Potential of two indigenous strains of entomopathogenic nematodes,
(*Steinernema feltiae* and *Heterorhabditis bacteriophora*) against the tomato
leafminer (TLM), *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae), under
laboratory and greenhouse environmental bioassay

Keywords: Biocontrol, Tomato, T. absoluta, S. feltiae, H. bacteriophora, Greenhouse, Environment

Posted Date: January 27th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1065129/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The tomato leafminer (Tuta Absoluta) is an important pest of tomato crops which have features like; high reproductive potential, invasive species are major threats to agronomic and natural ecosystems. Based on the pathogenicity of strains, only two isolates effectively show larvicidal activity. The native isolate was obtained from soil samples, collected from Rajgarh, Hamachi Pradesh, India. Petri dish bioassay use nematodes S. feltiae HR1 and H. bacteriophora HR2 species dose (0, 10, 20, 40, 80, 160/ IJs/cm²). The (%) 1st instar larval mortality was ranged from 24.15 to 85.38%. 2nd instar from 29.87 to 90.00%. 3rd instar from 41.25 to 80.00%. 4th instar from 51.35 to 90.00% and pupae stage mortality was ranged from 31.53 to 85.38%. Larvalcidal activity after 48- and 72-hours exposure, the S. feltiae and H. bacteriophora (1.0, 1.30, 1.60, 1.90, 2.20/IJs/cm²) showed potent larvalcidal activity with LC50, LC75 and LC90 of all instars and pupa show high mortality. The strain inhibits the larval and pupal development 48 to 72 hr exposuer time with LC50 range from 05.42 to 23.67, LC75 20.29 to 83.12, LC90 16.52 to 98.89. Green house test is using the same isolate of EPNS (HR1, HR2) on foliar application it caused by significant mortality results. These studies demonstrate the challenge for invasive species. The local indigenous strains of EPNS (S. feltiae HR1, H. bacteriophora HR2) as a good biocontrol agent against invasive pest of T. absoluta.

Key Message

- In the laboratory, the entomopathogenic nematode (EPN) Steinernema feltiae, and Heterorhabditis bacteriophora native isolate HR1, HR2, caused 90.00% above mortality in T. absoluta.
- In the greenhouse EPN isolate are caused 95% mortality in Tuta absoluta F1 hybrid tomato crop plant.
- LC50, LC75, LC90 ranged between 23.67 – 83.12 and 2.20 IJ/cm² in a period of 48–72 h.
- Under greenhouse conditions, a 3 foliar plying application of EPN with a mortality achieved significant % mortality of T. absoluta.
- Additionally, native EPNS isolate have enormous potential for the control of foliage pests and may become a powerful alternative for T. absoluta control.

Introduction

Invasive species are important threats to the ecological and agricultural systems. Tomato leafminer (TLM), Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is native to South America. Outside its native place, the pest was detected for the first time in discovered in Spain in 2006 (Urbaneja et al., 2008), and since it quickly attacked 80 countries including India (CABI, 2018; CABI, 2020). The insect feeds on leaves, fruits, shoots, and apical shoots tomatoes can also cause 100 percent damage to plants in the absence of regulatory measures (Urbaneja et al., 2012; Balal et al., 2016; Biondi and Desneux, 2019). In India, the emergence of this insect was first carved with tomatoes in Pune and Bangalore in 2014 (Sridhar et al., 2014; Shashank et al., 2015), and since then it has spread to almost every part of the country tomato planting (Sridhar et al., 2014; Kalleswaraswamy et al., 2015; Shashank et al., 2015; Balal et al., 2016; Sharma and Gavkare, 2017). In Himachal Pradesh, T. absoluta was first acquired in 2015 tomatoes in Nauni, Solan (Sharma and Gavkare, 2017). On problem-solving has emerged as a major threat to tomatoes in various parts of the state in open spaces and poly-houses. Previous reports indicate that in recent areas, T. absoluta quickly acquired a serious insect condition without drug abuse (Bielza, 2010; Desneux et al., 2010). Tuta absoluta control in particular based on pesticides and sometimes up to 14 times Insecticides while growing were needed (Campos et al., 2017; Han et al., 2019; Abbas et al., 2021; Waiba et al., 2021). Therefore, this insect is difficult to control chemically because the larvae live inside the mines and fruits where it is difficult to find pesticides. Biotic energy is high, spread speed again the ability to increase resistance to pesticides keeps pests by the pest challenge (Desneux et al., 2010; Ingegno et al., 2013; Roditakis et al., 2013; Roditakis et al., 2015). Invasive new invasive insect, tomato pinworm / small leaf, T. Absoluta was first recorded in Pune in a tomato plant that grew in a field and a thousand houses in 2014 and in southwestern India (Karnataka state) (ICAR 2015), and to our knowledge, there are no reports of this pest in eastern and northern and eastern India. Subsequently, the pest was reported on a farmer's farm in major tomato growing districts including Himachal Pradesh.

Entomopathogenic nematodes (EPNs) from the families Heterorhabditidae and Steinemematidae are soil organisms that bind to natural insects (Kaya and Gaugler 1993). These nematodes have evolved into interactions with bacteria in the genera Photorhabdus associated with Heterorhabditis spp., It is carried in the intestines of infectious hairs (IJs) (Bird and Akhurst 1983; Arthurse et al., 2004; Silva et al., 2002; Kasi et al., 2021). Xenorhabdus is connected to Steinemema spp. and is confined to a specific skin within the intestines of IJs. Nematodes receive their treatment by tracking insects (Lewis et al., 2006; Mansour and Biondi, 2021). After IJs have found a culprit, they infect it with an orifice such as the mouth, anus or edges or by entering the cuticle (especially in Heterorhabditis spp.). As soon as the IJs enter the host, they break down their outer cuticle (Sicard et al., 2004; Ben Husin and Port, 2021) and begin to absorb the hemolymph, causing the defiant to be released by extraction (Steinemema spp.) Or recurrence (Heterorhabditis spp.) (Martens et al., 2004; Martens and Goodrich-Blair 2005). The structure of nematodes - bacteria kill the host between 24 - 48h through septicemia or toxemia (Dowds and Peters 1971; Forst and Clarke 2002; Ndereyimana et al., 2020). Bacteria reminiscent of nematodes, which appear as IJs from extinct insect cadaver in search of new transmitters (Poinar 1990).

More than 100 species of EPNS have been identified worldwide (about 80% by steinemematic) and at least 13 of these species have been marketed (Shapiro-llan et al., 2014; Ndereyimana et al., 2019). In general, the natural violence against various insect species varies between EPNS species. In addition, the differences between the types of EPNS in terms of demand management and tolerance of environmental conditions such as temperature and humidity may determine the field performance of EPNS (Martens et al., 2004; Noug, 2021). EPNS have been widely used in the control of economically important pests living in different habitats (Grewal et al., 2005; Susurluk, 2008). However, the formation of EPNS to delay the extinction or addition of supplements to increase leaf coverage and persistence of IJs have improved the use of EPNS in insect-infested animals (Williams and Walters 2000; Arthurse et al., 2004; Head et al., 2004; Kasi et al., 2021; Ben Husin and Port, 2021).
The objective of the present study was to provide fundamental information necessary for the utilization of indigenously isolated EPNs as biological control agents. The study dealt with 2 nematode species such as *S. feltiae* and *H. bacteriophora* and their pathogenicity against *Tuta absoluta* under laboratory and greenhouse conditions.

Materials And Methods

A *T. absoluta* colony was maintained on tomato plants under greenhouse conditions. The colony had been established from larvae collected in September 2020 from the vegetable science department form the tomato greenhouse in UHF, HP, India, that used *S. feltiae* and *H. bacteriophora* (Poinar) for the pest’s management.

Rearing of tomato pinworm, *Tuta absoluta*

TLM larvae and pupae were collected in a place that holds full heat greenhouse. *T. Absoluta* was raised in a nursery greenhouse (Roditakis et al., 2013), at 26 ± 2 °C, 60 ± 10% RH, and L: D 8:16 photoperiod. These insects are grown in wooden cages covered with 80 mesh organdy cloth on tomato plants (S. Lycopersicum L.). Adults are fed 10% of the sugar solution in the oviposition cage.

Source of entomopathogenic nematodes

Two isolates of *S. feltiae* and *H. bacteriophora* were used in this study. The native isolate was obtained from soil samples, collected from Rajgarh, Hamachi Pradesh, India, using *G. mellonella* larvae as nematode traps. This isolate was cultured based on the method describe (Woodring and Kaya 1988) at 21 ± 1 °C on the last instar larvae of *G. mellonella*. Infective juveniles (IJs) that emerged during the first ten days were collected from white traps stored at 4 °C in distilled water for up to 14 days (Woodring and Kaya 1988). The nematodes were acclimatized at room temperature for about 30 min before being used in the experiments.

Effect of Nematode Concentration

Bioassays was performed in a petri dish (9 cm). Each unit is filled with 20 grams of sandy loam (Table 1). Soil moisture was adjusted to 7% (w / w). IJs were applied evenly on the sterilized sand surface at 0, 5, 10, 20, 40, 80, and 160 IJs / cm2 in 1 ml of distilled water. Final sand moisture 10% (w / w). Ten t in each instar. The containers were kept at room temperature for 1 h before placing the entire larvae on the soil surface. There are four replicas for each concentration. Under controlled conditions the containers were kept in the growth chamber for 72 h, after which the larvae were separated from the surface through a fine sieve and held individually under controlled conditions until adulthood. Three days later, 25% of the dead larvae were randomly selected and dissected under a stereomicroscope to confirm nematode infection. The experiment was performed twice.

Larvicidal activity

Each nematode species was added at different concentrations (1.00, 1.30, 1.60, 1.90, 2.20/ mL–1) into the 9 cm petri dish in triplicate with 2 ml of dechlorinated sterile water and 60 larvae of tested *Tuta absoluta* strains. The larvae were provided with young tomato leaves. One Petri plate without EPNs suspension was used as a control. After 24, 48, and 72 hr the number of dead larvae was calculated. The strains that killed more than 50% of the larvae were considered pathogenic (Morton and Garcia-del-Pino 2009; Kasi et al., 2021). Two nematode isolates were examined quantitatively for larvicidal activity against *T. absoluta*, using various concentrations of EPNs suspensions. The infected larvae were observed under a stereo zoom microscope for each concentration at 72 h exposure time.

Greenhouse condition experimental fields

Study Site Selection

The experimental farm is located at an elevation of 1260 m above mean sea level with 30°52'N latitude and 77°11'E longitude with East-West orientation of poly-house which represents the mid-hill zone of Himalayas, HP, India. This is an ideal location for poly-house with various features like single door, side, and top vent, drip irrigation, fogging facility, and internal shading with 50 % green agro UV stabilized shade net.

Experimental material and layout plan

The tomato germplasm commercial market, F₁ Hybrid (BSS-816) were evaluated under a naturally ventilated poly-house having a 200 m² area. The experiment was conducted in a randomized block design (RBD) with four replications inside the modified naturally ventilated polyhouse (25 m × 10 m). Ten plants of the hybrid were planted at a spacing of 70 × 30 cm and trained on two stems in each replication.

Treatments

Table 1 Treatments used in the field experiment to control *Tuta absoluta* (M.)
<table>
<thead>
<tr>
<th>Designation</th>
<th>Treatment description</th>
<th>Type of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native strain</td>
<td>S. feltiae</td>
<td>Entomopathogenic nematode</td>
</tr>
<tr>
<td>T1</td>
<td>1,00,000 /IJs / m²</td>
<td>Entomopathogenic nematode</td>
</tr>
<tr>
<td>T2</td>
<td>2,00,000 / IJs / m²</td>
<td>Entomopathogenic nematode</td>
</tr>
<tr>
<td>T3</td>
<td>4,00,000 / IJs / m²</td>
<td>Entomopathogenic nematode</td>
</tr>
<tr>
<td>Native strain</td>
<td>H. bacteriophora</td>
<td>Entomopathogenic nematode</td>
</tr>
<tr>
<td>T4</td>
<td>1,00,000 / IJs / m²</td>
<td>Entomopathogenic nematode</td>
</tr>
<tr>
<td>T5</td>
<td>2,00,000 / IJs / m²</td>
<td>Entomopathogenic nematode</td>
</tr>
<tr>
<td>T6</td>
<td>4,00,000 / IJs / m²</td>
<td>Entomopathogenic nematode</td>
</tr>
<tr>
<td>T7</td>
<td>Water</td>
<td>Untreated (Control)</td>
</tr>
</tbody>
</table>

Statistical Analysis

Insect mortality was control-corrected (Abbott 1925) and Arcsine transformed when required to meet assumptions of normality and homogeneity of variances. In all experiments, control-corrected mortality was subjected to one-factor analysis of variance (ANOVA)

\[
\text{Corrected mortality (\%)} = \frac{\% \text{ mortality in treatment} - \% \text{ mortality in control}}{100 - \% \text{ mortality in the control}} \times 100
\]

The corrected percent mortality data thus obtained for different concentrations of *Tuta absoluta* (M.) at different concentrations were subjected to probit analysis as per the method given (Finney 1971). Concentration-mortality response data was conducted. Also, LSD \((P<0.05)\) values were calculated to differentiate means among treatments.

Results

Petri dish bioassay of *Tuta absoluta* life stages

bioassay of T. absoluta (1st instar)

The results revealed that the 1st instars larvae of the tomato leafminer were highly susceptible to two nematode species tested. After 72 h of treatment, there was an increase in (\%) larval mortality in all treatments. The (\%) larval mortality was ranged from 24.15 to 85.38 \% (Fig 1). The highest \% larval mortality was recorded in treatment with *H. bacteriophora* at 160 IJs/cm² were 85.38 \% larval mortality was followed by *S. feltiae* at 160 IJs/cm² (80.76 \%). The next best treatments in order of their ecacies were *H. bacteriophora* at 80 IJs/cm² (67.47 \%), *S. feltiae* at 80 IJs/cm² (63.78 \%) (Fig 1).

bioassay of T. absoluta (2nd instar):

There was no larval mortality observed in the untreated control. The (\%) larval mortality was ranged from 29.87 to 90.00 \%. After 72 h of treatment, the treatment *S. feltiae* at 160 IJs/cm² (90.00\%) recorded the highest larval mortality of 2nd instars *T. absoluta* larvae and was found to be the most superior treatment. Which was followed by *H. bacteriophora* at 160 IJs/cm² (80.76\%). The next best treatments in order of their ecacies were *S. feltiae* at 80 IJs/cm² (78.73\%), *H. bacteriophora* at 80 IJs/cm² (72.08\%). The (\%) larval mortality was ranged from 24.15 to 90.00 (Fig 2).

bioassay of T. absoluta (3rd instar):

Recorded highest larval mortality of 3rd instars *T. absoluta* larvae and found superior treatment. The highest percent larval mortality was recorded in treatment with *H. bacteriophora* at 160IJs/cm² were 90.00\% larval mortality was recorded which was followed by *S. feltiae* at 160 IJs/cm² (85.38\%). The next best treatments in order of their ecacies were *H. bacteriophora* at 80 IJs/cm² (74.12\%), *S. feltiae* at 80 IJs/cm² (69.50\%) (Fig 3).

bioassay of T. absoluta (4th instar):

The (\%) larval mortality was ranged from 31.53 to 90.00 \%. Recorded highest larval mortality of 4th instars *T. absoluta* larvae and found to be most superior treatment. The highest percent larval mortality was recorded in treatment with *S. feltiae* at 160IJs/cm² were 90.00\%larval mortality was recorded which was
followed by *H. bacteriophora* at 160 IJs/cm\(^2\) (80.76\%) (Fig 4). The next best treatments in order of their efficacies were *S. feltiae* at 80 IJs/cm\(^2\) (74.12\%), *H. bacteriophora* at 80 IJs/cm\(^2\) (67.84\%) (Fig 4).

bioassay of *T. absoluta* (Pupa):

The (%) larval mortality was ranged from 31.53 to 85.38%. Recorded highest larval mortality of pupae stage of *T. absoluta* larvae and found to be most superior treatment. The highest % larval mortality was recorded in treatment with *H. bacteriophora* at 160 IJs/cm\(^2\) (85.38%) larval mortality was recorded which was followed by *S. feltiae* at 160 IJs/cm\(^2\) were 80.76%. The next best treatments in order of their efficacies were *H. bacteriophora* at 80 IJs/cm\(^2\) (69.50%), *S. feltiae* at 80 IJs/cm\(^2\) (67.47%) (Fig 5).

Bioassay of larvicidal activity

A toxicity assay was conducted to estimate the lethal concentration of entomopathogenic nematodes to following:

Larvicidal activity (1\(^{st}\) instar)

1\(^{st}\) instar larvae of *Tuta absoluta*. The LC\(_{50}\), LC\(_{75}\) and LC\(_{90}\) for the *S. feltiae* (1.0, 1.30, 1.60, 1.90, 2.20/IJs/cm\(^2\)), *H. bacteriophora* (1.0, 1.30, 1.60, 1.90, 2.20/IJs/cm\(^2\)), 1\(^{st}\) instar for 48 h were evaluated as LC\(_{50}\) of 13.29 µg mL\(^{-1}\), 23.67 IJs/cm\(^2\) and LC\(_{75}\) of IJs/cm\(^2\), 75.64 IJs/cm\(^2\), 78.77 IJs/cm\(^2\), and LC\(_{90}\) of IJs/cm\(^2\), 31.64 IJs/cm\(^2\), 32.46 IJs/cm\(^2\) respectively. For 72 h exposure (Fig 6), LC\(_{50}\) of 14.08 IJs/cm\(^2\), 15.94 IJs/cm\(^2\), LC\(_{75}\) of 46.54 IJs/cm\(^2\), 42.58 IJs/cm\(^2\) and LC\(_{90}\) of 16.52 IJs/cm\(^2\), 10.07 IJs/cm\(^2\) (Table 1).

Larvicidal activity (2\(^{nd}\) instar)

2\(^{nd}\) instar larvae of *Tuta absoluta*, for 48 h were evaluated as LC\(_{50}\) of 14.27 IJs/cm\(^2\), 13.47 IJs/cm\(^2\) and LC\(_{75}\) of IJs/cm\(^2\), 48.42 IJs/cm\(^2\), 55.26 IJs/cm\(^2\), and LC\(_{90}\) of IJs/cm\(^2\), 45.40 IJs/cm\(^2\), 96.81 IJs/cm\(^2\), respectively. For 72 h exposure (Fig 7), LC\(_{50}\) of 07.05 IJs/cm\(^2\), 07.61 IJs/cm\(^2\), LC\(_{75}\) of 22.85 IJs/cm\(^2\), 29.39 IJs/cm\(^2\) and LC\(_{90}\) of 65.81 IJs/cm\(^2\), 65.14 IJs/cm\(^2\) (Table 1).

Larvicidal activity (3\(^{rd}\) instar)

3\(^{rd}\) instar larvae of *Tuta absoluta*, for 48 h were evaluated as LC\(_{50}\) of 19.29 IJs/cm\(^2\), 08.55 IJs/cm\(^2\) and LC\(_{75}\) of IJs/cm\(^2\), 83.12 IJs/cm\(^2\), 40.47 IJs/cm\(^2\), and LC\(_{90}\) of IJs/cm\(^2\), 50.44 IJs/cm\(^2\), 98.89 IJs/cm\(^2\), respectively. For 72 h exposure (Fig 8), LC\(_{50}\) of 07.52 IJs/cm\(^2\), 05.42 IJs/cm\(^2\), LC\(_{75}\) of 25.42 IJs/cm\(^2\), 20.70 IJs/cm\(^2\) and LC\(_{90}\) of 26.03 IJs/cm\(^2\), 69.19 IJs/cm\(^2\) (Table 1).

Larvicidal activity (4\(^{th}\) instar)

4\(^{th}\) instar larvae of *Tuta absoluta*, for 48 h were evaluated as LC\(_{50}\) of 09.32 IJs/cm\(^2\), 13.90 IJs/cm\(^2\) and LC\(_{75}\) of IJs/cm\(^2\), 48.17 IJs/cm\(^2\), 60.10 IJs/cm\(^2\), and LC\(_{90}\) of IJs/cm\(^2\), 74.18 IJs/cm\(^2\), 76.43 IJs/cm\(^2\), respectively. For 72 h exposure (Fig 9), LC\(_{50}\) of 05.89 IJs/cm\(^2\), 08.92 IJs/cm\(^2\), LC\(_{75}\) of 20.29 IJs/cm\(^2\), 32.61 IJs/cm\(^2\) and LC\(_{90}\) of 61.71 IJs/cm\(^2\), 56.63 IJs/cm\(^2\) (Table 1).

Larvicidal activity (Pupa stage)

Pupae of *Tuta absoluta*, for 48 h were evaluated as LC\(_{50}\) of 09.10 IJs/cm\(^2\), 13.90 IJs/cm\(^2\) and LC\(_{75}\) of µg mL\(^{-1}\), 41.75 IJs/cm\(^2\), 60.10 IJs/cm\(^2\), and LC\(_{90}\) of IJs/cm\(^2\), 78.47 IJs/cm\(^2\), 98.43 IJs/cm\(^2\), respectively. For 72 h exposure (Fig 10),

Table 1.

Log probit analysis of larvicidal activity of tested nematode strain against tomato pinworm *Tuta absoluta* larvae instars and pupa stage
<table>
<thead>
<tr>
<th>Stage of Insect</th>
<th>Nematode sp.</th>
<th>Exposure Time (hrs)</th>
<th>LC50 (IJs/cm²) 95% LCl-UCL</th>
<th>LC75 (IJs/cm²) 95% LCI-UCL</th>
<th>LC95 (IJs/cm²) 95% LCI-UCL</th>
<th>Intercept</th>
<th>Slope ± SE</th>
<th>z² value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- instar</td>
<td>S. feltiae</td>
<td>48</td>
<td>13.29 (08.17 - 21.63)</td>
<td>31.64 (22.35 - 88.18)</td>
<td>75.64 (46.51 - 23.03)</td>
<td>-1.004</td>
<td>1.3 ± 0.22</td>
<td>1.05</td>
<td>0.012**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>14.08 (09.99 - 20.01)</td>
<td>46.54 (32.74 - 66.16)</td>
<td>16.52 (96.05 - 94.04)</td>
<td>-1.49</td>
<td>1.5 ± 0.24</td>
<td>3.10</td>
<td>0.004**</td>
</tr>
<tr>
<td>1- instar</td>
<td>H. bacteriophora</td>
<td>48</td>
<td>23.67 (16.85 - 33.25)</td>
<td>32.46 (26.53 - 65.49)</td>
<td>78.77 (56.68 - 11.65)</td>
<td>-1.77</td>
<td>0.1 ± 0.23</td>
<td>1.49</td>
<td>0.002**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>15.94 (11.85 - 21.45)</td>
<td>42.58 (31.65 - 57.29)</td>
<td>10.07 (76.61 - 38.67)</td>
<td>-1.90</td>
<td>1.3 ± 0.25</td>
<td>4.41</td>
<td>0.002**</td>
</tr>
<tr>
<td>2- instar</td>
<td>S. feltiae</td>
<td>48</td>
<td>14.27 (09.98 - 20.40)</td>
<td>48.42 (33.87 - 69.22)</td>
<td>45.40 (17.71 - 20.87)</td>
<td>-1.46</td>
<td>0.2 ± 0.24</td>
<td>2.30</td>
<td>0.004**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>0.07 (04.81 - 10.33)</td>
<td>22.85 (15.60 - 33.46)</td>
<td>65.81 (44.93 - 96.37)</td>
<td>-1.12</td>
<td>1.2 ± 0.26</td>
<td>1.83</td>
<td>0.013*</td>
</tr>
<tr>
<td>2- instar</td>
<td>H. bacteriophora</td>
<td>48</td>
<td>13.47 (08.98 - 20.20)</td>
<td>55.26 (36.85 - 82.86)</td>
<td>76.81 (31.24 - 82.13)</td>
<td>-1.24</td>
<td>0.1 ± 0.23</td>
<td>0.83</td>
<td>0.006**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>0.07 (05.02 - 11.53)</td>
<td>29.39 (19.40 - 44.53)</td>
<td>65.14 (65.44 - 50.21)</td>
<td>-1.01</td>
<td>1.5 ± 0.25</td>
<td>0.86</td>
<td>0.015*</td>
</tr>
<tr>
<td>3- instar</td>
<td>S. feltiae</td>
<td>48</td>
<td>19.29 (12.83 - 29.01)</td>
<td>50.44 (25.79 - 65.31)</td>
<td>83.12 (24.99 - 55.28)</td>
<td>-1.36</td>
<td>0.2 ± 0.23</td>
<td>0.27</td>
<td>0.004**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>0.07 (05.11 - 11.07)</td>
<td>25.42 (17.27 - 37.41)</td>
<td>26.03 (51.66 - 11.89)</td>
<td>-1.11</td>
<td>0.1 ± 0.25</td>
<td>2.06</td>
<td>0.012*</td>
</tr>
<tr>
<td>3- instar</td>
<td>H. bacteriophora</td>
<td>48</td>
<td>08.55 (05.42 - 13.51)</td>
<td>40.47 (25.63 - 63.90)</td>
<td>78.89 (10.79 - 83.77)</td>
<td>-0.93</td>
<td>0.1 ± 0.23</td>
<td>1.99</td>
<td>0.018*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>0.05 (03.51 - 08.36)</td>
<td>20.70 (13.41 - 31.97)</td>
<td>69.19 (44.81 - 17.83)</td>
<td>-0.85</td>
<td>0.2 ± 0.26</td>
<td>1.85</td>
<td>0.032*</td>
</tr>
<tr>
<td>4- instar</td>
<td>S. feltiae</td>
<td>48</td>
<td>09.32 (05.80 - 14.98)</td>
<td>48.17 (29.98 - 77.41)</td>
<td>74.18 (31.42 - 39.34)</td>
<td>-0.91</td>
<td>1.3 ± 0.23</td>
<td>0.46</td>
<td>0.018*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>0.05 (03.92 - 08.85)</td>
<td>20.29 (13.51 - 30.47)</td>
<td>61.71 (41.09 - 92.68)</td>
<td>-0.96</td>
<td>1.2 ± 0.26</td>
<td>1.53</td>
<td>0.022*</td>
</tr>
<tr>
<td>4- instar</td>
<td>H. bacteriophora</td>
<td>48</td>
<td>13.90 (09.16 - 21.10)</td>
<td>60.10 (39.60 - 91.20)</td>
<td>76.43 (47.89 - 40.56)</td>
<td>-1.21</td>
<td>0.1 ± 0.23</td>
<td>2.18</td>
<td>0.007**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>0.08 (06.01 - 13.24)</td>
<td>32.61 (21.98 - 48.38)</td>
<td>56.63 (70.52 - 55.23)</td>
<td>-1.14</td>
<td>0.2 ± 0.24</td>
<td>1.02</td>
<td>0.010*</td>
</tr>
<tr>
<td>Pupa</td>
<td>S. feltiae</td>
<td>48</td>
<td>09.10 (05.82 - 14.23)</td>
<td>41.75 (26.71 - 65.28)</td>
<td>78.47 (15.21 - 57.11)</td>
<td>-0.97</td>
<td>1.3 ± 0.23</td>
<td>2.57</td>
<td>0.015*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>0.08 (05.88 - 13.26)</td>
<td>33.89 (22.57 - 50.88)</td>
<td>60.68 (75.72 - 64.66)</td>
<td>-1.09</td>
<td>0.2 ± 0.24</td>
<td>1.66</td>
<td>0.011*</td>
</tr>
<tr>
<td>Pupa</td>
<td>H. bacteriophora</td>
<td>48</td>
<td>13.90 (09.16 - 21.10)</td>
<td>60.10 (39.60 - 91.20)</td>
<td>81.43 (47.89 - 40.56)</td>
<td>-1.21</td>
<td>0.1 ± 0.23</td>
<td>2.18</td>
<td>0.007**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>0.09 (06.35 - 13.43)</td>
<td>31.11 (21.40 - 45.24)</td>
<td>72.83 (63.84 - 34.98)</td>
<td>-1.23</td>
<td>1.5 ± 0.25</td>
<td>5.12</td>
<td>0.008**</td>
</tr>
</tbody>
</table>

- EPNs suspensions were administered at a concentration of (IJs/cm²).
- Lethal Concentration are calculated by Probit Methods.
- Significant differences from control are indicated (**P < 0.01; *P < 0.05).

-LC50 of 08.83 IJs/cm², 09.23 IJs/cm², LC75 of 33.89 IJs/cm², 31.11 IJs/cm² and LC95 of 60.68 IJs/cm², 72.83 IJs/cm² were noted by using (OPSTAT) software, the best larvicidal activity was obtained during the 72 h of exposure. The S. feltiae and H. bacteriophora, strains showed potent larvicidal activity with low concentration even at 48 and 72 h of exposure to compare other strains (Table 1).

The mortality was determined through different concentrations for both 48 and 72 h exposure. The mortality rate depends on the concentration and exposure time. However, the highest mortality range was observed with H. bacteriophora treatment at very low concentrations for 48 and 72 h. Even though S. feltiae showed slow mortality in 48 and 72 h exposure time, they restrained the larval development at the early pupal stage.

Efficacy of EPNs against T. absoluta in greenhouse condition

Data pertaining to the survival population of tomato leafminer *Tuta absoluta* on tomato one day before and 3rd, 7th and 14th days after first spray was presented in (Table 2). The mean survival population of *T. absoluta* larvae one day before spray was ranged from 5.77 to 7.36 larvae/plant. The pre-treatment data was found to be non-significant indicating the uniformity population of pest throughout the experimental plot. At 14th days of first spray slight increase in the larval population was observed in all the treated plots. The mean number survival populations of larvae were ranged from 1.31 to 2.13 larvae/plant. In untreated control plot it was recorded highest 4.09 larvae/plant. The treatment with *H. bacteriophora* at 1,000,000 IJs/cm² (1.31 larvae/plant) was found be consistently effective against *T. absoluta* followed by *H. bacteriophora* at 2,000,000 IJs/cm² (1.42 larvae/plant) which were found to be equally effective.
Treatment with *S. feltiae* at 1,00,000 IJs/cm2 (1.59 larvae/plant), *S. feltiae* at 2,00,000 IJs/cm2 (1.68 larvae/plant) were the next in order of their efficacy and significant differences did not exist in remaining treatments.

Thus, overall results on efficacy indicated that *H. bacteriophora* at 1,00,000 IJs/cm2 (1.78 larvae/plant) was the most effective compared to other treatments in reducing the survival population of *T. absoluta*. The treatment with *S. feltiae* at 1,00,000 IJs/cm2 (1.97 larvae/plant) was the next best effective treatment. Followed by *H. bacteriophora* at 2,00,000 IJs/cm2 (2.00 larvae/plant) were next in order of efficacy. At 14th days of second spray slight increase in the larval population was observed in all the treated plots. The mean number survival populations of larvae were ranged from 1.18 to 1.51 larvae/plant. In untreated control plot it was recorded highest 4.24 larvae/plant. The treatment with *H. bacteriophora* at 2,00,000 IJs/cm2 (1.18 larvae/plant) was found be consistently effective against *T. absoluta* followed by *S. feltiae* at 2,00,000 IJs/cm2 (1.38 larvae/plant) which were found to be equally effective. Treatment with *H. bacteriophora* at 1,00,000 IJs/cm2 (1.45 larvae/plant), *H. bacteriophora* at 4,00,000 IJs/cm2 (1.48 larvae/plant) which were the next in order of their efficacy and significant differences did not exist in remaining treatments.

Thus the overall performance of the treatments indicated that the treatment with *H. bacteriophora* at 2,00,000 IJs/cm2 (1.60 larvae/plant) was found most superior over *H. bacteriophora* at 1,00,000 IJs/cm2 (1.66 larvae/plant), *H. bacteriophora* at 4,00,000 IJs/cm2 (1.77 larvae/plant). Treatments with *S. feltiae* at 1,00,000 IJs/cm2 (1.84 larvae/plant), *S. feltiae* at 2,00,000 IJs/cm2 (1.85 larvae/plant), *S. feltiae* at 4,00,000 IJs/cm2 (2.06 larvae/plant) were found equally effective in reducing the *T. absoluta* population. At 14th days of third spray slight increase in the larval population was observed in all the treated plots. The mean number survival populations of larvae were ranged from 1.02 to 1.98 larvae/plant. In untreated control plot it was recorded highest 4.92 larvae/plant.

The treatment with *H. bacteriophora* at 4,00,000 IJs/cm2 (1.02 larvae/plant) was found be consistently effective against *T. absoluta* followed by *H. bacteriophora* at 2,00,000 IJs/cm2 (1.09 larvae/plant) which were found to be equally effective. Treatment with *S. feltiae* at 2,00,000 IJs/cm2 (1.17 larvae/plant), *S. feltiae* at 1,00,000 IJs/cm2 (1.34 larvae/plant) and *S. feltiae* at 4,00,000 IJs/cm2 (1.53 larvae/plant), *H. bacteriophora* at 1,00,000 IJs/cm2 (1.98 larvae/plant) were found to be equally effective. However, the treatments with respectively as compared to 4.92 larvae/plant in untreated control.

Thus, overall performance of the various treatments after third spray found that treatment with *H. bacteriophora* at 4,00,000 IJs/cm2 proved to be consistently most effective and superior over rest of the treatments and recorded the lowest larval population (1.17 larvae/plant) compared to 4.48 larvae/plant recorded in untreated control. Treatment with *H. bacteriophora* at 2,00,000 IJs/cm2 (1.34 larvae/plant), was next best treatment in the order of efficacy. Significant differences do not exist among the treatments with *S. feltiae* at 2,00,000 IJs/cm2 (1.60 larvae/plant) and *S. feltiae* at 4,00,000 IJs/cm2 (1.65 larvae/plant) were found on par with each other. Whereas, the treatments with *S. feltiae* at 1,00,000 IJs/cm2 (1.83 larvae/plant), and *H. bacteriophora* at 2,00,000 IJs/cm2 (2.25 larvae/plant) were found moderately effective in reducing the surviving *T. absoluta* population. The overall results of the present investigation after three spraying presented in (Table 2.4) revealed that among the entomopathogenic agents *H. bacteriophora* at 2,00,000 IJs/cm2 proved to be consistently effective against *T. absoluta* by recording a least larval population (1.64 Larvae/plant). The treatment with *H. bacteriophora* at 4,00,000 IJs/cm2 and *S. feltiae* at 1,00,000 IJs/cm2, *S. feltiae* at 2,00,000 IJs/cm2 also showed better results against *T. absoluta*.

Table 2.

Efficacy of entomopathogenic nematode against *Tuta absoluta* in tomato crop (overall effect of three sprays).

<table>
<thead>
<tr>
<th>Treatments /Isolates</th>
<th>EPNs Dose Isolates</th>
<th>Pre</th>
<th>Mean</th>
<th>Mean</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1st Spray</td>
<td>2nd Spray</td>
<td>3rd Spray</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean survival population of T. absoluta larvae/plant</td>
<td>Mean survival population of T. absoluta larvae/plant</td>
<td>Mean survival population of T. absoluta larvae/plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 DAS</td>
<td>7 DAS</td>
<td>10 DAS</td>
</tr>
<tr>
<td>S. feltiae (HR1)</td>
<td>1,00,000</td>
<td>05.77</td>
<td>02.41</td>
<td>02.16</td>
<td>01.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. feltiae (HR1)</td>
<td>2,00,000</td>
<td>06.52</td>
<td>02.67</td>
<td>02.36</td>
<td>02.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. feltiae (HR1)</td>
<td>4,00,000</td>
<td>06.90</td>
<td>02.74</td>
<td>02.40</td>
<td>02.34</td>
</tr>
<tr>
<td>H. bacteriophora (HR2)</td>
<td>1,00,000</td>
<td>07.20</td>
<td>02.317</td>
<td>02.06</td>
<td>01.44</td>
</tr>
<tr>
<td>H. bacteriophora (HR2)</td>
<td>2,00,000</td>
<td>06.51</td>
<td>02.577</td>
<td>02.19</td>
<td>01.84</td>
</tr>
<tr>
<td>H. bacteriophora (HR2)</td>
<td>4,00,000</td>
<td>06.21</td>
<td>02.64</td>
<td>02.26</td>
<td>02.14</td>
</tr>
<tr>
<td>Control</td>
<td>Water Spray</td>
<td>07.36</td>
<td>03.53</td>
<td>03.87</td>
<td>04.08</td>
</tr>
<tr>
<td>SE±</td>
<td>N/A</td>
<td>02.88</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>CD at 5%</td>
<td></td>
<td>0.00</td>
<td>0.86</td>
<td>0.05</td>
<td>0.14</td>
</tr>
</tbody>
</table>

DAS = Days after spray
*Figures in parentheses are transformed values OX± 0.5
Discussion

In this study it is evident that *S. feltiae* and *H. bacteriophora* were able to kill *Tuta absoluta* larvae at various concentrations namely 1,00,000, 2,00,000 and 4,00,000 IJs/ cm². *Tuta absoluta* larvae mortality increased with increase in concentrations. In this case the highest concentration tested (4,00,000 IJs/ cm²) achieved the highest mortality under poly-house conditions. This mortality increase with increase in concentration can be attributed to large population of symbiotic bacteria released by EPNs when they penetrate the larvae as reported by (Eleftherianos et al. 2010; Han et al., 2019). Steinernematid IJs retain *Xenorhabdus* symbionts within an intestinal vesicle, while *Photorhabdus* cells stick together in the anterior part of the Heterorhabditids gut and releases them upon invasion of an insect host (Dillman et al. 2012; Lankin et al., 2021).

The third instar larvae were used; other studies revealed that EPNs were able to find and kill all the four larval instars inside or outside the leaf galleries (Batalla-Carrera et al., 2010; Van Damme et al., 2016; Kasi et al., 2021). Found that *T. absoluta* larval stage was the most vulnerable to EPNs (Batalla-Carrera et al., 2010; Ben Husin and Port, 2021). They thus emphasized the necessity to apply EPNs on the above-ground part of the tomato plant to ensure effective control of this pest using the most suitable isolates against a particular pest in a given environment (Abbas et al., 2021; Mansour and Biondi, 2021).

The ability of EPNs to reach and kill *T. absoluta* larvae in leaf galleries was also reported (Batalla-Carrera et al., 2010; Van Damme et al., 2016; Kamali et al., 2018). The local EPN isolates were able to kill *T. absoluta* and had even been found to be effective against white grubs in Rwanda (Kajuga et al., 2018; Ndereyimana et al., 2019), while it was not easy to find EPNs which can kill them (Laznik et al., 2015). Although EPNs live naturally in soil, different researchers found that they can be used on above-ground parts of the plant to control effectively the pests living in cryptic habitats like in leaf galleries (Batalla-Carrera et al., 2010; Garcia-del-Pino et al., 2013; Lankin et al., 2021), which concurs with the results of the present study under laboratory conditions.

The IJs multiply quickly and kill the host 24 – 72 h after infection (Gozel and Kasap 2015; Van Damme et al., 2016; Kasi et al., 2021). This was verified in the present study where all local EPN isolates caused between 53.3 and 96.7 % mortality just within the first 24 h after inoculation, while in 72 h, they all had caused between 96.3 and 100 % mortality. This is not the case of other entomopathogens like entomopathogenic fungi, which require 3 – 5 days or even more time to kill their host (Reda and Hatem 2012; Abbas et al., 2021).

Different pathogenicity levels displayed by the studied EPNs agree with other studies, using different EPN isolates (Gozel and Kasap 2015; Van Damme et al., 2016; Han et al., 2019). This underlines the necessity of EPNs screening and selection as emphasized (Sharma et al., 2011; Biondi et al., 2018), in a view to boost their efficacy of EPNs. The highest efficacy of local EPN isolates than the exotics could be explained by the fact that these EPNs (Yan et al., 2016; Kasi et al., 2021; Mansour and Biondi, 2021) and they might be more adapted to the local conditions than the exotics, which were isolated in a completely different environment. These results agree with the earlier findings where locally isolated biological control agents, including EPNs, performed better than exotics (Lima et al., 2017; Nouh, 2021). The larvae of *T. absoluta* present susceptibility to EPNs, unlike their pupae, which present tolerance and thus a low mortality rate of less than 20% caused by EPNs (Batalla-Carrera et al., 2010; Garcia-del-Pino et al., 2013; Ben Husin and Port, 2021; Kasi et al., 2021).

The results of this study revealed that local EPN isolates were able to find and kill *T. absoluta* larvae stages inside the leaf galleries under laboratory conditions and their efficacy increased with exposure time. The efficacy of local indigenous EPN isolates was significantly superior to that of the exotic species. This is the first study carried out in Rajghar on the good biocontrol potential of indigenous strains (HR1 and HR2) EPNs against *T. absoluta*. The results of this study form the basis for further research. High EPN efficacy obtained under laboratory conditions cannot easily be extrapolated to field efficacy. Therefore, future field experiments on tomato crops are justified to fully determine the potential of local EPN isolates against *T. absoluta* in Himachal Pradesh conditions.

List Of Abbreviations

EPN: Entomopathogenic nematodes; IJs: Infective juveniles; OPSTAT: Operational Status

Declarations

Credit authorship contribution statement

All authors jointly designed the experiment. KI conducted the laboratory bioassays, performed data analysis and drafted the manuscript with inputs from all authors. MS, MW and PS collaborated closely with KI in the whole process especially during data analysis. All authors read and approved the final manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements.

We would like to acknowledge the Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, HP, India-173230 for support of this research. And Indian council of Agricultural Research (ICAR) for providing necessary facilities and financial support, respectively We are also grateful to Department of entomology, Nematology laboratory used in this study.

Availability of data and materials

The datasets used and analysed during the current study are available from the corresponding authors on reasonable request.
Consent for publication

All authors agree to the publication of the submitted manuscript.

References

Figures
Figure 1

Efficacy of *S. feltiae* and *H. bacteriophora* against 1st instar of *T. absoluta*

![Figure 1](image1)

Figure 2

Efficacy of *S. feltiae* and *H. bacteriophora* against 2nd instar of *T. absoluta*

![Figure 2](image2)

Figure 3

Efficacy of *S. feltiae* and *H. bacteriophora* against 3rd instar of *T. absoluta*

![Figure 3](image3)

Figure 4

Efficacy of *S. feltiae* and *H. bacteriophora* against 4th instar of *T. absoluta*

![Figure 4](image4)

Figure 5

Efficacy of *S. feltiae* and *H. bacteriophora* against pupae of *T. absoluta*

![Figure 5](image5)
Figure 6

1st instar Log Dose response Curve

Figure 7

2nd instar Log Dose response Curve

Figure 8

3rd instar Log Dose response Curve

Figure 9

4th instar Log Dose response Curve

Figure 10

Pupae log Dose response Curve