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The performancef Deep Neural NetworkQNN)-based speech enhancement models degrades signifioamtht
recordings because the synthetic training sets are mismatithegal test sets. To solvegtproblem, we propose
a new Generative Adversarial Network framework fordddilodeling M-GAN) that can build training sets by
imitating real noise distribution.hE framework combines a novel U-Net with two bidirectiobahg Short-Term
Memory (LSTM) layers that act ageneratoto construct complex noise. The Gaussian distribution is adi apig
used as conditional information to direct the noise geinarak discriminabr then learns to determine whether a
noise sample is from the model distribution or fromad meise distribution. By adversarial and alternateniing,
NM-GAN can generate enougkcall (diversity) and precision (quality of noise) ingamples for it to look like real
noise. Afterwards, realistic-looking paired trainingssate composed. Extensive experiments were carrieghdut
qualitative and quantitative evaluation of the generatesergamples and training sets demonstrate that potential of
the framework An Speech enhancement model trainedur synthetic training sets aod real training sets was

found to be capable of good noise suppression for real spelatddrnoise.
(<:25'6
1RLVH PRGHOLQLOHQMHMWLYH $GYHUVDULDO 1HWZRUN 6SHHFK HQKDQFHPFE

,QWURGXFWLRQ

Speech enhancemdht(SE) refers to the extraction of speech signals venifgressing sources of interference and
eliminating noiseSE plays an important role in improving the intelligibilapd quality of noisy speech recordings.

In recent years, Deep Neural NetwoBXdN\N)-based speech enhancement methods have received a tehtibat

as part of a broader interest in learning Al (Artificlatelligence). Recurrent Neural Networks (RNRand
Generative Adversarial Nets (GAN) have both been explored for their potential for speech enhancéfhtent
Recently U-Net architectures based on magnitude spectrogravesabhieved new-statef-the-art results in audio
source separatidfl and speech dereverberatiBnConcurrentlysome research has focused on using neural network

architectures in the time domain for speech enhancedthent

Problems. Applications needdNN-basedSE modes that are robust enough to handle real-world noisy speech.
Unfortunately, the performance of these models drops drathatichen there is a mismatch between the training
sets and real test sets.
In general, training sets f@&E models are composed of noisy and clean speech pa@s10i$y speech is usually
synthesized by adding noise to clean speech, depending dgriihet&Noise Ratio (SNR). Test models developed
using these synthetic datasets make it possible to adopt @stibeypproactio model performance. Howeveét is
not guaranteed that these models will perform well whetogled in real-world condition®. To ensure that trained
models are suitable for real recordinigss best to collect training sets in real environtsehlowever, there are two
challenges confronting the practical realization of this:
1) ltis difficult to collect a large enough number of reahpbes of noisy speech;

It is hard to match and pair the noisy speech with clpaach.
,Q YLHZ RI WKH OL P hs{spedrly With Qrikiolv nolde iffofmatioonstructing synthetic paired

training sets to develop trained models capable of handlalgioise posesserious problem.



Contributions. Drawing upon Cheawork on the blind denoising of imad®s we have succeeded in developing
realistic paired training sets that can be useéthprove the performance of SE models. In particulatawe made
useof the powerful capacity of GANs to learn complex datdesigna Noise Modeling GAN (NM-GAN) that can
learn the real noise distributionf noisy speech. Paired training sets can then be constiuctesing the noise
samples generated durirtd KH ¢ UAREY thiVartSE model for denoising can be trainelthe synthetic training

sets The layout of the full procedure is shown in Fig.
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Figure 1 The NM-GAN for making training sets.

It can be seen from the Fig. 1 that the core of the NM-@Adhitecture is an alternating Generative Adversarial

Net. A generative model, G, generates noise santples a discriminative model, D, estimates the probabigy

noise samples come from real noise rather than GmHiwe advantages of this approach are as follows:

T W ZR Worid.HI@@fore, no features need to be hand-crafted and rute@gdumptions about the raw noise

need to be made.

f ,W RSHUDWHYVY GLUHFWO\ LQ WWKBWHICP Ik REza-pEeQeQUaImBtidrPdnd/iakingJt L Q W H

possible to take context into account.

T eldblesarapid noise modeling process. A Gaussian distribution is taspbvide the conditional information

and direct the noise generation.

t W FDQ O H boisQdistibatisre.H he combination of U-Net and LSH#gives the generator powerful

modeling capabilities.

Here, we propose a new GAN for Noise Modeling that cald training sets by imitating real noise distribution.

However, evaluation and comparison of M-GAN, or, equivalently, the noise samples generated biNihe

GAN, is challengingEHFDXVH RI WKH ODFN RI DQ H{XU L PRV W [SNHO/LKRRR/GZRH DN VIXQ KV
KDV UHVRUOYWG BEWR PWMUHH YLVXDO HYDOXDWMRKHN LTH &/ N *BOVH RR Z\HYHIJO H
LPSRVVLEOH WR MXGJH WKH TXDREWNHRWMDHP IO )SMWERYPHGH RNQ@YWI 2ARUN K
WKLY FKDOOHQJH E\ DGRSWLQJ TXDQWWFHWL Y2H0 PWHION XEIDHAL M RRJI MWKDHO/HD BVR.
DOWHUQDWLYH HYDOXDWIWURPQ 'Y DrEPW )WVFDUULHG RXW WR FRPSXWH WKH
WKH JHQHUDWHG VDPSOHV |IURPVWRK H UHBIOV CRQUB SR @IEIRDICGEOD Q PASHOWR V' WKL



JHQHUDWHG VDPSOHYV DUH FORK HJ WRD®®& H K&BRIWD WPKOOIM. | R/&(E DIPIGHKIIDIW RU R X
HITHFWLYHO\ FRYHULQJ W K HheEGANDr&néard BAN¢Ht irhe&sDresLioinQHe basiewf
different experiments thatere carried outd assessVKEH *$1 V SUHFLVLRQ DQG UHFDOO

1To verify that the GAN is capable of generatikd. J K S U hbisé tdt Raks like real noise, the first experiment
took noise samples from the NOISEX-92 datal#8swith a known distribution as its input. The Mel-Frequency
Cepstral Coefficients (MVFCCEJ wereadopted asinindicatorof the similarity between the generated samples and
real samplesWe used MFCCs because these are a standard evaluationthmthiave been used by the European
Telecommunications Standards Institute for the past 2@ yeat they are widely used for the similarity evaluatio

of sound. The goal, here, was to assesBIMeGAN framework's ability to imitate noise. In additiorlevant state-
of-the-art methodgrere used for our baseline comparisons

1The purpose of the second experiment was to verify thaietfreork can generate "diverse" noise which looks like
real noise. This means that the NM-GAN has a high enaagil to generate "different" sounds that don't exist in
the training data. Here, we relied on a neural net aathite for speech enhancement for the measurements. This
evaluation exercise will be referred to here as thAN'@ain" experiment. In the "&N-train" experiment, &
trained an SE network with trainingaes generated by the NM-GAN, then evaluated its perfocean a test set
composed of real-world noisy speech samples. The experseteout toPHDV XUH WKH GLUHUHQFH EHWZHHQ
(i.e., generated noise) and the target (i.e., real ndisgibutions. We conclude that the generated samplébenil
similar to real ones if the SE network, which is trainaedsynthetic training set, can provide good noise reduction
for real noisy speech. In other words, the performantieecoSE network is itself akin to a recall measure, because
a good SE network performance will indicate that the geseissmples are sufficiently diverse.

FThe third experiment will be referred to here as thAN@est" experiment. This measured and compared the
accuracy ofan SE network trained on real training sets and on genergtthetic samples. This measurement is
similar to the precision, in that a high value desthat the generated samples are a realistic approxintdtioe
(unknown) distribution of natural samples.

#in addition to the above three measurements, we conductadtadaperiment to study the relative merits of the
proposed method by comparing the enhanced speech produced by adebEaimed on the synthetic training set
with other typical noise-estimate based SE methodsisneixperiment, the qualityf the enhanced speech was
evaluated according to the SigialNoise Ratio (SNRY, Perceptual Evaluation of Speech Quality (PE&®)

and Mean Opinion Score (MOS8§.. These metrics provided objective proof of the effectiserd the proposed
approach.

The rest of the paper is organized as follows: Varé@moaches to noise modeling are discussed in Sectidre2. T
detailedNM-GAN architecture and the proposed method for building pairedrigesets is presented in Section 3.
Information regarding the noise modeling and evaluationrerpatsis given in Section 4. Experimerfis UHV XOW V
together with their discussion are presented in SebtidBome overall conclusions and potential future directions

are presented in Section

SHODWHG ZRUNV

Generative adversarial networks have been used in a vafietays to synthesize speech over recent years,
frequently to good effedt’8. These are, in turn, based upon the use of GANs to syr¢haudio waveforms of

various kindg'9. There have also been a number of efforts to use DNMsitme noisé?. Some effort has also



been made to produce synthetic datasets that can be @ssistawith training deep learning networks to deal with
noisy speech, specifically in relation to overcoming theahard Effect?d. The Lombard Effect relates to shifts in
the inflection or pitch of people's speech to overcomeerinithe surrounding environment. The latter approach was
focused upon generating noisy speech tracks for training based epperposition of source signals. However, t
the best of our knowledgeur work is the first to specifically focus on using GAlsed noise modeling to build
training sets in the field of speech processing. Thisgisifsiantly more powerful and less labor-intensive than
constructing independent superimposed noise datdtsef®uld be noted that this article does not directly addre
the use of GANSs to support speech enhancement. Insteadehti@tes on a preliminary but vital step: the synthesis
of noise to train speech enhancement algoritt8irece the effectiveness the noise modeling directly affects the
quality of the subsequent training seteir performance depends directly upon the design of the nadeling
framework We briefly examine here three related approaches to DdNebaodeling that differ in relation to how
they make use of the time domain and frequency domain.

Traditional GAN. The advantage af GAN is that its discriminator network can also semgea loss function for
generating data. In other deep learning network structiedegs function is difficult to choose and it is ofterdha

to make it converge. The specific GAN used in our approachingagred by the worlof Chen on blind image
denoising*?, which used a traditional GAN for image noise modelifiis GAN consisted of a 5-layer generator
network and a 5-layer discriminator network. However, kinisl of GAN has an unconditioned generative mode
and no control over the modes of data being generatedajérs are also not especially deep and some recent
deeper architectures have successfully increased thinbpafficiency for noisé?223,

STFT-RNN. Other recurrent neural networks (RNNs) apart from GANdve proved to be highly effective at
exploiting the temporal context informationembedded signals. Notable here is the work of Gléllewho has
proposea Short-Time Fourier Transform for RNNs (STFT-RNN) tbah create musical audio signas. noise

can also be thought of as a special type of speech, ihituse can be adapted to generate noise by replacing the
inputs with noise samples. The basic idea of the structuoetise STFTs to learn sequences. First, the input signal
is extracted from the magnitude and phase components. The naggnind frequencies can then be manipulated
independently, in this case by passing them through an RNgynfRess forms the last step. Unfortunately, the
STFT-RNN structure only modifies the magnitude of the dpspectrum, with the short-time phase being treated
asunimportant. This view has been overturned by recent stwdiéch have shown that using the of short-time
phase canleadty LIQL ¢, FD QW LirPspaeeh\gupmEPGW v

Various endo-end networks in the time domain have been proposedve tase problem&527, which allow for

the modelling of SKDVH LQIRUPDWLRQ DQG DYRLG ¢[HG VSHFWUDO WUDQVIRUPDWLF
LSTM- RNN. Another useful technique is using Long Short-term MemoS8T{) layers in the RNN (LSTM-
RNN). This approach was introduced by Ayres to generate balsgiegch in 2017, The structure, here, is three
layers with a final fully-connected rectified linear utayer that can learn data through imitation. The biggest
disadvantage of LSTM-based systegthat the calculations are very time-consumiega result, they have largely
been used for fairly small neural network models, whitiits their expressive power.

Our proposed model has deeper layers than the threenoeksediscussed above and operates directly in the time
domain. The NM-GAN also fully considers the role of phagermation and combines the advantages of several of
the most recent and successful architectures. By condititmngodebn additional information, our moded able

to direct the data generation process. On top of thisNetlarchitecture has beadopted where its encoder is a



stack of convolutional layers and pooling layers. Thiseodract high-level features from the input noise. Thegtiesi
is further enhanced by the introduction of two bidirectik®TIMs?°! into the architecture. This makes the system

well-suited to one-dimensional sequence signal processing.

1RLVH PRGHOLQJ DQG EXLOGLQJ WKH WUDLQLQJ VHWYV

The core focus of this paper is upon the development of an@etV&AN for noise modeling and its use to construct
paired training setdn this section, we WillE UL H A\ 8 dtiyirtdi@iiciples associated with GANs and thetmo
successful recent architectures. We will then introduc&lMeGAN. The section concludes by examining what is

involved in synthesizing the paired training sets.

*$1 %DVLF SULQFLSOHV DQG (YROYHG $UFKLWHFWXUHYV

GAN. In its original formulationa GAN consists of a pair of competing neural networkgeaerative model, G,

that captures the data distribution for a set of input datha discriminative model, D, that estimates the pitityab

that a sample came from a set of training data rather®. The generator is trained to create samples ih&ial

the discriminator and an adversarial game is played bettiegwo networks.

The GAN is used for data generation and given a datdset< TsaVa Tsagfd Tsa ¥ ® : T a M =consisting of

0 pairs of signalsatarget signal to be generated, andarandom signal V7R OHDUQ WKH JHQHUDWRUYV GL
2, over data T, involves finding a mapping,B:V;: V \ T to map the random input signalVto the target

distribution, T. Conforming to the principle of a GAkhe adversarial learning process is formulated asamak

game between G and D, with the following objective:
IEJ;TB:&&;)L "e1pgot KC&? Efig, BHKC @s M&RC:s;

where, ) 1V, is a generated sample from the learned generator diginpand the discriminator, D, receives a pair

of signals :) :V & Tas input. The D is tra@d to maximize the probability of the correct label beingjgreed to
both the training examples and the samples from G. Sinadtssly, G is traiedto minimize HKC @ s FVgold)

CGAN. In practice, Eg. 1 may not provi@elefinitive direction for G to learn effectively. Tolse this problem, a
Conditional Generative Adversarial Network (CGARJ was proposed. This is an extension of the above that
includes a conditional model where both the generator aodmdinator are conditioned according to some extra
information, Ty Tgcan be any kind of auxiliary information, thereby bypassinghtreglless generation of data.
Fora CGAN, the objective function can be expressed as follows:

IEJ 1:/2T8:&é;)L 'ééiaéwéaéa H K C: RagT? Ei1g.,CH KCks)ER&RJOY;
LSGAN. There is another problem in the learning procé#ss: is ineffective, D may reject samples witlhigh
confidence because they are clearly different from thming data. In this caseHKC ks & &aa d;o
becomes saturated. The least-squares GAN (LSGANSes a least-squares function with binary cotingplace
the cross-entropy loss in the original GAN formulation sTielps to stabilize the training and increases the quality

of the generated samples in G. Here, the objective funcdiome expressed as follows:

S S
Lo 4 \ . T 4. .6 v N\ \/ A.7T% T6 .
IEB&AIL, cant,, pun & TATF SO B 16,404, %) V&BI2U

S
. - v .y - AT ] 69,
I/_l\E.B.&a,)L—t IlEé“é;ém/w%éﬁ;a@L.) V&R JF s°?v;



3.2NM-GAN structure

In this section, we present a structure that can ledrartslate a sequencérandom data, Zntoareal noise sample
The purpose of the NM-GAN is to generate noise sampléesitbas close as possible to real-world noise samples.
Going from random data to real noise datX is a form of ende-end mapping. The generator uses a symmetrical
U-Net 33, where the encoder is a stack of convolutional layers ancnhgdalyers. This serves to extract the high-
level features from the input noise. The decoder hastibethe same structure as the encoder in reviéirseps

the low-resolution feature maps output from the encodietlitsize input noise feature maps.

As the input and output of the model share the same undertyirguse, the G network also has skip connections.
These connect each encoding layer to its homologous decodieg lalyich is better able to extract the
characteristics of the input data based on informatiorrdegits different feature dimensioRd. The G network

model is shown in Fig. 2.
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Figure 2 G network model.
The G network has an encoder-decoder structure and caredipeasample feature maps to compute and combine
features at different time scales. The bidirectior®lM in the middle of the encoder and decoder enables context
to be taken into accourtais designed to be convolutional, so only some nodes betweenljatent two layers are
connected. During the encoding stage, the input signal iscpedj@and compressed through seven convolutional
layers before being passed to a Batch NormalizatiofParametric Rectified Linear Unit. This helps to irmethe
robustness of the model. The dimensions (sampling numbeturdemap) of each layer are, respectively, 1024x1
512x64, 256x128, 128x128, 64x256, 32x256, 16x512 and 8x1024.
We added the conditiorBr,, 1,;, to supervise the data generation. According to the ceintiltheorem, as the
number of samples increases, the sample distribution tewdsd® a normal distributioraGaussian distribution
with ameanof 0 andavarianceof 1). The conditional informationBr, T, 1 0 : r & ds therefore added to accelerate
network convergence. This makes the dimensifrtise final output of the encoding layer 8 x 2048.
The sequence of latent feature vectorthe encodeis then modeled by two bidirectional LSTM layers. The LSTM
layers do not change the shape of the data because the ogtjpuiceeof the LSTM layers is subsequently converted
back to the original input shape by the decoder. The encodingsprisceeversed in the decoding stage by seven

deconvolutions, followed again layBatch Normalization and Parametric Rectified LineartUmhe dimensions



(sampling number x feature map) of each decoding layethare 8x2048 16x1024, 2x512,4x512,128%256,
256x%256, 512x128 and 1024x1.

An important feature of G is its erid-end structure in the time domain, which permits intedratedelling of the
phase information. The addition of the bidirectional LSiftyroves the ability of the network structure to eatien

the noise distribution.
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Figure 3 D network model
The function of the D network is to discriminate and clgsi€ real noise and generated noise output by the G
network D has the same one-dimensional convolutional structurepessnt in* VvV H Q F R Gd6 i metetiésJ H
WKH FRQYHQWLRQDO WRSRORJ\ RI RUDRIQ HENVXERN RQdelhas vd® vput. ¢ FDWLRQ Q|
channels and both input channels span the one-dimensional camallencoding layers to form feature mapise
dimensions (sampling number x feature map) of each lagerespectively, 1024x1, 512x64, 256x128, 128x128,
64x256, 32x256, 16x512 and 8x1024. The structure of D is shown i.Bgtch Normalization is also added to
each layer and all the convolutions apart from the finas ame followed by Leaky-ReLU non-linearities, where
= 0.2. Finally, a least squares loss operation is uséidtinguish between the real noise and generated. noise
It has been found that adding a secondary component to thef IBssan help minimize the distance between its
generations and the real examples. We chose the crosgyelase from an Embedding Loss Driven Generative
Adversarial Network (EL-GAN®4) to replace the disdér P L Q D W R Uenhffapy FossRavidvassigned a value to L1

of 120. On this basis, the G and D loss functions become:

s
IAl\E\B:&é\;)L—t ' 11 Eenaniar . %) V&R JF s82EstrH!) :VETF Tg XS
IEB:&A)L~" : >&TaTF 552 B 1 X))V eRage? s
7 . a,) _t ééTaEf/—:a‘é\‘ﬁ; . . ao, S, H % ilEé:é;éﬁlAf/,;aq; ) %laa—l H -y,
where, B, T, 10iras e -S4t ..tetc<—<'efZ xeVahdf Fis'a random input and target real noise

sample, respectively. The inputs 9f are the random signaly fogether with the... ‘« T «— < * T &hd the outputs
are imitative noise samples):V &yT The input of & is a combination of the signals) :V &Ra & and: T 5T

1) 1V &yTF T5 is the L1 distance between the real noise samplénd the generated sample), V §TWe can



then train the & and the ) to minimize and adjust the model parameters so figatandom input samplesV a

move towards the real noise sam@e$

3.3 Building the training sets

The overall process involved in building training setsfireal-world noisy inputs asshown in Fig. 1. The first
step is to extract noise samples from noisy speechdblist a noise dataset. The noise samples can, in ptincipa
come from any public dataset containing noisy speech. In aumak, we made use of the NoiseX-92 database
133 which includes 'babble speech' as a category (i.e. neuttijglakers all speaking at once). This istéplowed

by the noise modeling and noisy speech synthesis, which ctimdiollowing steps:

Real-world noisy speech

Noise blocks extraction Y

Synthesize noisy speech \j

Figure 4 Training sets construction process
3.3.1 Noise datasetBefore building the paired training dataset, a setppf@imate noise blocks (or patches),
which we will call V_N, need to be extracted from givenardings of noisy speech. This way, the noise distribution
becomes the principal learning objective for the NM-GAiking the NM-GAN model more accurate Speech
Endpoint Detection Method® can be used to extract the noise segments from the noeshsjiithe SNR of the
noisy speech is extremely low, a viable noise sample cdrenextracted correctly and the sample has to handled
manually later. In addition, long stretches in recordingseaf world speech contain no voic&ghen this part of
the process is completealbody of noise samples is available to use as théngesnt, V_N.
3.3.2 Noise modelingThe NM-GAN is trained using the method proposed in 3ith tive real noise samples, V_N.
For the training process, Google's TensorRlameworkis adopted and the modé trained using an RMSProp
optimizer®7, The learning rate for G and D waat 8 0.0002. Within a minibatch, all the training sames
padded with zeros to have the same number of time stepe &mgest sample. The process is stopped after 50
epochs if there is no improvementthe validation segsmeasured by the loss. Once this process is complete, the
last-obtained model is furthene-tuned, with the batch size being doubled and the learatedowered to 0.00001.
This is again pursued until there are 50 epochs without angwement in the validation loss. After this, the model
with the best validation loss is selectetieTGenerator can generate countless noise san®Bd, fh this way
3.3.3 Noisy speech synthesi¢/orking onanassumption that additive noise can be used to createspasgha

noisy speech database can be created by adding noise agmebt&GNoise Ratio (SNR) levels to clean speech. In



this way enough pure-noisy speech pairs {D_P and D_N 7} can be synthesesisting of pure speech and
realistic synthesized noisy speech, to be used as traeisag{T_P, T_N1.

([SHULPHQWYV

To assess the viability of using the propodd-GAN model to generate noise that looks like real nomkta
make training sets, we carried out four verification enchparison experiments. The first experiment took some
noise samples from the NOISEX-92 datab&bewhich has &nown distribution, and used them as input to yerif
the imitation ability of theNM-GAN framework The second experiment compared the performance of an & mo
when it is trained using a synthetic training set and atestiset. The third experiment compared the performance
of an SE model when it is trained using a real traigieigand a synthetic test set. A fourth experiment has t
conducted to assess the quality of the speech enhanced bytttetisyraining set and to compare it to other typical

noise estimation-based SE methods. The detailed expégirsetup and experimental results are described below.

SHVXOWY DQG 'LVFFXVLRQ

1RLVH PRGHOLQJ H[SHULPHQWYV

The purpose of the experiments in this section was tfy vkét the network has the ability to imitate compheise.

For a certain noise distribution, the model proposed in tiempcan achieve convergence faster and generate
samples that have a greater similarity to the taraget d

Experimental Data. Some typical noise samples from the NoiseX-92 datdfaseere used as input to verify the
imitation ability of theNM-GAN framework. The NoiseX-92 databasavidely-used for speech enhancement tests
and speech recognition tedtscontains 15 types of noises, including, voice babble,faotise, HF radio channel
noise, pink noise, white noise, various military noisesaVolvo 340%3. Out of these, the most challenging noise
conditions relate to multiple-speaker or a voice balgeironments. This kind of noise is uniguely challenging
because of its highly time dependent structure and it¢asityito the desired target. These difficulties have been
well-documented in numerous studasobustnes&9. Apart from babble noise, wedk three other types of noise
with obvious differences in the time and frequency domainghardestroyer engine noisémachine-gun noise’;
and'factory floor noise'. We randomly selected three seconds amples of the four types of noise data to use as
specific noise samples. We then separately trainedM&KRN network to model them by imitation.

Method Comparison. We compared the performance of NM-GAN against three sthteef-the-art DNN-based
architecturesas mentioned in section 2, namely, a G&Na short-time Fourier transform recurrent neural network
(STFT-RNN)?4, and an LSTM-RNNFE, All three methods were trained with an initial learning raf 0.0002 and
abatch size of 1. We took the same experimental datatfie NoiseX-92 database to compare the effectiveness of
the noise mimicry after 500 training epochs

Results. The waveforms and spectrograms of the generated funidéV-GAN and the other three methods are

shown in Fig.5, 6, 7 and 8.
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Figure 5: Factory floor noise
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Figure 6: Destroyer engine noise
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Figure 7: Machine-gun noise
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Figure 8: Speech babble noise



Looking at the waveforms and spectrograms, we can se¢hthaamples generated by NM-GAN are the most
similar to the real noise samples. To assess théasiyiobjectively, the 12-dimensional mel-frequency cepstrum
coefficients 33 (MFCCs) taken together with the brder differential coefficients were used as evaluatio
parameters. MFCCs are widely-used in speech similariluation as a way of extracting and selecting parametric
representations of acoustic signas

We calculagdthe average Euclidean distance of the MFCCs for saisgles generated by different methods when
using real noise. The results are shown in Table 1.

Table 1 Average Euclidean distance of the MFCCs relatmnto different methods

Average Euclidean distance of the MFCCs
Method
Factory floor noise Destroyer engine noise| Machinegunnoise Speech babble noise
STFT-RNN 25.32213 27.71124 27.59945 26.15075
LSTM-RNN 21.02848 23.92830 38.82731 28.82629
GAN 24.83476 41.28380 31.33846 37.98472
NM-GAN 13.43358 19.96358 18.57913 19.48051

It can be seen from Table 1 that the average distanite ®IFCCs for the real noise samples generated by NM-
GAN is smaller than it is for the other models. This confithet the proposed model can outperform other state-

of-the-art DNN-based models and generate more real@ite samples

5.2GAN-train H[SHULPHQW

An important characteristic of the proposed NM-GAN modéhas the generated noise samples should not only be
realistic, but also recognizable as coming from a giless. This means that a model that perfectly captures the
target distribution can generate a new set ithatdistinguishable from the original input training seh 8E net
trained on either of these should then produce roughly thesditiation accuracy. In this experiment, we selected
a speech enhancement model to evaluate the ability of NM-4B8Anodel noise effectively and to verify the overall
feasibility of the approachNe reasoned thatf & speech enhancement model trained on the NM-GAN synthetic
training sets can enaleod noise reduction for real noisy speedthiill prove the diversity of th&lM-GAN model.
Experimental setup We used the Speech Enhancement Generative Adversarial EGAXJ® model as th&E
model for testing. This model was chosen because itsisatenpletely public and widely-cited. The model was
trained on synthetic datasets. Then, we compared the entemtaeffect of the training model on the synthetic and
real test sets respectively. For the dataset, we ¢hes¥oice Bank corpu¥dand Demand databa&® as the
original pure speech and noise datasétese speech and noise datasets are also completelygnablicdely-used.

We recoréd some noisy samples with different SNRs under laboramngditions (one player plag pure speech
from the Voice Bank corpiend one plagd noisy speech from the Demand database). This gave us 1562000
noisy datasets in total.

Making the training set. In accordance with the process outlined in section 3.3rawdony selected ®00
utterancedn real noisy speech samples to obtEH)D00 noise blocks, V_N. These noise blocks were adopted as the
real noise samples to train the NM-GAN model presenteddtios 3.3.2. During the training process, the batch

size wasstto 16 and the epoch was set to 10. After obtaining the nuislelwe built asynthetic training set made



up of 150,000 different mixtures {-5 dB, 0 dB, 5 dB} with a tatatation of about 100 hours. 140,000 of these were
then used to train tHBEGAN model.

Test set The test set consistof two parts, 10,000 real utterances were ragamlected from real noisy speech
datasetasthe real test set, and the remaining 10,000 samplesHiosyhthetic noisy speech datasets were used as
the synthetic test set.

Evaluation metrics. To compare the quality of the speech enhancement for the symibiet speech and real noisy
speech objectively, we used the following objective itetr

PESQ: Perceptual evaluation of speech quality (febrb to 4.5).

CSIG: MOS prediction of the signal distortion (from Bjo

CBAK: MOS prediction of the intrusiveness of the backigi noise (from 1 to 5).

COVL: MOS prediction of the overall effect (from 1 th 5

SNR: Signato- 1 RLVH 5DWLR IURP WR '’

Results The speech enhancement mo8efained on the synthetic training set was evaluated usigetal and
synthetic test sets.

All of the results were calculated by comparison betweerehhanced signal and the pure signal. In order to make
the experimental results accurate and reduce any possibig, @ll of the metrics were based on the average of
speech signals. Table 2 shows the results.

Table 2: Objective SEGAN-enhanced evaluation results amparing the synthetic and real training sets

Metric
PESQ CSIG CBAK COVL SNR
Model/Test /R
Synthetic -5dB 1.45 2.81 2.90 2.80 3.67
SE trained
Noise test 0dB 2.52 3.15 3.27 2.93 8.15
on
set 5dB 2.60 3.79 3.72 3.25 7.12
synthetic
-5dB 1.09 2.76 2.72 2.29 3.11
training Real noise
0dB 2.32 3.15 3.21 2.63 794
set test set
5dB 2.45 3.56 347 3.16 6.88

It can be seen that, systematically across all of taliation metrics, the SE trained on the synthetic traiséig
obtained almost the same scores for the synthetic tegisset as for the real noise test set.
Analysis/DiscussionIn the case of the PESQ measurements, the trained Sthtest synthetic training set was
0.36 points (23%) different from the SE test on the reaen@ist set at -5dB. At 0dB it was 0.30 point€41and
at 5 dB it was 0.15 points 6. So, overall, for PESQ, the average difference Wag points. For the CSIG
measurements, the difference wad5q2%), 0.00 (@6) and 023 (6%), for -5dB, 0dB and 5dB, respectively, with
an overall difference, agaiof 0.09 points. For the CBAK measurements, the differencedvi&s(®6), 0.06 (2%)
and 015 (4%), for -5dB, 0dB and 5dB, respectively, with an overall défere of 0.13 points. For the COVL
measurements, the difference W&sl (22%), 0.30 (1%) and 0.09 (%), for -5dB, 0dB and 5dB, respectively, with
an overall differencef 0.3 points. For the SNR improvements, the differenceO#85(18%), 0.21 (3%) and 0.24
(3%), for -5dB, 0dB and 5dB, respectively, with an overalletéghce of B4 points. Across all measurements, the

average difference in performance was 0.33 at -5dB, 0adBaand 0.14 at 5dB



Notice that the speech enhancement model trained on thR@ANVIsynthetic training sets was able to provide good
levels of noise reduction for real noisy speech. Astpdiut in the introduction, if an SE network trained on a
synthetic training set can provide good noise reduction émnegsy speech, this implies that the generated sample
are similar to real ones. As the SE network performdtimehis experiment, it proves the diversity of the NM-

GAN model.

5.3 GAN-test H{SHULPHQW

The GAN-test experiment was designed to assess theaagaifran SE net trained amreal training set, but tested

on synthetic samples. If the NM-GAN learns well, the naeigeech improvement should be more or less the same
because both the sets have the same distribution. Idealty,ttie GAN-test score should be close to the validation
score. IfitisVLIQL ¢ FDQWO\ KLJK NM-GANNs RN Btiodawy Hroply mamoiizing the training set.

I LW LV VLJQ Lthée-NIMQEADS nGt Raptdrithg the target distribution well and the modedungity is poor.

The overall setup of the GAN-test experiment was aimd Experiment 2, except that the training set became the
real training set.

Experimental setup.We used the same SEGAN model asSBenodel for testing. The model was trained on the
real dataset. Then, we compared the enhancement dffihe waining model on the synthetic and real test sets,
respectively

Results The speech enhancement mdélélained on the real training seagevaluated using the real and synthetic
test sets. All of the results were calculated by caoiapa between the enhanced signal and the pure signal. in orde
ensure the accuracy of the experimental results and redygmssible errors, all of the metrics were basedron
average of 30 speech signals. Table 3 shows the results.

Table 3: Objective SEGAN-enhanced evaluation results amaring the synthetic and real training sets

Metric
PESQ CSIG CBAK COVL SNR
Model/Test /R

Synthetic -5dB 1.01 2.26 2.32 2.19 3.07
SE trained noise test 0dB 2.15 2.85 3.18 2.14 7.36
on real set 5dB 2.03 3.12 3.23 3.23 7.82
training -5dB 1.04 2.32 241 2.25 3.18

Real noise
set 0dB 221 3.04 3.17 221 740

test set

5dB 2,05 3.17 3.29 3.37 8.00

It can be seen that, systematically across all ofthkiation metrics, the SE trained on the real traisgtgbtained
almost the same degree of improvement for the syntheiie test set and real noise test set.

Analysis/Discussion For the SE trained on the real training set, the enhamtesneres for the synthetic noisy
speech test set and real noisy speech test set west abpal Comparing the PESQ measurements, the differences
were 0.03 points, 0.06 points and 0.02 points, for -5dB, 0dBsdBdrespectively, which amounts to 0.04 points
overall. For the CSIG measurements, the differences @6 points, 0.19 points and 0.05 points, for -5dB, 0dB
and 5dB, respectively, which is 0.1 points overall. For th&lCBieasurements, the differences wer@9 points

0.01 points and 0.06 points, for -5dB, 0dB and 5dB, respectivdiich is 0.05 points overall. For the COVL



measurements, the differences we6 points, 0.02 points and 0.05 points, for -5dB, 0dB and 5dB,atbsglsg,
which is difference of 0.04 points overall. For the SNR inapnaent the performance differences were 0.11 points
0.04 points and 0.18 points, for -5dB, 0dB and 5dB, respectivhlghvs 0.11 points overall.

Theseresults show that the overall improvement for the syitthigtining set with the synthetic test data was only
slightly different to when the SE model was trainedhanreal training set. This indirectly proves thattinv-GAN
learns effectively from input noise samples and that tbpgsed method can synthesize data sets similar to real

samples.

5.4 Speech enhancement comparison experiment

Results. To further examine the ability of the model trair@dour synthesized training set to enhance real noisy
speech, we compared it with some typical noise estiméésed speech enhancement methods, including Martin's
minimum tracking algorithrtfd and the minima controlled recursive algorithm (MCRA) The comparative results

for the different methods are shown in Tahle 4

Table 4 Comparative evaluation for SE results usingNM-GAN and other methods.

Metric
PESQ CSIG CBAK COVL SNR
Method/SNR

-5dB 0.71 197 1.26 1.38 1.26

Martin's
0dB 0.87 2.18 1.84 2.21 5.02

Algorithm
5dB 1.79 2.38 2.92 2.73 5.81
-5dB 0.73 1.27 1.76 1.82 1.04
MCRA 0dB 0.96 2.83 1.34 2.38 5.12
5dB 1.97 3.05 231 2.94 5.96
-5dB 1.09 2.76 2.72 2.29 3.11
NM-GAN 0dB 2.32 3.15 3.21 2.63 794
5dB 2.45 3.56 3.47 3.16 6.88

Analysis/Discussionlt can be seen, here, tiéi1-GAN produced the best objective evaluation results aatbst

the different evaluation metrics. To break these downthiePESQ measurements, the NM-GAN outperformed
MCRA by 33%, 58% and 20 for -5db, 0dB and 5dB, respectively. It outperformed Martirgerithm by 386,
62% and 2% for -5db, 0dB and 5dB, respectively. For the CSIG measurepieatgperformed MCRA by 54%,
10% and 1% for -5db, 0dB and 5dB, respectively and, for Martin's atpamniby 29%, 31% and 88for -5db, 0dB
and 5dB, respectively. For the CBAK measurements, it dotpeed MCRA by 35%, 58% and %3for -5db, 0dB
and 5dB, respectively and, for Martin's algorithm by 54%, 486618856 for -5db, 0dB and 5dB, respectively. For
the COVL measurements, it outperformed MCRA by 20%, 9%/&htbr -5db, 0dB and 5dB, respectively and, for
Martin's algorithm by 40%, 16% and %6for -5db, 0dB and 5dB, respectively. For the SNR measemtsnit
outperformed MCRA by 66%36% and 1%6 for -5db, 0dB and 5dB, respectively and, for Martin's atgoriby
59%, 37% and 1 for -5db, 0dB and 5dB, respectiveya NM-GAN outperformed MCRA by between 7% and
66%, and outperformed Martin's algorithm by between 16% and G2&se results underscore the advantages

offered by using NM-GAN to generate the training set©iiN-based SE algorithms.



.HY 2XWFRPHV DQG &RQFOXVLRQ

.H\ 2XWFRPHYV

Comparing Tables 2 to 4, we can make the following obsiens:

fThe proposed NM-GAN model has the ability to imitate jglax noise.

TAlthough the enhancement model teadron synthetic training set haalbetter effect on synthetic noisy speech
than real noisy speech, the difference was relativelyl.sN@netheless, it was sufficiently large to indicdtattthe
noise samples generated by NM-GAN are sufficiently dezers

T 7 Kmhancement model traid on the real training set baalmost the same effect for real noisy speech and
synthetic noisy speeclsuggesting that the generated samples are a realgifoxémation of the unknown
distribution of real noise samples.

¥ 7KH VSHHFK HQKD Q F éhRuit &/theRiRe@ trading/detDnptoiAea the quality of ngimech better
than traditional noise estimation-based methods, in margnicess to a significant degree, with an improvement of
anything up to 62% in relation to Martin's algorithm and uf8% in relation MCRA.

1The robustness of DNN-based speech enhancementswatebe improved by adopting our approach to noise

modeling and the construction of synthetic training sets.

&RQFOXVLRQ

In this paper, @ have highlightd the problem of there being a lack of real training &atONN-based speech
enhancement models, which can limit the effectiveness afftegbrmance and their robustness. In relation tg this
we have proposed a method that can generate realistic paingdg sets for noise modeling. The method is based
on an endto-endNM-GAN that can model noise in the time domain without any pegssing or postprocessing.
This can then be applied it to the generation of trainitg, & U-Net architecture waadopted that can combine
high- and low-level features at different time-scalesgipgated down-sampling and convolution of the feature.maps
The use ofa two bidirectional LSTM further improved the NM-GAN's atylito learn noise distributions and
generate noise samples.

Four experiments were conducted to assess the viabilinggiroposed method. In the first of theke NM-GAN
outperforned other statesf-the-artDNN-based noise modeling architectures when they were tragied the same
settings and same noise sdtsthe second, GAN-trairH [ S H U Lvikv&ifféd that a speech enhancement model
trained using synthetic training sets generated by the NIM-&mhitecture could achieve good noise reduction for
real noisy speeclin the third GAN-test experimentie verified that a speech enhancement model trained using rea
training sets generated by the NM-GAN architecture caakdeve almost same improvement for real noisy speech
and synthetic noisy speech. Finally, we establishedhibajuality of the speech enhanced by the NM-GAN trained
model was better than that of other noise estimatgorithms.

The method proposed in this article is not only able teame the robustness of the training for speech enhancement
models being applied to actual speech. It can also lkfasélind speech denoising when all that is available is
limited noisy speech with unknown noise informati&eyond this the proposed method has been found to be

effective for the noise calibration of sound equipment ansenmalibration in special environments.

/ILPLWDWLRQV DQG )XWXUH ZRUN



A limitation of the proposed method is that the noisassumed to be additive noise witlzero mean. Although
this type of noise is common in natural environments anddaesla wide range of noisehas certain limitations.
As a next step, we will be examining how to overcome thigdtion and intend to investigate the extent to which
the model might be capable of performing a spectral a@ralpsaddition, other methods for the synthesis of noise
and pure speech, such as Parallel Model Combination (F¥Qould be explored to see whether they provide

additional advantages.
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> @ 3KLO $\UHV *HQHUDWLQJ VSHHRMKZRLRAPY VEMWNFK ZE IVEKE 067 U @Q® F R GMHAWHG) /SR KSRKE VURIPEEO H |
VSHHFK SRVW KWPO

> @ &KHQ DQG ' / :DQJ 3/RQJ VNEHWNMHUMOHPROL]RWLRQ LQ ¥XBHHNG V@ GV VSIH,IMKHWN SBIBIEW L B €

+

>@3 ,VROD - < =KX 7 =KRXHBRBDFHIWUDAVODMILRQ ZLWK FRGGLMLRQDO DGYHUVDULDO QHWZR

>@; ODR 4 /L + ;LH 5 <. /DX PRGHV-DEQHUBDDNAWNTDSYHYVDULDO QHWZRUNV

> @ 'DQLHO 6WROOHU 6HEDVWLDQ (ZHWWS$ DRGWIL BRQ OH[ R B XWENHE 18X Z R UNR KRIF Q6B SDUDW LR Q

> @ *DOHV 0 -) <RXQJ 6 - H 5IR B XWHWF R RQIMWLICR(R XV IMBJ SDUD @ OBIQVP G R ® VAR P & SIHH KV 6. IR D, O (

3URFHVV +

> @ *KDIRRULDQ 0 1XJWHUHQ +RIPPDD 01 %RRIMJIRQ (PEHGBUQWDRY D GYUHYWRUIHDO QHWZRUN

ODQH GHWHRFHRIGLQIYV Rl WKH (XURSHDQ &RQ&9UHQFH RQ &RPSXWHU 9LVLRQ (&

> @ 9DUJD $ BWHHQHNHQ HRU DXWRPSYWHF WSH®WK UHFRJEDWHRIQ G, DD2HIGHULY KOW VR VWX G

HIIHFW RI DGGLWLYH QRLVH R® SHEHAKF K RP-PRRYIGALDAN IRRQ V\V W H P V

> @ /,8 4LQJVKHQJ;8 5HVHDUFK RQ D GISWHRIGC$Q@ S&RO WX WM FQLRIHHULQJ

>@ 7 7LHOHPDQ DQG * +LQWRQ &/ FWOHU BIU D GEMHEEW RES DG UXIQ QL Q JHD&2BBB (5$ RLH YWD OHFHQW PDJ
1HWZRUNV IRU ODFKLQH /HDUQLQJ

> @ KWWS PL HQJ FDP DF XN FRN$VEWWPOK 6HFWLRQ 'DWD QR

> @ .ULVKQDPXUWK\ 1 +DQVHQ - + / 6SRHGIHF®LBDEROHY SSHDRK WLV DRV >B @F H, RQ ,SFRKVY@DWYRQDO &
L (((C

> @ =+$2 *XL ODQ 681 'RQJ $SSOLFDWIZRY% RIQ)|& & OXDWHLAR @ RIOSSHHFK BLRX QWM W XE@ HMARRIX U Q D O
WHFKQRORJ\

> @ 9HDX[ - <DPDJLVKL DQG 6 .DQM 'H\KIH @RERD EDOWMLRRUSQGRGDW D B RH@W V'8 HRH FX GIDWIB EDN H

LQ ,QW &RQI 2ULHQWDO &2&26'$ KHORMBVQW®6ZRWHKQ /DQRRYDHH H@R B DaJBKEBE/G((YDOXDWLRQ 2

L ((( Ss ¢

> @ 7KLHPDQQ 1 ,WR DQG ( 9LQFHQ@WV FOIRE.DYBIRRXVMQ FLORIQFH GDW DEIMVHY LIUGRWH@WDID R1 P X O

QRLVH UHFRUWGIRXWQDO RI WKH $FRXVWLFDOQ®RRFLISW\ RI $PHULFD YRO

> @ 0ODUWLQ 5 1RLVH SRZHWLR®HEDWHDE® RO @SMWL\PBOWE RB W KL DU DIY® PW QR B X PROWESW HFW L F \

DQG $XGLR 3URFHVVLQJ



@ &RKHQ 1RLVH HVWLRPMELBRFEWURLEHPDYHRI@WIURD | R U (Y BE I F WOV SHIRIFHKVIVQ QD Q A WRHHQUAY

@ +HXVHO 0 5DPVDXHU + B8QWHKHWHKILWHU 8 1S$MVWHWLDHGHE\ D WWUZR WIRP B ORFOB XB8RWH U
HTXLOLEULXP ,Q 1,36
@buubDV 7 $LOD 7 /DLQHVGLYHMKWRRH®I RI 33URJURU L P DWQREY M B UTDOMNOLLRMD\ QN D&AS0 L W\

@ /XFLF 0 .XUDFK . OLFRBARXWNIXHOW 2ZHO®HUH6*$1V FUHDWHGDHTKD G'U$ ®WLQIW B BDIOH VW XG

@DOLPDQV 7 *RRGIHOORZ , 5DOGHPE® $ &KHRQJ PSURYHGSMHFKQUTXEYV IRU WUDLQLQJ

@ 6KPHONRY .RQVWDQWLQULE 6FKPUBRD QG P\ $®D'KD
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