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Wavelets based feature extraction with PCA for
predicting autism in neonates using Nav̈ıe bayes
classifier
Isabel Mensah1,5†, Peter Amoako-Yirenkyi1,2,4*, Nana K Frempong1,3 and George P Lamptey1,2

Abstract

Background: Current studies show early interventions of autism increase significant long-term positive effects,
symptoms and, later skills. Currently, These interventions are based on the use of an early diagnostic test.
Existing methods for diagnosing Autism Spectrum Disorders (ASDs) such as cognitive tests, Intelligence
Quotient, and standardized tests like the Autism Diagnostic Observation Schedule (ADOS) are functionally
limited since they rely on child development for diagnoses. The standard is that a child must be at least
three(3) years to undergo these tests. Accurate diagnosis is only possible after this period, and this may
contribute to delayed diagnosis with an overall effect on the health system. In this era of increasing genetic
data, it is possible to infer the genetic patterns of the disorder. This study introduces a novel and rigorous
approach for predicting ASDs in neonates and their subsequent severity by identifying significant genes that
contribute to the disorder.

Methods: We used a wavelet transform and t-test to identify the significant genes that contribute to the
disease. We subsequently employed the Naive Bayes classifier in the prediction of the autistic status of the
neonate.
Additionally, Principal Component Analysis (PCA) was employed to remove all the dependencies among the

genes to enhance classification. Finally, we used the K-means clustering method to predict the severity level of
the disease in the neonate.

Results: Up to 200 differentially expressed genes were identified and used for predicting the ASD status of the
child with a classification accuracy of 95.91%. Also, the results of the K-means demonstrated that the higher
the mean of the cluster, the more severe the disease would be among that corresponding group. Optimizing
and implementing these models in clinical settings may significantly reduce the health burden of ASDs.

Keywords: Autism Spectrum Disorders; Wavelet Transform; Principal Component Analysis; Naive Bayes
classifier; Classification; K-means clustering

Introduction
Autism Spectrum Disorders (ASDs), as first explained
by Kanner [18], is pervasive developmental disabilities
characterized by the awkwardness of social relations
and communication skills, restricted recurrence inter-
est, and behavior. It is a family of complex disorders
of brain development.
In reference to the Diagnosis and Statistical Man-

ual of developmental disorders (DSM)-IV-TR crite-
ria, pervasive disorders have been grouped into five
different disorders with their respective diagnoses.

*Correspondence: amoakoyirenkyi@nims.edu.gh
1National Institute for Mathematical Sciences, Ghana, Kumasi, Ghana

Full list of author information is available at the end of the article
†Equal contributor

They include; Rett syndrome, Autistic disorder (clas-

sic autism), pervasive developmental disorder (PDD-

NOS), Asperger syndrome, and childhood disintegra-

tive syndrome.

Complications in motor coordination and attention,

physical health problems like sleep and gastrointestinal

disorders, and intellectual disabilities can be related to

ASD. The causes of ASD have remained somewhat a

mystery. However, it has been known to be caused by

some environmental and genetic factors. Such factors

include immune dysfunction, prenatal and perinatal

factors, drugs and toxic exposure at pregnancy, very

low birth weight, and advanced maternal age.
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ASD is a heterogeneous condition that affects 1 in
68 children globally [3]. Unlike other disorders among
children, such as blindness and malformations, which
are detected at birth, ASD detection is based on some
overt characteristics that occur later in the child’s life.
Additionally, many children with ASD might not get
the help they need if the diagnosis is delayed. The
earlier an ASD is diagnosed, the sooner treatment
can begin. Indeed, the American Academy of Pedi-
atrics (AAP) recommends that all children should be
screened for developmental delays and disabilities dur-
ing their regular well-child doctor visits at 9, 18, 24/30
months [23].
Even though ASD diagnosis can be made at all ages,
it is not reliable, particularly for children below 18
months. This is because doctors basically diagnose the
disease by looking at a person’s behavior and develop-
ment. ASDs diagnosis and its associated severity are
mainly made by cognitive tests and standardized tests
such as the Autism Diagnostic Observation Sched-
ule (ADOS) [22]. Because of this, other experimental
and computational methods other than the approved
screening instruments can be put in place to diagnose
the disease more reliably at an earlier stage for treat-
ment. Genetically, research has shown that more than
two genes cause the disorder, and these genes interact
in a complex manner. Several genes, between two and
hundreds, have been identified and could contribute
to disease susceptibility. Family studies have it that
genetic disorders are strongly associated with ASDs,
and the occurrence risk in siblings with an ASD patient
proband between 8-10% [33]. A more recent study has
observed up to 25% of siblings have been affected [9].
In identifying gene-interrelated diseases like ASD, biol-
ogists pay attention to gene expression data relating to
the diseases. They usually use some time-consuming
and expensive methods such as copy number varia-
tion studies (CNV), whole-exome sequencing (WES),
and genome-wide association studies (GWAS). How-
ever, computational techniques are faster, reliable, and
provide inexpensive solutions for predicting potential
candidate disease genes. Ansel et al. [2] conducted an
extensive review on Transcriptomics Studies for the
variability of Gene Expression in ASD. They explained
ASDs as diversified and emerge from epigenetic, ge-
netic, and environmental origins. Yet, as stated earlier,
the exact causes of ASDs remain elusive. The assess-
ment of an individual’s behavior and phenotype has
been the basis for diagnosing ASD, as elaborated in
their work. They found numerous ASD susceptibility
genes and for the majority of the ASD population. The
genes identified are known to be involved in a broad
and diverse range of biological functions.

Burgeoning research has focused on classifying these
genes with various mathematical methods into dis-
eased and non-diseased genes, which aids in predict-
ing the presence of a disease in an individual. Nanni
and Lumini [27], studied disease classification by DNA
micro-array data using the wavelet transform selec-
tion method. It was noted that the huge dimension
of the feature vector mostly contained some informa-
tion that was not relevant for accurate classification.
Hence, they employed the wavelet transform to select
the relevant features for the classification. Likewise,
Bennet et al. [6] also used a discrete wavelet technique
for feature extraction and then employed a hybrid clas-
sifier for micro-array data analysis for Cancer. The
method which was proposed in their work was based
on the naive Bayes, support vector machine (SVM),
and K nearest neighbor (KNN). They combined the
discrete wavelet transform (DWT) and a Moving Win-
dow Technique (MWT) for feature selection. Much in
the same way, Hameed et al. [12] analyzed the genes ex-
pressed in ASD to select the most important genes for
classification. They achieved their objective using sev-
eral statistical filters and a geometric binary particle
swarm optimization-support vector machine (GBPSO-
SVM) algorithm. Gok [11] tried to predict the presence
of some disease risk genes that contribute to ASD. In
his work, he trained a model with brain developmen-
tal gene expression data for classifying ASD risk genes
using some machine learning techniques. His results
confirmed the model’s performance with 0.902 sensi-
tivity, 0.839 area under Receiver Operating Charac-
teristic (ROC) curve, Matthews correlation coefficient
(MCC) of 0.583, and an F-measure score of 0.806 of
the presence of the disease in the individual.
This paper presents a wavelet-based feature extrac-

tion method with principal component analysis to pre-
dict the possibility of ASD in neonates using the naive
Bayes classifier and its associated severity.

Results and Discussion
This section presents the analysis and results for some
autistic and healthy individuals used in the classifica-
tion problem. In addition, the methods discussed in
the methodology sections were implemented. Finally,
we discuss the analysis and interpretation of the results
to conclude the section.

Feature extraction and Selection
It is known that the gene expression dataset is enor-
mous, noisy, and has a lot of irrelevant information,
which potentially compromises the classification pro-
cess in terms of accuracy. Hence, preprocessing is done
to extract the essential information relevant to the
study. This will nonetheless also reduce the noise and
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variations in the dataset.
Statistical methods for exploratory analysis of multidi-
mensional data work best for data with the same range
of variance at different ranges of the mean values. The
amount of variance is expected to be approximately
the same across different mean values. Thus, the data
must be homoskedastic, and hence log 2 is applied to
transform/normalize the data.
Upon transforming the data, the Haar wavelet trans-
form was used to compute the wavelets coefficients as
shown in Figure 1;

Figure 1: Wavelet coefficient before and after
thresholding

A threshold value, λ, thus the standard deviation for
the wavelet coefficient was set to remove the coefficient
that are less than the threshold. It is assumed that,
all the wavelet coefficients below the threshold are re-
garded as noise and not depicting the true expression
level of the genes.
After thresholding, a new set of wavelet and approxi-
mate coefficients are obtained and the inverse wavelet
transform is taken with these coefficients to get an ap-
proximate signals or dataset retaining its dimension.

In summary, after the transformation and extraction,
it was realized that, on average, the genes became
closer to the means in each sample. Hence, the fea-
ture selection method was applied to select the signif-
icant genes for the study using the t-test. Thus, the
T-test was used to assess if a particular gene is sig-
nificantly different in the two classes, the autistic and
non-autistic classes. The independent t-test selected
1,973 out of the 54,613 genes in the 146 samples as the
significant genes whose means differ in the two-class
cases. The 1,973 selected genes were ranked according
to their P-value. It was assumed that the smaller the
P-value, the more significant the gene is. This ranged
between 5.8e− 06 and 3.4e− 02. From this range, the
first 200 most significant genes were selected as they
were much relevant to the study.

Classification on T-test with and without ranking

The classification was made on the dataset selected by
t-test with a resultant dimension of 1,974 genes and
146 samples using the Nav̈ıe Bayes classifier (classifi-
cation without ranking). This set of features were used
in the model for classification. The dataset was divided
into 60% training and 40% testing datasets, with 97
and 49 samples, respectively. The performance of the
model has been explained in table 1.
From table 1, the classifier was able to predict the
presence of the disease in a sample with accuracy and
precision of 63.27 and 65.21 respectively on the 1,973
genes. However, the significant genes tested were tried
on the classifier to improve its accuracy.

Table 1: Performance of the classifier with the t-test
results

Classification without Ranking

Training set Testing set

Accuracy 83.50% 63.27%
Sensitivity 84.60% 60.00%
Specificity 82.20% 66.67%
Precision 84.61% 65.21%

Again, as discussed, the 200 selected genes were in-
putted into the model for classification with 60% train-
ing and 40% testing comprising 97 and 49 samples,
respectively. The performance of the model has also
been explained in the table 2. It can be seen that the
classifier increased its accuracy and precision by ten
percentage points, thus, 73.47% and 77.27% respec-
tively on the testing data.

Table 2: Performance of the classifier with 200 signifi-
cant genes

Classification without Ranking

Training set Testing set

Accuracy 86.59% 73.47%
Sensitivity 86.50% 68.00%
Specificity 82.98% 79.17%
Precision 88.24% 77.27%

Classification with PCA

Dependencies were tested and it was noted that, there
were some moderate and very weak correlation among
the genes which may have contributed to the aver-
age performance of the classifier. Hence, the principal
component analysis was computed on the dataset to
eliminate all dependencies in the data.

The PCA identified 114 component explaining 95.4%
of the variations in the data and the performance of
the model on the set has been shown in table 3 .
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Table 3: Performance of the classifier on PCA results

Classification without Ranking

Training set Testing Set

Accuracy 98.69% 95.91%
Sensitivity 98.10% 96.00%
Specificity 100.00 % 91.67%
Precision 100.00 % 92.6 %

In summary, it has been revealed that performance
of the classifier increased drastically when all the de-
pendencies in the dataset was removed by PCA.

K-Means Clustering
After the samples has been correctly identified, a fur-
ther step is taken if the person is an autistic patient.
This involves another level of classification to deter-
mine whether the person’s autism will be mild, mod-
erate or severe. The k-means cluster was adopted due
to the absence of a prior knowledge on the labels in
the dataset.

Choosing the K
The K-means clustering algorithm as discussed earlier
was used to classify or group the objects based on fea-
tures that are partitioned into K number of groups
where K is a positive integer. Since we want to group
the autistic class into the patient’s severity as mild,
moderate and severe, K was set to 3 and total number
of 77 autistic samples were used.
After the clustering, cluster 1, 2 and 3 ((cluster mild,
moderate and severe) got 18, 39 and 20 samples re-
spectively. Example on how the sample samples where
distributed among the clusters has been shown in the
clustering vector shown in table 5. Its records the in-
dividual autistic patients and the cluster they belong.

Table 4: Clustering Vector
sample number cluster

70 2
71 2
72 2
73 2
101 3
102 1
103 3
104 1

The assumption made on the K-Means Clustering
was that, the cluster with the highest mean will be
the group that is highly autistic (severe) and the vice
versa.

Table 5: Cluster groups and associated severity
cluster size mean severity
C1 18 5.598028 mild
C2 39 5.627063 moderate
C3 20 5.642697 severe

Conclusions
Early recognition and diagnosis of ASD in children are
necessary for expeditious behavioral and educational
interventions, including referral to a formal early in-
tervention program, with the potential resultant im-
proving the prognosis, especially for cognition, peer
interactions, and language development. Knowing that
a child has a specific diagnosis and is receiving therapy
can also help a family cope better. Without knowing
that the child’s diagnosis increases parental anxiety
and delays, the introduction of interventions can re-
duce behavioral problems and optimize outcomes in
the child. In addition, literature has it that having a
child with autism in a family increases the risk of other
siblings having a disorder on the autism spectrum or
with the broader phenotype. Early identification could
prompt parents to receive genetic counseling and plan
for future children.
ASD has a genetic trait, and it is crucial to un-

derstand the genetic biomarkers underlying the dis-
ease. Information on the genetic biomarkers can serve
as a reasonable basis for predicting ASD at a rela-
tively cheaper cost. This study analyzes efficiently and
predicts the presence of ASD in an individual utiliz-
ing these biological markers with mathematical models
and the severity of the disease. As part of the analysis,
the feature extraction and selection methods employed
reduced the number of genes from 54,613 to 1,973 sig-
nificant genes. The Nav̈ıe Bayes classifier was adopted
and was able to classify the presence or absence of
the disease accordingly in an individual with an accu-
racy of 95.91%. The severity of the presence of ASD
was determined alongside its diagnosis utilizing the K-
means clustering algorithm. This prediction indicated
that samples clustered around the highest mean are
more likely to represent high autistic status and vice
versa.
Further analysis and testing have to be conducted

on the severity prediction to establish the assumption
made on the test. In particular, a dataset with labels
on the patient’s severity level should be collected to
confirm the assumption made on the clustering. The
dataset from neonates can also be collected to test
the model for further studies. The prediction model
is open for further interrogation and should be tried
in clinical settings to test the effectiveness of identify-
ing the significant genes. It will help provide a deeper
understanding of the abnormal expression patterns of
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the disease, paving the way for drug discovery where
special autism drugs can be designed to control and
correct abnormal gene expression. The study also rec-
ommends that early detection of ASD at birth using
algorithms should be given due consideration to com-
plement other existing methods.

Methods
In this section, the proposed model for diagnosing the
disease has been described and the gene expression-
Autism dataset used.

Proposed Model

The proposed model, as illustrated in Figure 2 consist
of six main steps: (1) extraction of features into one-
dimensional Haar Wavelet Transforms (HWT) feature
vector and obtaining a set of wavelet and scaling coef-
ficients; (2) Reconstruction of data using the new set
of wavelet and scaling coefficients; (3) The selection
of differentially expressed genes that collectively con-
tribute to the disease using the independent t-test; (4)
Removing dependencies from the features using PCA;
(5) Training the naive Bayes classifier to make predic-
tions; (6) determining the possible severity of the dis-
ease in the neonate using the k-means clustering. In
Figure 2, the preprocessing stage of the model is com-
posed of HWT, inverse HWT, t-test, and PCA to ba-
sically extract and select the relevant features and also
to reduce noise in the dataset to improve on the accu-
racy of the classifier. Only a few studies combine some
preprocessing methods with a classifier to build ASD
risk gene prediction. Still, this work improves on the
preprocessing done in previous studies, which makes
it more robust for predicting the presence of ASD in
neonates and its possible severity of the disease.

Figure 2: Proposed Model

Experimental data
The experimental data used in the study is made up
of an autism micro-array dataset obtained from the
Gene Expression Omnibus hosted by NCBI [1]. The
samples are people in the Phoenix area of the south-
western U.S. state of Arizona. The blood sample from
the observations was collected in the spring and sum-
mer of 2004. RNA was totally extracted for the micro-
array experiment using Affymetrix Human U133 Plus
2.0 39 Expression Arrays. The dataset is made up of
146 samples (observations) with 54,613 genes. The ob-
servations are carved up into two classes( the control
class and the autistic class). According to the DSM-IV
criteria, the autistic patients taken were diagnosed by
medical practitioners and were confirmed based on the
ADOS and ADI-R criteria.

Haar Wavelet Transforms
To provide the reader opportunity to understand the
full scope of the work, we briefly discuss the Haar
Wavelet Transform(HWT) and associated functions
for constructing it. HWT is a method that transforms
a digital signal into a vector space and ensures that
the high-frequency and low-frequency components are
separated. HWT, which is discrete in nature, is ap-
plied to the data to find the most discriminant fea-
tures between the two classes. HWT makes scaling or
translation to the signals to obtain their orthonormal
basis representation using the Haar wavelet function
w(t) over an interval.
The orthogonal set of Haar functions are defined in

the interval x ∈ [0, 1] For every pair of j, k ∈ Z, the
Haar function ψj , k(x) is defined as

ψj , k(x) = 2j/2ψ(2j(x)− k), t ∈ R (1)

The function is supported on the right open interval;

In =
[

k2−j , (k + 1)2−n
)

(2)

The family of ψj,k(t), constitutes an orthonormal basis
of L2(R) such that.

∫

ψj,k(t)ψ
∗

m,n(t) =

{

1; j = m, k = n

0; otherwise
(3)

The scaling function is defined as;

ψ(t) =

{

1, t ∈ [0, 1)

0, otherwise
(4)

(5)
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And the Haar mother wavelet is given as;

ψ(t) =











1, x ∈ [a, b)

−1, x ∈ [b, c)

0, otherwise

(6)

Haar wavelet transform extracted as a matrix in
equation (3) serves as the wavelet filter used in the
convolution to produce the coefficients. A universal
threshold technique of the standard deviation is ap-
plied to filter the expression values which are not sig-
nificant to the study. In so doing, the important coeffi-
cient or information is extracted from the dataset. The
inverse wavelet transform is applied to reconstruct the
signal from the extracted coefficient. After the signal
has been reconstructed, a feature selection technique
is applied to reduce the dimension.

T - test and Hypothesis Testing
• H0: There is no significant difference between the
means of the autistic class and non-autistic class
for genei

• HA: There is a significant difference between the
means of the autistic class and non-autistic class
for genei

Test Statistic
Two- sample independent t-test for geneg for autistic
class(i) and non-autistic class(j) is presented in equa-
tion (7)

tg =
Xig −Xjg
√

s2ig

ni
+
s2jg

nj

(7)

where;

• Xig, Xjg - means of autistic class(i) and non-
autistic class(j) respectively for a given gene

• s2ig, s
2

jg - Standard deviation of autistic class(i)
and non-autistic class(j) respectively for a given
gene

• ni, nj - number of samples of autistic class(i) and
non-autistic class(j) respectively for a given gene

•
s2ig

ni
,
s2jg

nj
- Standard error terms SEi and SEj

Nav̈ıe Bayes Classifier

The Nav̈ıe Bayes classifier is a simple probabilistic
classifier based on applying the Bayes theorem where

every feature is assumed to be class-conditionally in-
dependent.

The classifier employs the posterior probabilities to
assign the class label to a test pattern; a pattern is
assigned the class label with the maximum posterior
probabilities. The Posterior Probability of a person be-
ing Autistic has been set out in the equation 8.

p(A | f) ∝ p(f | A)P (A) (8)

p(Ac | f) ∝ p(f | Ac)P (Ac) (9)

Where;
A = Autistic class
Ac = Non- Autistic class
f = feature set of Genes

Given that the feature (a set of genes) is a vector
f = (G1, · · ·Gg), the criterion for classifying whether
or not a person is Autistic is explained as;

p(Cj) = argmaxj

g
∏

i=1

p(Gi | Aj)p(Aj) (10)

where
j = 1, 2
A1 = A, A2 = Ac

Principal Component Analysis (PCA)

PCA is employed to take away all dependencies in the
dataset to enhance the performance of the classifier.
The PCA algorithm has been explained below;

• The selected features after the application of the
T- test is used.

• Find the empirical mean of each gene j = 1, · · · , n
and calculate the deviation from the mean.

• Calculate the covariance and find the covariance
matrix of the n× p matrix.

• Calculate the eigenvalues and eigenvectors of the
covariance matrix.

• Choose the components and form a feature vector.
• Derive a new data set with the feature vector.

K-Means Clustering

In order to predict the level of severity among the
Autistic patients, the K-means clustering algorithm
was used since there were no initial labels that came
with the dataset. The K-means Process has been ex-
plained in figure 3
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Figure 3: K-means process

Accessing the Performance of the Classifier

The confusion matrix shown in table (6) was used in
evaluating the performance of the classification model
on a set of test data for which the true values are
known.

Table 6: Confusion Matrix
ACTUAL VALUES

PREDICTED VALUES
POSITIVE NEGATIVE

POSITIVE True positive False positives
NEGATIVE False negative True Negative

• True Positives: These are samples in which the
model predicted to be autistic and were truly
autistic.

• True Negatives: The samples the model predicted
as non autistic and were truly non autistic.

• False positive: The samples predicted as autistic
but were non autistic. (Type I error).

• False Negative: The samples predicted as non
autistic but were Autistic (Type II error).

Performance Measures
• The Sensitivity (True positive rate): It measures
the proportion of autistic samples that have been
identified as autistic.

Sensitivity =
TruePositive

(TruePositive+ FalseNegative)

(11)

• The Specificity (True negative rate): It measures
the proportion of percentage of the non autistic
sample that have been identified as non autistic.

Specificity =
TrueNegative

(TrueNegative+ FalsePositive)

(12)

• Precision: It captures the proportion of the pos-
itive predictive values of the positive predictions
that are actually positive

Precision =
TruePositive

(Truepositive+ FalsePositive)

(13)

• Classification accuracy: It describes how often the
classifier predicts correctly.

Accuracy =
TruePositive+ Truenegative

Totalsamples
(14)
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