components. c Histogram of actionability scores at different instances. An actionability score of zero indicates that the actionability of the optimal path is equivalent to that of the baseline path.
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Supplementary Figure 6. Results of proposed framework on diabetes progression dataset. a Feature importance of the regression model. The color of each bar represents the following: red: intervention variables in path planning, gray: variables which are difficult to be intervened, and blue: other variables. b Plot for prediction vs. true response variable. c WBIC values of stochastic surrogate models with 1–8 mixture components. d Histogram of actionability scores for each instance. An actionability score of zero indicates that the actionability of the optimal path is equivalent to that of the baseline path.


[image: ]Supplementary Figure 7. Examples of personal actionable paths for treatment on diabetes progression dataset. The optimal paths needed for the improvement of the response variables predicted by the machine learning model are represented for randomly selected two examples: instance 1 (a, b) and instance 2 (c, d). a, c The orders of changes in the explanatory variables in the optimal path and the accompanying changes in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or decrease in the explanatory variable, respectively. b, d Two-dimensional (2D) plots of the path. The 2D plots are shown regarding the two influential variables: S5 and average blood pressure (BP) (b), and S5 and body mass index (BMI) (d).






Supplementary Table 1. Description of the recursive feature elimination (RFE)-selected features on the Iwaki Health Promotion Project (IHPP) dataset.
	Features
	Description

	Age (years)
	

	History of hypertension 0.0
	One-hot vector which represents no history of hypertension

	Leg score
	Leg skeletal muscle level score calculated by a body composition meter

	Blood glucose (mg/dL)
	

	BMI (kg/m2)
	Body mass index

	Waist (cm)
	Waist circumference

	-GTP (U/L)
	

	Inorganic phosphorus (mg/dL)
	Serum inorganic phosphorus

	AST_GOT (U/L)
	Aspartate transaminase

	Total protein (g/dL)
	

	Periumbilical (cm)
	Circumference of navel

	Body height (cm)
	

	Left arm R 5 kHz
	Bioelectrical resistance parameter of left arm measured by a body composition meter

	Weight (kg)
	

	Lymphocytes (%)
	Percentage of lymphocytes in white blood cells

	Sodium (mEq/L)
	Serum sodium

	Left arm R 50 kHz
	Bioelectrical resistance parameter of left arm measured by body composition meter

	IgM (mg/dL)
	Immunoglobulin M

	Inner fat level
	Inner fat level calculated by body composition meter

	MCH (pg)
	Mean corpuscular hemoglobin

	Left half X 50 kHz
	Bioelectrical reactance parameter of left half of the body measured by body composition meter

	Potassium (mEq/L)
	Serum Potassium

	ALT_GPT (U/L)
	

	Erythrocyte count (×104/μL)
	Erythrocyte count in blood

	PEF TIME
	Peak expiratory flow–time from spirometry





Supplementary Table 2. Description of the diabetes progression dataset features.
	Feature
	Description

	Response variable
	

	    Disease progression
	A quantitative measure of disease progression one year after baseline

	Explanatory variables
	

	    Age
	Age in years

	    Sex
	

	    BMI
	Body mass index

	    BP
	Average blood pressure

	    S1
	T-cells (a type of white blood cells)

	    S2
	Low-density lipoproteins

	    S3
	High-density lipoproteins

	    S4
	Thyroid stimulating hormone

	    S5
	Lamotrigine

	    S6
	Blood sugar level
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