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Abstract

Background

Individual-level geographic information about malaria cases, such as the GPS coordfina¢sglence

or health facility, is often collected as part of surveillance in near-elimination settings, but couldree mo
effectively utilised to infer transmission dynamics, in conjunction with additi@mformation such as
symptom onset time and genetic distance. However, in the absence of data about the flow sitgsara
between populations, the spatial scale of malaria transmission is often not clear.résulg it is
important to understand the impact of varying assumptions about the spatial scafarsmission on
key metrics of malaria transmission, such as reproduction numbers.

Methods

We developed a method which allows the flexible integration of distance metrics @sidbuclidian
distance, genetic distance or accessibility matrices) with temporal information intogée snference
framework to infer malaria reproduction numbers. Twelve scenarios were defined, representing
different assumptions about the likelihood of transmission occurring over difteyeagraphic distances
and likelihood of missing infections (as well as high and low amafriscertainty in this estimate).
These scenarios were applied to four individual level datasets from malaria elimirGingxts to
estimate individual reproduction numbers and how they varied over space and time.

Results

D} 0o }u% E]Je}v spuPP 38 8Z § ]v opu JVP *% 3] o JV(}EuU 3]}V Ju% E}A
compared to time only results. Across scenarios and across datasets, includifal sparmation

tended to increase the seasonality of temporal patterns in reproduction numénedsreduced noise in

the temporal distribution of reproduction numbers. The best performing parametiéoisa assumed
long-range transmission (>200km) was possible.

Conclusions
Our approach is flexible and provides the potential to incorporate other sourcegoomation which
can be converted into distance or adjacency matrices such as travel times or molecular markers.
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Introduction
Individual-level disease surveillance data, collected routinely and as pautlwieak response, capture

a wealth of information which could improve measurements of transmission @ndpatiotemporal
variation, in turn informing the design of epidemiological interventfor@o-located health facility or
residence data are increasingly collected as part of surveillance for diseases suchré, hat could
be more effectively utilised to infer transmission dynamics, in conjunatiith additional information
such as symptom onset time and genetic distane®wever, challenges exist in making use of these
diverse data sources and leveraging the information they contain within a siriglence framework.
This is particularly true of endemic diseases such as malaria, where individual levaredatzeasingly

collected in moderate-low transmission or elimination settings.

Malaria transmission is shaped by processes occurring on a wide range ofsgdéal In the absence
of human mobility, transmission is limited to the range of the mosquitotorechowever human
movement, ranging from regular commutes to rare large scale migration eventsmgamt iparasites
into new areas provided competent vectors are pre$€ntAs a result, the spatial location of individual
cases can provide useful information in inferring transmission dynamics whenraanlith additional
forms of information, such as temporal and molecular data. Furthermore, in eliminatidngethalaria
transmission is thought to take on epidemic dynafjigeeaning the importance of space and highly
dynamic factors such as human movement patterns becomes more relevant. However, in the absence
of data about the flow of parasites between populations, the spatial scale of malaria tisgiemis
often not clear. As a result, it is important to understand the impact of varying assama@bout the
spatial scale of transmission on key metrics of malaria transmission, such as wjmodwmbers. In
many contexts, not all cases may be observed within a surveillance system. Miaseg further

complicate inference, as without information about how likely cases areetanissing, ambiguity can
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exist as to whether long-range transmission occurred or whether cases were infected by a closer,

unobserved source of infection.

To explore the impact of including distance measure and assumptions dbeit relationship to
transmission likelihood, we developed a flexible framework to incorporatewss distances (for
example Euclidian distances, travel times, or any quantifiable distance matrix) imt@revously
published inference framewotko estimate individual reproduction numbers and explore the impact of
varying assumptions about missing cases and the spatial kernel on results, as wetrasnieg the
feasibility of inferring the distance kernel and amount of missing cases froueikance dataWe
defined twelve scenarios representing different assumptions about the likelihood of niiagsi®n
occurring over different geographic distances and likelihood of missingtimrie (as well as high and
low amounts of uncertainty in this estimate). These scenarios were applied toirfdividual level
datasets from malaria eliminating contexts to estimate individual reproductianbars and how they
varied over space and time. We used two simple spatial kernels describing the relatitesiveen
Euclidian distance between residences and likelihood of transmission occuwirekplore various
assumptions about the relationship between locations of cases and likelihood ofrissisn occurring
between them, as well as the impact of unobserved cases. We find the best performoidels by

e }v }E E [ havé weakly informative priors on the likelihood of unobserved sources of
infection and assume . However, we find there can be issues of parameter idelitffiaidiich become

increasingly relevant when there are not enough data available about key parameters in the model.

Results

We developed a framework to integrate distance information into a previously publishiedence
framework **! which uses the time of symptom onset to infer reproduction numbers and their

spatiotemporal variation. We then testl the impact of varying assumptions about the relationship
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between location of cases and the likelihood of transmission as well as thacingbd unobserved

infection as modelled by competing edgegconsidering twelve scenariosable ), and applying them

to four line-list datasets from Chin#& (vivaxand P. falciparum analysed separately), El Salvader (

vivaYy and EswatiniR. falciparun using Exponential and Gaussian spatial kernels, described in the

methods section of this paper

Table 1: Table illustrating the different scenarios and corresponding parameter values testedseéenario

analysis
Scenario Description

Scenario Beta (fixed)

Epsilon (prior)

Human movement unlikely, most movement under 10k 1
Missing cases more likely (but very uncertain)

Human movement unlikely, most movement under 10k 2
Missing cases more likely (confident)

Human movement unlikely, most movement under 10k 3
Missing cases less likely (but very uncertain)

Human movement unlikely, most movement under 10k 4
Missing cases less likely (confident)

Moderate human movement, most movement und 5
50km

Missing cases more likely (but very uncertain)

Moderate human movement, most movement und 6
50km

Missing cases more likely (confident)

Moderate human movement, most movement und 7
50km

Missing cases less likely (but very uncertain)

Moderate human movement, most movement und 8
50km

Missing cases less likely (confident)

Longer range human movement likely 9
Missing cases more likely (but very uncertain)

Longer range human movement likely 10
Missing cases more likely (confident)

Longer range human movement likely 11
Missing cases less likely (but very uncertain)

Longer range human movement likely 12

Missing cases less likely (certain)

Gaussian = 0.005
Exponential =0.1
Gaussian = 0.005
Exponential =0.1
Gaussian = 0.005
Exponential =0.1
Gaussian = 0.005
Exponential =0.1
Gaussian = 0.001
Exponential =0.02

Gaussian = 0.001
Exponential =0.02

Gaussian = 0.001
Exponential =0.02

Gaussian = 0.001
Exponential =0.02

Gaussian = 0.0001
Exponential =0.01
Gaussian = 0.0001
Exponential =0.01
Gaussian = 0.0001
Exponential =0.01
Gaussian = 0.0001
Exponential =0.01

Mean = 0.1
SD=1

Mean =0.1
SD =0.001
Mean = 0.001
SD=1

Mean =0.001
SD =0.001
Mean = 0.1
Sh=1

Mean = 0.1
SD =0.001

Mean = 0.001
SD=1

Mean =0.001
SD =0.001

Mean =0.1
SD=1

Mean =0.1
SD =0.001
Mean = 0.001
SD=1

Mean =0.001
SD =0.001
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Supplementary Table )1 In addition, exponential kernels consistently outperformed equivalent
scenarios using Gaussian kern@sipplementary Table )1 Two scenarios consistently performed best

as measured byt / , namely Scenario 9 (El Salvador and Swaziland) and Scenario 11 RPChinax

and P. falciparun). Both scenarios assume longer range human movement likely and imposeler smal

penalty on cases occurring larger distances. These scenarios also allow variatiorom exjggil values

and use a very weakly informative prior on Epsilon edges, but with a different mdafo{®Bcenario 9,

0.001 for Scenario 11). These results also return smaller rdegesults than time-only versions of the

model Figures 1t 4)

Table2 6XPPDUI Rl ...$,&F UHVXOWYV

Dataset *S$ D} o~+U C 4/ Akaike Weight

Swaziland (Eswatini) Scenario 9, Exponential 1

El Salvador Scenario 9, Exponential 0.621540909785805
Scenario 11, Exponential 0.37845909

ChinaP. vivax Scenario 11, Exponential 1

ChinaP. falciparum Scenario 11, Exponential 1

~yestimates under different scenarios

Across all datasets, large differences #y estimates were found depending on botNand
Uparameters. WhenUis higher, the assumption is that there is little movement of parasites within the
country and therefore cases with residential addresses which are far away are unlikeletinfected

each other. When this is the case and we assume there are unobserved sources of infection (either
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through a strongly informative prior oiYwith mean 0.1, or an uninformative prior with a lower mean),
then 4¢values are very low. However if we assume there are little or no unobsemedes of
infection, but continue to make restrictive assumptions about space, then mgsery low but in the
localities where there are cases we estimate much highgwvalues as there are no other possible

infectors within a reasonable time and/or spatial area. This is illustrated in Fiudes

[Insert Figures 1-4 approximately here]

When looking at the spatial patterns efgestimates under different scenarios several trends are seen
across all datasetd={gures 5-8 Scenario 4 is particularly interesting to note because this scenario
considers the most restrictive assumptions, both about space and unobserved safréefection.
Across datasets, Scenario 4 results in increased focality and higgewithin these foci, but in
comparison lower4e in other areas. All of the best scenarios as measured by resulted in smalldg
estimates, but where comparably largdiyestimates were estimated, they were in localities identified

as foci.

[Insert Figures B approximately here]
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For the line-listdataset from El Salvador, within the range of values explored in the sensitivity
analysisTable 3, E P & o0 *+ }( Z}A Jv(}@&u 3]A 3Z %E]}E A« JE 132 E
(pv 8]}vU }E (}E xU 8Z %oe]Jo}v P U t A « o/e@roftie]prici wase AZ § A
set as between the prior mean values of 1le-4 andXEigure 9. However, when the mean value
was set at 0.1, the estimated parameter converged at a slightly lower value of 0.075, with the

E %3]Iv }( AZ v 8Z % EDPJEB ¢} E&o x%AE"] }AE € & JK0Zand also xhe) fnoire
informative priors with mean le-5, when standard deviation was 1e4d)s strongly shaped by the

A op }( xU Al3Z Z]PZ & A op * }( x Hgsho@evénvm aisd Aleckned vath « }(

Jv E +]JvP Aoopu s }(t

Very similar patterns to El Salvador were observed in the sensitivity analysis of thinEdataset.

Again, E P & o0 *+ }( Z}A Jv(}Eu 3]A 3Z % E]}E A+ (JE 132 E x }E
whatever the mean of the prior was set as between the prior mean values of 1e-4 ah@Figure

10). However, when the mean value was set at 0.1, the estimated parameter convergedgitls sli

0}A & A op }( iXi0AU Al8Z §Z A& %&]lv }( AZ v 3EABEN® RE x A
of 1e-10 and also the more informative priors with mean 1le-5, when standard deviatiohexd)s

hvo]l o ~ oA }EU (}E& <A 5]v](0.5 &n@(.R)Zheke e starke dé¢lines4gwith

Jv @ <]JvP tX

For bothP. vivaxand P. falciparundatasets from China, within the parameter range explored in the

*+ Vve]3]A]EC Vv 0Ce]eU E P & 0 ** }( Z}A Jv(}EuU 3]A 8Z % E]}E A + (
(pv 8]}vU }E xU 8Z %-e+]Jo}v P Ut A+« 0A Ce obthe griorwash& 5 A E 3
as Figures 11 and 12 suggesting a lack of identifiability or information within the data. When

estimating 4sU v ]Jv8 €& +S]JvP JvS8 & S]vP (( 8§ }( x ~u]ee]vP t}E pv} -
~ ] v ¢ Ae o vX tZv t ] 0}AU o03Z}uPZ 0o}A E A op e+ }( x %
mean 4yvalues, the difference idg *3Ju & « A]JSZ A ECJVP % E]}E A op « (}E x ]

AZ vit]e Z]PZ & A op X /v }3Z & AYE U -N7Z4yestihatée @B hp@mal} E x ]+ o



148

149

150
151

152

153

154

et ZVP sU Z}YAA E AZ v §Z %E]}E (JE x ]» up Z -Z}PAIEU §Z v

reduces 4estimates (from 0.21 to 0.01 fét. vivax)

Table 3: Different parameters considered in sensitivity analysis. Note all combitians of each parameter were
considered.

Onean GsD Ymean Yy YSD
;0 0 ;
1le-10 0.0001 0.00001 0.0001 0.0001
leb5 0.001 0.0001 0.001 0.001
le3 0.01 0.001 0.01 0.01
le2 0.05 0.01 0.1 0.05
lel 0.1 0.1
0.5

[Insert Figures 92 approximately here]
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Discussion

We developed an approach to estimate malaria transmission network propevilgsh allows the
flexible integration of distance metrics, such as Euclidian distances or travel wikstemporal
information within a single inference framework. Twelve scenarios and corresponding pgarame
values were defined which representea) varying likelihoods of transmission over different
distances and b) varying likelihoods of missing infections (as weilgjlasahd low confidence in this
estimate). These scenarios were applied to four individual level datasets from maliarinating

contexts and using two different spatial kernels. The estimadggalues, their spatial and temporal

distribution and the4 / |1 1 ]I A JPzZ§. (}&E Z u} o AE }Ju% E 0}vPe]

model. These results suggest that including spatial information improved models asn@edy
AIC, compared to time only results. The prior values for both the distance function and eadilen
have very strong impacts on the estimatetly although relative temporal trends tend to stay

consistent.

&}E o00 § ¢ & }ve] E U o00 u} o A Ee]}ve AZ]Z pe}ARE}IRE %0 Z]

values than the time only model. Based on the Akaike Weights4nf values for each model,
large differences id / were seen between different scenarios. Scenarios 9 and 11 produced the
lowest 4 / values. These were parameterisations which penalised long range transmission the
least where and the prior on epsilon edges was only weakly informative. These parametesisati

also return much lower reproduction numbers than using time alone

Exponential Kernels consistently outperformed Gaussian kernels as measuréd/by Although
classic models of dispersion are as a diffusion process with Gaussian displaceorengptokurtic
JE A(-S8]dE _ % E} ]0]3C ]3E] us]iveU AZ E ul@BVvIVEE %@V
the tails of the function, are often found to better represent empirical dispersatepad than

traditional Gaussian kernetéX dz]e 2§ §6 Hv $Z Adbheseeh]indigures 135.

lo]
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However, there are many limitations to using / in model comparison, particularly when
estimation of some of the parameters are being carried out within a Bayesian toWexdo not fix
Uy ynor do we fix epsilon, but we do define priors and maximise the posterioerdtian the log
likelihood. Therefore, we are comparing negative log likelihoods feormaximised posterior
meaning we are not considering the information included in the prior. titiat, many Uy values
shrink to zero, however are still counted as parameters in the AIC estimation. Thereforeisthere
recognition of which versions of the model produce fewer non-zero parameters. Whitst
difference in AIC is interesting to note, | would argue the broader sendcow 4varies over time
and space with different assumptions about both the spatial kernel and the number of unebser

sources of infection are more important to consider.

An interesting pattern which was noted across scenarios and across datasets was howngncludi
spatial information in the likelihood tended to increase the seasonalityenfporal patterns in
reproduction numbers and reduced noise in the temporal distribution of reproduction numbess. Thi
could be suggestive of importation events leading to localised infections. Scendsi@aldo an
interesting set of assumptions to consider as it assumes cases generally onlcasestnear them
and that unobserved cases of infection are unlikely. Under this assumption foéecion are very

0 E v 0 & "}uE -+ }(]v( E]}vX

The results of the sensitivity analysis reveal interesting differences between the different datasets
and contexts contained in this dataset. For both El Salvador and Eswatini, whichtlarsnizl
countries (El Salvador has an area of 21,041 km? and Eswatini 17,364tknigher mean priors for
t,ttheu} o }VA EP }v v «3&Jnhchswag)itrmed by the data. This was not the case

for the dataset from China, which represents a much larger area geographically and where dynamics
are likely to be strongly driven by importation. Given that for the kernels sezlun this analysjs
increasing values of lead to more restrictive assumptions about the scale of transmission, perhaps

this difference is due to the different spatial scales at which the analysis was being carried out.

10
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There are several limitations to this approach and analysis. Firstly, there is a potaokiabfl

] v3](] ]o]3C , tBélepsilor edge, and, the shaping parameter of the spatial kernel. To
give an intuitive example, say two cases occurred 50km from each other in spaca withi
reasonable timeframe of symptom onset times for transmission to have occurrgdoMV strong

prior information about what the spatial kernel may be, and/or how likehses are to have an
external source of infection, it is not clear whether these cases are linked by transmissidhdignd

is some human travel/parasite movement, modelled by a less restrictive spatial kernghether

there are unobserved source(s) of infection leading to both cases. This is also exeniplified
results of the sensitivity analysis, where the mean of the prior for beta strongly shapes the final

estimate of beta, and the epsilon value also shapes beta.

In the absence of reliable information about either of these values, strong assumptiorisbmus
made about either/both the likelihood of cases being infected by unolesksources of infection

and the relationship between distance and. Similar approacfiegcommend fixing the kernel
shaping parameter, and indeed approaches from others have also noted problems with
unconstrained distance kernels in space-time diffusion modelling (Swapnil Miglerapnal
correspondence). One potential way to address this is divide epsilon edge by thediptmameter

— &hereby linking the two parameters and thereby penalising increasés in

Indeed, for similar approaches analysing the diffusion of twitter hashtags, it was recommended to fix
the parameter beta, and the authors acknowledged potential challenges in estimating this
parameter. Whilst the temporal aspect is not fixed, | view the utility in this methoddluegxg or
penalising improbable transmission links between far away cases, rather than asd tegng to
determine what the spatial relationship between cases is for malaria transmission, enndeing

the relative contribution of space to malaria transmission.

An additional approach which could alleviate this problem is to coll¢etrial travel history as part

of surveillance in future data collection efforts. This may help tease apart the relationstwedn

11
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space and transmission. There also may be regions where there is more informationreeparse
both the spatial scales of transmission and the likelihood of cases being unobsemedafople
through looking at reporting rates, rates of relapse in the casd®oWvivax and prevalence of

asymptomatic infection).

Secondly, our approach was designed for application to near elimination anthaiom settings,
where surveillance and case management is very strong, numbers of cases are small, andetherefo
there is less overlap in potential infector/infectees, and changes in transmission aecapparent.
If applying these approaches to contexts which are less far along the journeyminagion, the
issue of identifiability may be even more of an issue as one cannot reasonablye#fésuapsilon
edges to be a very small number. Asymptomatic infection will likeindie important to consider,
more sophisticated methods to deal with missing cases will be required. There dlsikelyilbe a
weaker signal in space and time, which may require the integration of additionamniafion such as
genetic distance. There also will be a transmission level above which these methoads loiliger

be useful, although we do not know what this exact level is.

Finally, du 8} §Z & JvP v} "PE}uv Fi@orosgly cdmpdre tiodEl pé&rformance
JAICc and Akaike Weights are standard, however as mentioned previously, there are important
limitations in using these metrics for model comparison. A useful future step vl analyse
simulated line-lists which are spatially explicit to investigate the impagtanfing parameter values

and the interaction between the shaping parameter of the spatial kernel and epsilonal§pati

explicit simulations may also reveal how tolerant the method is to missingness.

Currently, missing cases are dealt with in a relatively simple way, under the assuthgtion the
elimination settings used here, surveillance and control have been stroranfektended period of
time as to ensure small case numbers and low prevalence of asymptomatic parasitaemilaatand
the contribution of missing cases is small enough to be represented as a compeizagd.

However, if missingness was biased, it is not clear how strongly this would affect resthsr Fu

12
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simulations which model different forms of missing data/sampling schemes wouldséfil to
reveal the potential impact of non-random missing data. These simulations @dstd model
different sources of unobserved infectionfor example missing cases caused by relapse of dormant

P. vivaxunreported cases or asymptomatic infection.

Many methods used to model and represent space and mobility have nat tested here due to

the issues of identifiability seen even in simple models of space. Gravitgtioadi, and friction
sufaces® are all potentially useful models of how space may affect the likelihood of transmission. A
mosquitoes have a limited range and lifespan, developing better data and mofidisinoan
movement, and how it varies in different cultural contexts and between different demograp
groups, will provide useful information to appropriately parameterised atesign the spatial

component of the model.

Although the prior for the shaping parameter of the serial interval was selected uthaer
assumption that the majority of cases are treated in a timely manner, In this analgdiave not
explicitly utilised information about the time and location of treatment, althotigis is available in
some contexts. This may be useful information to constrain the potential time windomfesition
occurring, as detailed information about infectivity and gametocyte carriagewily treatment

with anti-malarials is availalté although sub-optimal dosage, compliance and resistance have been
associated with differing outcomes and therefore having additional informadioout treatment

and prevalence of resistance would also be useful.

Another avenue for future work would be to adapt the approach to incorpofatther sources of
information, such as genetic markers of similarity between parasites. Faappupach to be useful
in contexts which are not at or within a few years of elimination, incorporation dfitiacal
information into the inference framework will be required. This could be carrigdeiiber directly
by incorporating an additional term or function in the likelihood rdtitectly through informing the

value of parameters and allowing them to vary between individuals. Prewviark within the

13
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machine learning and network analysis community has successitdigrated diverse sources of
information about texts such as language and similarity of context into veriasiatgorithms to the

one presented heré®.

Conclusion

Increasingly, line-list data contain spatial and other forms of informat@eveloping rigorous
approaches to leverage the information contained within these diverse datasetaasibsingly be

useful in malaria surveillance and epidemiology?’ and developing a framework which flexibly
takes on different forms of data within an integrated inference framework is a key taspdiis.

There may be more useful information contained in genetic, and or travel, mathligy However,

as we have seen there can be issues of identifiability, which becomes increasingly relevant when
there is not enough data available about key parameterhémodel. Finding ways for leveraging
multiple datasets, understanding their relationships, how they can enhance info cedtairothers,

or used to build consensus is important.

We developed and tested an algorithm which flexibly allows the incorporatibrdistance or
adjacency matrices describing the distance or connectivity between cases. This was applied to
individual malaria case data from four eliminating and very low transmigsiotexts and a detailed
sensitivity analysis was carried out. The results of these analyses suggest that including space
Ju%e E}A « u} 0 % E(}EU V e u uCE ¢4/ U v §z2725@ U&BZZ
best performing models produce lower reproduction estimates than using tempofatmation

only, likely in part due to estimating more unobserved sources of imiecti However, this
conclusion would be strengthened by more in-depth simulation studies. Theoagp presented

here could be adapted to many different datasets and contexts, however issues offiadslity

must be considered. The utility of this approach would be strengthened with further development of

the methods of modelling unobserved sources of infection. Our results also faleai that in
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many contexts that additional information sources may be required such as geneterajogical

data.

Methods

Data

The Kingdom of Eswatini
This dataset, previously analysed by Reiner and colle&tcmstures malaria cases recorded by the
National Malaria Elimination Programme in the Kingdom of Eswatini (forkabwn as Swaziland)
between January 2010 and June 201Hor each case detected during this time (N= 1373), case
investigation was carried out. For each case the following were collected: GPS coordinates of
household location, demographic information (age, occupation and sex), use aiar@avention
interventions such as long-lasting insecticide treated bednets (LLINS), andfdatmptom onset,
diagnosis and treatment, as well as travel history. Based on travel history casesisfered as
locally acquired, imported. For a small number of cases (N=58) the local/impstatas was

§ Gulv "uVvIVIAV_ X &YE 5Z %opE%}es » }( 3Z]* v 0Ce]eU 3D «
cases, i.e. they were assumed to have potentially been infected by other cases in the datéset and

been infectors themselves.

China

This dataset consists of individual-level case data for all confirmed and peobades reported in
China between 2011 and 2018’ (Table 4 and Table 5). The data consist of an individual identifier,
date of symptom onset, date of diagnosis and date of treatment, as welleagablocated address

of residence and health facility. If the suspected location of infection was in Chinaoarial the

same district, then the presumed location of infection was also included in the dataset. Demographic

information such as age and sex were also collected. For the analysis, data were separadted into
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326 falciparumandP. vivaxcases P. malariag(N=252) andP. ovalgN=822) were reported but excluded

327 from the analysis due to the lower public health concern of these species.

328

329 Table 4. Cases by diagnosis type (probable and confirmed) and species across &hin

Mixed infection P. falciparum P. malariae P. ovale P.vivax Untyped
Confirmed 260 11830 252 822 6631 87
Probable 0 176 0 0 693 311

330

331 Table 5. Cases by imported/local status and species across China

Mixed infection P. falciparum P. malariae P. ovale P.vivax Untyped
Local 5 92 4 1 1711 95
Imported 255 11914 248 821 5613 303

332

333 El Salvador

334 This dataset consists of all confirmed cases of malaria recorded by the Ministry of Hhed&th

335  Salvador between 2010 and the first two months of 2818l= 91 cases, of which 30 imported? 6

336 falciparum 85P.vivay. For each case, the date of symptom onset was recorded. Residential address
337 was available for all but two cases. For these cases, the location was availablaratriic@io,or

338 municipality level, and the coordinates of the centroid of the municipality (whichboth were

339 cities) were used as the geo-location. Two cases had addresses listed outBldeabfador, both of

340 which were located in Guatemala. All cases within El Salvador with full addresses (N=85) were
341 georeferenced by latitude and longitude toaserio/lotificacionlevel, which is approximately

342 neighbourhood or hamlet level.

343  Transmission model specifics

344 In order to incorporate pairwise distance metrigge extended our previously published algorithm
345 applied to Yunnan Province, Chinaby introducing a second functiong which describes the
346 relationship between space (or distance of any kind) and likelihood of transmigsioappropriate

347 function such as a Gaussian kernel is defined and the parameter(s) shaping thbuiilistrit, are
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348 either fixed, or given a prior distribution and estimated from the data. Multiplied, togetthis

349 returns a single function:

350  BKTAPRAvR Y& 0- BB Paly 4% BKTy#Ra O :s;

351 Determined by timesPspatial locationsT, transmission rated) épatial parameter(s)J

352  As before, the hazard is defined as the pairwise likelihood divided by the survival term:

UKEAGEFA@ 6 Ad
353 * | —CFEE0EP .y
| kéngeR@ o &P

354  To derive the survival function, one integrates across all distances and times as follows:
NP 1. . P . .
355 SkRPERB PaUo0 L, 1,7 PBKEVR Yy (BT+R U0 @A) @T

356 The specific functions used iB: B PaU; svand B: Ty Fa U; will have large impacts on the
357 outcomes of results and therefore the assumptions inherent in these choices must be maidé expl

358 and linked to the mechanisms of transmission.

359 To illustrate this approach by applying to several malaria line-lists, we ushifted Rayleigh
360 distribution to model serial interval distributionsg kRpRa U p&or the second part of the likelihood
361 which model the relationship between space and the likelihood of transomissy: Ty Ta U ;

362  Gaussian and Exponential diffusion kernels were used (Table 6

363 Table 6. Equations for f1, 12, hazard and survival for time -only, Gausseml Exponential spatial kernels

@: S sa . &:Z za Y Hazard Survival

. o s PN ~ o s _5 . S
Exponential (k= RF 00?%k9§<b? o N &% UWRF RF U gASS ¢S N k& @& 0_(1
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) t¥UU kfF PF O CASF % o kg o 78

Gaussian  (JKE PF O FAKOD © A edcs

7z t¥u
Timeonly U kfF RF O FAKTD © nia Uk RF Uo N2 kP o
364
365

366 Using a shifted Rayleigh distribution and an exponential kernel the pairikedéhdod of a case
367 showing symptoms aRjand at residence locatiofigbeing infected by a case showing symptoms at

368 time Rand at residence locatiofily becomes
BKTiA PRavR WA OL WRF RF (b8 KE D o 65 -
369 The survival term simplifies to:
370 SKTiA AR Pa bl A T o2 (5
371  And the hazard simplifies to:
372 * KA fvavR YabL UKRF RF A 6% (6)

373  For the Gaussian function, the pairwise likelihood of a case showing symptoRgnat at residence

374 location Tgpeing infected by a case showing symptoms at tiand at residence locatiofiis

N 2 3 ) 5 P T T
BKTiA v PabL WRF RF (pA's KO o ees .y

375 The survival term is again determined by integrating the likelihood oVeogdntial infection times

376 and all distances

| o
< . < N 5D o o o
SKTAPRAB PADL 1+ £ WkRF RF bA's KO D O Koew @@ Tz;
4 4

377 Integrating over time returns
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392

393

f
N g 5 A oy
SKTAPRAR Pa L Ae KOT 0 R keed @ T {;
4

Integrating over all distances gives

.. 5 o 3£
SKTA AR UaBL KB 95 2 s,

Following equatiori0, the hazard is equivalent to

L UKRF RF QAR D o et
* KTea fPivave iy Bl : — sS
Np K@@ o /43;
t¥u

Which simplifies to

t¥UUKRF RF (A’ 68 &
7

* KTAGRAR POl st;

Modelling missing cases using ¢edges

The vast majority of disease surveillance and outbreak response datasets will noelie abpture

all cases due to asymptomatic infection, underreporting and movement of peofdet of the
surveillance area. Therefore, it is important to consider the impact of missingriafmn on results

and identify potential missing sources of infection. We use Epsilon edges$o identify potential
sources of infection. Here, each hazard is estimated as a further competing edge of tramsmissio
from an unobserved source® 4:Q;. Depending on assumptions for the likelihood and extent of
unobserved infection sources, the epsilon edge value can be set to a high or i@y \Wéden high,

we assume high amounts of unobserved infection and unless two cases hawe lagrelikelihood

of being linked, we assume the case was from an unobserved source. When low, me &tite
missing data and so cases are only linked to an outside source if they are very unlikely to be linked to

an observed candidate infector.

Adding epsilon,Y as a competing hazard and survival returns:
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394 Bsaza»albav

395 Acps 2:05 Apag oo SKTIA VAR BWAD@ 1105 E Ajag oo KTIATRAR PADA s I
396 The objective function is then:

397 IEJEIEYRZ BSaza»a0ays ORKBRAPPY P (L4AEEAF

398 Because this was carried out within a Bayesian framework the log posterior was maximised to obtain

399 the maximum-a-posteriori estimates.

400 The algorithm was written in TensorFlow, implemented in R viarTleasorflowpackage. A prior
401  probability was defined for the parameter shaping the serial interval of malaria, iefbrby
402 previous characterisations of the serial interval of maldfia Because data about how likely the
403 cases were to have moved long distances or the likelihood of a case hasirtfeeted by an
404 unobserved source of infection were not available for the contexts explored here, seifézadnt
405 parameterisations of the model were used to represent different scenarios (Table 1) and a detailed
406 sensitivity analysis was carried out (TableThe versions of the model which are describetable
407 1 and Figures13-15 represent different patterns of human/parasite movement, ranging from a
408 context where there may be small amounts of movement (almost all under 10km) tenate
409 amounts of movement/travel( almost all under 50km) to a less restrictive parameterisatioere
410 near cases were more likely but far away cases were not completely excluded. Vel aliifdirent
411  versions of the algorithm, as well as temporal-only algorithm to these datasetgplore the impact
412  of different assumptions about the impact of space on estimatégvalues and their variation over
413 time and space. We also evaluated the performance of each approach by comgiffiengnces in

414 §Z ¢ Yv }YE & | ~4 /] U v EZ JEE *%}v JVvP | ]l t ]PZ&X

415 Twelve scenariosT@ble ) were considered when defining parameters for each dataset. These
416 scenarios consider three different levels of likelihood of transmission in resdtiprio Euclidian

417  distance (due to the limited range of mosquito travel, this is considered in the contdximan

20



418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

mobility), which was defined for both exponential and Gaussian kernels. These are illustrated
Figuresl3-15. Then the values for epsilon were set at 0.001 and 0.1, representing different levels of
missing cases likely. This can be interpreted as the chance of a case having an edotsemce of

infection. For example, 0.1 would represent P(unobserved source of infection) = 0.1.

The timeseries of 4 and its spatial patterns were illustrated for each dataset and parameter
combination and compared to the results of the time-only version of the algariffhe results were
also mapped to compare how spatial patterns4gwere affected by assumptions about space and

unobserved infections.

In order to compare models quantifiably, the second order Akaike Information Critgki@t) \as

calculated using the equation #+8L FtZ'B T, E t- Z—é,,i%;,

where B:T; is the model

likelihood, K is the number of parameters estimated and n is the sangdeobithe data used to fit

the parameters. The At€is used in model comparison, by creating a comparison of negative log
likelihood that penalises increases in model parameters, to prevent overfittinglCc is
recommended for use with smaller datasets with larger numbers of parameters, and as the sample
size Jincreases AICc converges to AICdZ  J(( E v « Jv [/ (}&E Z u} oU Iv}Av

were calculated to compar u} 0¢X dC%] ooCU 4 |/ }( PE S E& SZ v il ]

evidence that that model performs worse than the model it is being compared to.

In addition, Akaike Weights were calculated, which are a measure of the relativeodceldf a
model compared to the others considered. Akaike weights are determined by takinmpthmelised
relative likelihood of a model which A T:1Fra ¢ # + %®? t ;NMAd then dividing by the sum of

these values across all models to obtain a normalised result.
Sensitivity analysis and comparison of prior choice on estimatesiuies

In the scenario analysis above the distance shaping parameter is fixed. However due to th

uncertainties in the relationship between distance and likelihood of transmisgiomany contexts
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it may be useful to estimatd) To explore the relationship between the estimated epsilon edgés,
and estimated shaping parameterJfér the distance function. a detailed sensitivity analysis was
carried out to explore the impact of a) prior choice fod) prior choice forUon both the maxmum-

a-posteriori estimates folJand the estimated mear

To consider the effect of varying parameter values and explore their interactions, a range of distance
and epsilon edge priors were considered. A truncated normal prior was used for aameters,

and the mean and standard deviation were varied. Btie mean was varied between 1e-10 and
0.5, and the standard deviation was varied between 0.0001 and Or1URbe mean for a Gaussian
Kernel was varied between 0.00001 and 0.01 and for an exponential kernel the meaeoed
ranged between 0.0001 and 0.1. For both the standard deviations varied between GAAAL1
(Table). Every possible combination of the parameters were run for each dataset and both Gaussian
and exponential spatial kernels, giving a total of 2400 parameter combinations tested per kernel, per

dataset.

[Insert Figuresl3-15 approximately here]
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524 Figure Legends

525 Figure 1 4gestimates from El Salvador line list based on using the time-only scenario and Scenarios
526  1-12 with an exponential kernel

527  Figure 2 :4sestimates from Eswatini line list based on using the time-only scenario and Scenarios 1-
528 12 with an exponential kernel

529 Figure 3 4¢estimates from ChinR. falciparumine list based on using the time-only scenario and
530 Scenarios 1-12 with an exponential kernel

531 Figure 4:4xestimates from ChinR. vivaxine list based on using the time-only scenario and
532  Scenarios 1-12 with an exponential kernel

533  Figure 5: Map of Rc estimates for El Salvaddap of A) Time-only B) Best scenario by AIC (Scenario
534 9) and C) Scenario 4, representing an assumption of little long-distance transmésglofew

535 unobserved cases. Note the increasing focality in C), with higher Rc values estimated onfibe Paci
536 Coastal area of the Ahuacapan and Sonsonote municipalities, where the NMCP hadernifigd

537 as the remaining foci of risk.

538 Figure 6: Map of Rc estimates for Swazilakiap of A) Time-only B) Best scenario by AIC (Scenario
539 9) and C) Scenario 4, representing an assumption of little long-distance transmésslofew

540 unobserved cases. Note the increasing focality in C), with higher Rc valueatedt@nound the

541 northern corner of the country which borders Mozambique.

542  Figure 7: Map of Rc estimates fér. falciparumin ChinaMap of A) Time-only B) Best scenario by
543  AIC (Scenario 11) and C) Scenario 4, representing an assumption of little long-distance transmission
544  and few unobserved cases.

545 Figure 8: Map of Rc estimates f&. vivaxin ChinaMap of A) Time-only B) Best scenario by AIC
546  (Scenario 11) and C) Scenario 4, representing an assumption of little long-distancgigséos and
547  few unobserved cases.

548 Figure 9: El Salvador sensitivity analysgensitivity analysis showing the impact of varying the prior
5499 u v (}& 8§z ]*S v | EVv 0 *Z %]VP % G u § EU tX dz 1(( & v§ }
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550 different means and standard deviations respectively of the normally-distributed priepsifon,

551  Ywhich represents shapes represent different hazards of infection by an external, unobserved

552 source. For A-D,the x/E]* € % E * vSe SZ % E]}E uvaxis ghews (Ne@akihumasZ C
553  %0}*S EJ}E] % E u § E 3Jud (JE SZ % E u s E tX =« +Z}As 5Z < u
554 mean}( Y (JE& o0 E]SCX + A"Z}Ae §Z Ju% 35 }( B E]}E+ (}EPt]w Y }v !
555 ©« Z}Ae 3Z o+ u &E cpo3U «3CE 3](] C 3Z %E]}E u v }( YX

556  Figure 10: Eswatini sensitivity analysiSensitivity analysis showing the impact of varying the prior

557 means for Eswatini. Sensitivity analysis showing the impact of varying the prior medhef

558 ]*8 v | EV 0 *Z %]VP % & u 8§ EGU tX dZ ]J(( & vS§ }oluEs v Z %
559  and standard deviations respectively of the normallyS& | ps % E]}E }( %e]o}vU YUAZ]
560 shapes represent different hazards of infection by an external, unobserved sourcé-Fdhe x-

561 Ele E % E * vSe SZ % E]}E u-axis shows (heEnaxsimum & gost€riori parameter

562 estimatefor§Z % @E u § E tX e« ¢Z}Ae 3Z o u E spodeU +3E 3](] C 3z
563 o NZYAe 3Z Ju% 35 }( % E]J}Es (JE t v Y }v §Z u v EZ «5jhu S U v
564 & eposSU «SE S](] C 3Z %E]}E u v }( YX

565 Figure 11: China (P. falciparum) Sensitivity AnalySensitivity analysis showing the impact of

566 varying the prior means for P. falciparum in China. Sensitivity analysis showing the ifmagting

567 the prior means for Eswatini. Sensitivity analysis showing the impact of varying the prior onean f

568 §Z ]S v | EV 0 *Z %]VvP % & u § EGU tX dZ 1(( & vS§ }ojuEe v
569 means and standard deviations respectively of the normallyS E] ps % E]}IE }( %e]o}vU
570 represents shapes represent different hazards of infection by an external, unobserved source. For A-

571 D, thex-&E]s E % E * vSe §Z % E]}E u -axisishows(ha&E maXimum &4osteriori

572 % E u § E *3Jud (JE S3Z % E u S E tX o+ ¢Z}Ae §Z e« u E *puosdeU
573 Y(}JE o0 E]JECX o+ ~"Z}Ae 3Z Ju% 3 }( % E]}E- (}E tPv]vY dvZBA.u v
574 §Z e« u & *poSU «SE S](] C 3Z %E]}E u v }( YX

575 Figure 12: China (P. vivax ) Sensitivity AnalySiensitivity analysis showing the impact of vagyin

576 the prior means for P. vivax in China. Sensitivity analysis showing the impact of vheyimgor

577 means for Eswatini. Sensitivity analysis showing the impact of varying the prior medhef

578 ]*S v | Ev 0 *Z %]VP % E u § EU tXddlapes| (dpré&sentdiffereod peans

579 and standard deviations respectively of the normallys3E] p3 % E]J}E }( %e]o}vU YUAZ]
580 shapes represent different hazards of infection by an external, unobserved sourcé-xdhe x-

581 axisrepresentsZ % E]}E u Vv U (Jets showse tieZnaximum a posteriori parameter

582 *3Jud (}JE SZ % E u d E tX o ¢Z}Ae 3Z o u E spodeU +3E 35](] C
583 e NZ}Ae 3Z Ju% 3 }( % E]}Ee (JE t v Y pvagaih Dushowgthe sd&he § U v
584 & epoSU «SE 3](] C 3Z %E]}IE u v }( YX

585  Figure 13: Illustration of likelihoods, hazards and swals for less restrictive kernels (longer range
586 human movement likely).Plots showing how the pairwise likelihoods, survivals and hazards vary
587 with time and distance under different model structures. The first row of plots shows the pairwise
588 likelihoods, the second row shows the pairwise survival and the third row shows thdgsahrazard

589 values for different combinations of distance (in kilometres) and time betwsganptom onset

590 (days). The first column shows the results for a time-only version of the algorithm. Tiwedsec
591 column shows results for an exponential kernel and the third column shows resultsGaussian

592 kernel. In this example less restrictive values for beta, the shaping pégarfor the distance

593 kernels have been chosen, representing a context where there is more long-range ermdvem
594  parasites.

595 Figure 14: lllustration of likelihoods, hazards and swads for moderately restrictive kernels
596 (moderate human movement, most movement under 50kmiplots showing how the pairwise
597 likelihoods, survivals and hazards vary with time and distance under different siodetfures. The
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first row of plots shows the pairwise likelihoods, the second row shows the pairwisgawamd the

third row shows the pairwise hazard values for different combinations of distandeldimetres)

and time between symptom onset (days). The first column shows the results foeeotily version

of the algorithm. The second column shows results for an exponential kernegharttliird column

shows results for a Gaussian kernel. In this example values for beta, the shaping parameter for the
distance kernels have been chosen to represent a context where there is more some embwam
parasites, but where little movement is expected beyond 50-75km. Thehtiloglifor the Gaussian
Kernel is more concentrated, which could represent shorter range movement e.g. commutes,
whereas the Exponential has a longer tail so could represent a mixture of short and fanger
parasite movement.

Figure 15: lllustration of likelihoods, hazards and simais for highly restrictive kernels (Human
movement unlikely, most movement under 10kmpPlots showing how the pairwise likelihoods,
survivals and hazards vary with time and distance under different model structures. Thewirst r

plots shows the pairwise likelihoods, the second row shows the pairwise aluavid the third row
shows the pairwise hazard values for different combinations of distance (in kilesheand time
between symptom onset (days). The first column shows the results for a time-only vefsibe
algorithm. The second column shows results for an exponential kernel and the thirdrceshows
results for a Gaussian kernel. In this example more restrictive values for beta, the shaping
parameter for the distance kernels have been chosen, representing a context where there is very
little movement of parasites, with very little movement beyond 10-20km expected.
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