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Abstract
Background. The emergence of COVID-19 in March 2020 challenged Zimbabwe to mount a response with
limited medical facilities and therapeutic options. Ivermectin (IVM) had by then been safely used to treat a
variety of human diseases affecting millions, as noted by the Nobel Committee in awarding its 2015 prize for
medicine. Based upon early clinical indications of e�cacy against COVID-19, IVM-based combination
treatments were deployed to treat this infection in Zimbabwe.

Methods. Data were retrospectively analyzed for 34 severe COVID-19 patients treated with IVM-based
combination therapy between August 2020 and May 2021, for whom pre- and post-treatment SpO2 values
were all recorded on room air. Mortality and deterioration outcomes were also analyzed for a larger set of 92
severe COVID-19 patients receiving IVM-based treatment.

Results: For the 34-patient SpO2 tracking series, all but two patients had signi�cantly increased SpO2 values
after the �rst IVM dose, and all patients recovered. Mean increases in SpO2 as percentages of full
normalization to SpO2=97 were 55.1% at +12 hours and 62.3% at +24 hours post-treatment. These results
paralleled similar sharp increases in SpO2, all on room air, for a series of 24 RT-qPCR con�rmed, mostly severe
COVID-19 patients in the USA (California) who were given IVM combination treatment, all of whom recovered.
For 19 of those patients having SpO2 ≤ 90 prior to IVM, the mean SpO2 normalization at +24 hours post-
treatment was 65.2% as calculated from the SpO2 values reported. For our larger series of 92 severe COVID-19
patients in Zimbabwe, median age 53, only two died and two more deteriorated prior to recovery, far less than
a predicted 7 deaths and 17 deteriorations for the demographics and risk factors of these patients.

Conclusions. The rapid, marked increases in SpO2 for both the Zimbabwe and California patients stand in
sharp contrast to the decline in SpO2 and associated pulmonary function following onset of moderate or
severe COVID-19 symptoms under standard care. These rapid SpO2 increases and low mortality rates support
extended deployment of IVM treatment for COVID-19, complementary to immunizations for prevention.

Background
Evaluations of e�cacy for COVID-19 therapeutics are challenging since most patients with this disease
typically recover; the worldwide cumulative case fatality rate is 2% as of September 2021.1. Thus, randomized
clinical trial (RCT) results are important, yet interpretations, for example, of the more than 20 mostly positive
RCT results for COVID-19 treatment with the drug ivermectin (IVM), a macrocyclic lactone used widely
worldwide since 1987, as summarized below, are controversial. Even for a drug such as remdesivir that was
tested with several RCTs having large patient cohorts, opposite conclusions were drawn by the US FDA2 and
the World Health Organization3 as to e�cacy against COVID-19.

As a complement to positive RCT results for a COVID-19 therapeutic, a quanti�able determination of rapid,
major improvement in pulmonary function, especially for severe COVID-19 patients, would further indicate
e�cacy and provide insights into that drug’s underlying biological mechanism. The simplest indicator of lung
function is blood oxygen saturation level, SpO2, as detectable using a pulse oximeter. However, the immediate
administration of supplemental oxygen to any severe COVID-19 patient would typically preclude meaningful
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pre-and post-treatment comparisons of SpO2 values. For this retrospective study conducted in Zimbabwe,
ironically, challenges that constrained treatment capabilities also provided the opportunity to track changes in
SpO2, all on room air, for 34 severe COVID-19 patients within 12 to 48 hours after beginning IVM treatment
(see Figure 1). At the same time, these challenges tested whether severe COVID-19 patients with limited
opportunities for hospitalization could be successfully treated at home or in clinics with rudimentary facilities.

Zimbabwe, a landlocked country in Southern Africa that shares a border with South Africa, had its �rst
reported case of COVID-19 in March 2020.4 Eight cases and one death from COVID-19 followed in the same
month.5 The �rst death occurred in the Wilkins hospital, Zimbabwe’s main COVID-19 treatment center in the
capital city of Harare. Facilities were limited at this hospital at the time; no capacity for ventilation was
available. Given the rapid increase in COVID-19 patients in Harare after March 2020,6 additional medical
facilities began treating them.

COVID-19 wards were created at a general practice clinic by converting two staff rooms into a 4-bed ward and
a storeroom into a 2-bed ward. Available equipment included several oxygen cylinders, an oxygen
concentrator, six beds, and three monitors for SpO2 and blood �ow parameters. The staff consisted of the
lead author and another primary care physician who was off duty for several weeks after being injured in a
vehicle accident on July 27, 2020, and either one or two nurses at different times, each on 12-hours shifts.
During the initial months of the pandemic, in the absence of proven therapies and protocols, the standard of
care evolved through early August 2020 to include corticosteroids, clopidogrel, aspirin, enoxaparin,
rivaroxaban, a nebulized nano-silver preparation, zinc sulfate, hydroxychloroquine, azithromycin, doxycycline
and in some cases an IV antibiotic.

However, the e�cacy of these treatments was found to be limited, and by the end of July 2020, several COVID-
19 deaths were recorded in the country. Based upon reports of initial success using IVM for COVID-19
treatment from colleagues in Johannesburg, South Africa, the College of Primary Care Physicians of
Zimbabwe (CPCPZ) adopted and included IVM in their COVID-19 treatment protocol from August 8, 2020,
starting initially with a 10-12 mg stat dose. Treatment of COVID-19 with IVM continued after the �rst patients
showed improved outcomes, with more rapid recoveries achieved at doses higher than the standard of 200
ug/kg as initially used.

In August 2020, after it became apparent that IVM added to standard of care was signi�cantly reducing the
death rate, together with the hospital system being overwhelmed, CPCPZ physicians decided to treat COVID-19
patients where an IVM-based protocol could be administered, including at local general practice clinics which
had nursing care and oxygen, and at some patients’ homes with nursing support and oxygen supplementation
as available. As knowledge of this successful treatment regimen spread in Zimbabwe, other physicians began
offering the same treatment, with improved outcomes, which led to the formation of the Zimbabwe COVID
Front Line Clinicians Society.

IVM for COVID-19 treatment
The decision to include IVM in COVID-19 treatment protocols in Zimbabwe was made as the pandemic swept
through that nation, overwhelming limited clinical care facilities, with no drug developed to treat COVID-19
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being generally accepted as effective. A published case-controlled study of IVM treatment for COVID-19
conducted at four US hospitals7 that had been initially released in a preprint in June 2020 found a 40%
reduction in mortality among 173 patients treated with low dose IVM vs 107 case-matched controls (15% vs
25.2% deaths). Interest in IVM was supported by its Nobel prize-honored pedigree and its extensive use to treat
a variety of human diseases in over 3.7 billion doses worldwide since 1987.8–10 Another favorable
characteristic of this drug is its extraordinary record of safety, well tolerated at high doses,11,12 including in
studies for COVID-19 treatment.13,14 It is generally non-toxic even at doses far exceeding the therapeutic
range.15,16 Since August 2020, inpatient and outpatient treatments of COVID-19 with IVM have been applied
across 25 countries,10 with more than 20 RCTs conducted for IVM treatment regimens.10,17,18

Seven of nine meta-analyses of these RCTs for IVM treatment reporting in 2021, all conducted using Cochrane
analysis methodology, found signi�cant18–22 or possible23,24 indications of IVM e�cacy, with a mean 0.33
relative risk (RR) of mortality vs controls. Most of these 20 RCTs for IVM treatment of COVID-19 showed
statistically signi�cant mortality reductions or other clinical bene�ts. Among the most recent and detailed of
the nine meta-analyses noted above reported a pooled total 67% reduction in mortality for IVM vs controls,
with a statistical signi�cance for an overall effect of p=0.005.20 A comprehensive review of the entire body of
clinical studies for IVM treatment of COVID-19 by the Nobel co-laureate for IVM, Dr Satoshi Omura and
colleagues, concluded that IVM yielded major reductions in mortality.10 Two animal studies of IVM treatment
at low human-equivalent doses, one for the SARS-CoV-2 virus in golden hamsters25 and another for a related
betacoronavirus (MHV-A59) in mice,26 found statistically signi�cant treatment bene�ts, consistent with those
found in the RCTs noted above. The indicated biological mechanism of IVM, competitive binding with SARS-
CoV-2 spike protein,27 is likely non-epitope speci�c, possibly yielding full e�cacy against emerging viral
mutant strains.

The demonstrated safety of IVM at much higher than standard doses11–14 allowed the latitude for dose
escalation for IVM treatment of COVID-19 over time. On September 19, 2020, the CPCPZ held a seminar at
which the use of a combination of IVM, doxycycline and zinc was presented, along with aggressive diabetes
control, steroid use and anticoagulation, and this was suggested as the most effective and affordable care
available at the time. Afterwards, combination therapy centered around IVM plus doxycycline and zinc
became the standard COVID-19 treatment protocol used by the CPCPZ. The potential e�cacy of these
adjuncts was later supported by successful clinical trials results with treatments using IVM in combination
with doxycycline28 or with doxycycline and zinc.29 This combination therapy for COVID-19 has been
researched and advanced by Thomas Borody,30 who in 1990 published the �rst clinical trial of using a triple
therapy of three inexpensive repurposed drugs for H. pylori,31 the underlying bacterial cause of peptic ulcers.
This triple therapy of repurposed drugs became the worldwide standard of care for peptic ulcers a decade
later, after the patents for the palliative drugs Tagamet and Zantac expired, and the discovery of H. pylori as
the cause of peptic ulcers was honored with the Nobel Prize for Medicine in 2005.30

Methods
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This study is a retrospective review of clinical data collected during the course of treatment of COVID-19
patients with therapeutic agents selected by their physicians to offer the greatest chances for clinical bene�ts
and recovery.

Outcomes
Outcomes tracked were 1) changes in SpO2 values from within one hour before treatment to 12, 24 and 48
hours after treatment, for a set of 34 COVID-19 patients for whom a pre-treatment SpO2 value and at least one
SpO2 value up to +48 hours after start of treatment (�rst IVM dose) were available, all obtained on room air;
and 2) mortality/deterioration: recovery, deterioration to critical status, or death for a larger set of 92 COVID-19
patients. For most of these patients, blood values for lymphocyte count, LDH, D-Dimer and CRP were also
recorded, but complete blood test results were not obtained for every patient and therefore were not analyzed.

Participants
Sixty of the patients analyzed in this study, including all 34 in the SpO2 tracking series, were from Harare,
treated by CPCPZ physicians either at local clinics or at patients’ homes. Additional data for the
mortality/deterioration series were obtained through inquiries sent on March 10, 2021, to all in a WhatsApp
group of CPCPZ physicians treating COVID-19 with IVM asking for records of any of their patients so treated.
Six physicians responded by furnishing records of 32 such patients, grouped with the 60 patients treated by
CPCPZ physicians to comprise the mortality/deterioration series. For most of these six physicians, not every
patient treated to recovery without incident was included, but it was con�rmed that no other patient treated by
them with IVM had died. Under pressures of patient care during the pandemic, record-keeping tended to be
most comprehensive for the sickest patients, who thus are represented disproportionately in this study.
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Table 1
Age group, sex, and pre-treatment SpO2 (%) value

range of the 92-patient mortality/ deterioration series
(mean age=54; median age=53).

Age   Initial SpO2 (%)  

Group Sex 66-84 85-89 90 Total

25-49          

  Female 5 9 1 15

  Male 6 11 0 17

  Total 11 20 1 32

50-59          

  Female 2 6 0 8

  Male 8 8 2 18

  Total 10 14 2 26

60-69          

  Female 4 6 0 10

  Male 6 7 0 13

  Total 10 13 0 23

70-79          

  Female 1 1 1 3

  Male 1 0 2 3

  Total 2 1 3 6

80+          

  Female 0 2 0 2

  Male 1 2 0 3

  Total 1 4 0 5

TOTAL   34 52 6 92

Inclusion and Exclusion criteria
In both the SpO2 tracking and mortality/deterioration series, patients selected for analysis were of age 18 or
older and had treatment start dates between August 8, 2020, and May 31, 2021. Patients selected had an
SpO2 value on intake of 51% or above and were administered a treatment protocol including IVM.
Furthermore, patients selected were required to have been found COVID-19 positive either by a PCR test or a
clinical diagnosis made by criteria including exposure to a COVID-19 patient, hypoxia, lymphopenia,
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monocytosis, elevated LDH, elevated dimer, and/or radiology consistent with pulmonary abnormalities caused
by the virus.

For the mortality/deterioration analysis, the set of patients was further restricted to those with pre-treatment
SpO2 of 90% or below (and a minimum SpO2 for all patients of 51%, as noted above). Table 1 shows the
distribution of age, sex and pre-treatment SpO2 value of the 92 patients in this series. For the SpO2 tracking
series, the subset of patients was restricted to those patients with pre-treatment SpO2 values of 51% through
93%. That series was further restricted to those for whom these SpO2 values were recorded and positively
documented to have all been obtained on room air (in almost every case because oxygen was not available),
and at least one SpO2 value obtained within 48 hours after IVM administration, with 34 patients �tting those
criteria. Six of those patients had pre-treatment SpO2 values of 91-93% and were thus not included in the 92-
patient mortality/deterioration series. All patients in both the mortality/deterioration and SpO2 tracking series
thus �t the US National Institutes of Health’s de�nition of severe COVID-19, a su�cient condition of which is
SpO2 of 93% or below.32

Treatment
In the 92-patient mortality/deterioration series and in the overlapping 34-patient SpO2 tracking series, every
patient received IVM at dosages described below in addition to selected other agents from the standard of
care before August 2020. These other agents included corticosteroids, clopidogrel, aspirin, enoxaparin, a
nebulized nano-silver preparation, rivaroxaban, zinc sulfate, azithromycin, doxycycline, and in some cases, an
IV antibiotic. Patients treated in a clinic were assessed by a nurse upon admittance, with blood drawn and
PCR tests conducted as feasible given the patient's condition and with severe symptoms necessitating
immediate treatment. For those patients who contacted a CPCPZ physician from home requesting treatment,
an online questionnaire was �rst completed by the patient, after which, if COVID-19 was still a suspected
diagnosis, a nurse visit to the home was conducted, with associated follow up per the procedures described
for in-clinic patients.

As evidence of IVM safety and tolerability accrued following its use beginning in August 2020, its stat dose of
10 mg as used for the earliest patients was increased on September 11, 2020, to 10-12 mg every four days for
three doses. Subsequently, the dosage was further increased to 12 mg IVM on the day of admission and then
on days 4 and 8 plus doxycycline (100mg b.i.d.) and zinc sulfate (60mg/day). The latter regimen was used up
through December 2020, when the second pandemic wave emerged in Zimbabwe. At that time, additional
evidence of safety and tolerability of this regimen supported further dose escalation to a standard IVM dose
regimen of 12 mg daily for �ve consecutive days, with adjunct use of doxycycline and zinc sulfate continued
at the doses noted. In some cases, for which this standard treatment regimen did not yield signi�cant clinical
gains within a few days, even higher doses of IVM were used, in some cases as high as 100 mg for a single
dose. Transient adverse effects (AEs) such as blurred vision characteristic of high dose IVM often occurred at
those dose levels, but no serious AEs associated with IVM were manifested in any patient. Each of the 34
patients in the SpO2 tracking series was treated with IVM, doxycycline and zinc.

Data collection
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For patients in the SpO2 tracking series that were treated in clinics, values were tracked using monitors that
continually displayed SpO2 values and readings for pulse rate and blood pressure and waveform images of
blood pulses. For those treated at home, the intake nurse provided a pulse oximeter to the patient, unless the
patient had one which the nurse deemed of reliable quality. The patient or a family member took SpO2
readings regularly, using the same oximeter as used for the pre-treatment reading. In most cases, these
readings were taken daily, with much lower frequency after SpO2 values had risen signi�cantly and the
patient’s clinical condition had correspondingly improved. Patients were instructed to message the nurse
immediately if SpO2 ever decreased from a higher value to 93% or below or if any new clinical symptoms of
concern developed.

Patient outcomes were categorized as recovered, died, or deteriorated before recovery, as follows. Recovered:
patients who recovered following IVM treatment and were still alive on September 1, 2021, three months or
more after intake. Died: those who died following IVM treatment, whether or not the cause could have been
unrelated to COVID-19. Deteriorated (before recovery): if at any time following the �rst dose of IVM, any
incident or condition, whether of indicated connection to COVID-19 or not, either caused them to be
hospitalized or made that a reasonable course of action had that been an available and viable option.

Analytical methods
For the 34-patient SpO2 tracking series, a measure of percent normalization toward a fully optimal SpO2 value
of 97 was applied, which for pre-and post-treatment SpO2 values S0 and S1, is: 100*(S1-S0)/(97-S0), capped at
100%. Pre- and post-treatment SpO2 values were plotted for all 34 patients using this percent normalization
measure in Figure 1 and were also presented directly in Figure 2, Figure 3, and Table S2. Regarding the 92-
patient mortality/deterioration series, precise statistical comparisons of results from treatment vs control
groups cannot be made other than in the context of an RCT. It is nevertheless of interest to compare the
mortality results for this Zimbabwe mortality/deterioration patient series to the expected mortality of COVID-
19 patients with similar characteristics. A review conducted in 2021 considered 46 prediction models for
COVID-19 mortality,33 two of which34,35 were rated as having a low risk of bias; the same two were identi�ed
as being of the highest quality in another overview of COVID-19 mortality risk assessment models.36

The risk assessment model used here is the one of these two that used pre-treatment SpO2 as one of its
prediction variables.35 This model, designated as the 4C mortality risk predictor, was developed by 35
investigators on behalf of a consortium of 260 hospitals in the UK. It was derived from 57,824 hospitalized
patients, a comparable group to this study’s mortality/deterioration series of patients, who, as noted, all had
pre-treatment SpO2 values ≤ 90% and would have been hospitalized had that been an available, viable option.
The overall mortality rate of 4C model patients, using data collected February through June 2020, was 31%. In
Harare’s main hospital system, the Parirenyatwa Group, in its red zone, where COVID-19 patients are admitted
and treated, per statistics available for June through December 2020, the COVID-19 case fatality rate (CFR)
was 35.4% (119 deaths of 336 total patients).37 This exceeds the overall CFR for the patient set of the 4C
mortality risk predictor and indicates that using the 4C mortality risk predictor for the patient set in this study
would not overestimate the risk factor.
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The same UK consortium that developed the 4C mortality predictor also developed a model to assess the risk
of clinical deterioration among inpatients with con�rmed or highly suspected cases of COVID-19.38 This
deterioration model was developed using 73,948 patients recruited between February and August 2020, with
clinical deterioration de�ned as any requirement of ventilatory support or critical care, or death. This model
was also applied to the Zimbabwe mortality/deterioration series, and predicted deterioration outcomes were
compared with the number of patients who could be considered to have deteriorated, per the criteria speci�ed
above.

To calculate both mortality and deterioration probability estimates for the Zimbabwe mortality/deterioration
series, three base variables were used: age, sex and pre-treatment SpO2 value on room air, while for mortality,
the 4C model used the count of comorbidities as another variable, as was also recorded for the study patients.
Abnormal values for respiratory rate, urea, CRP, lymphocyte count, and presence of radiographic chest
in�ltrates would have added extra points and would have increased associated probabilities to these risks
calculated for mortality and/or deterioration. However, since only these four base variables were available for
every patient, only these were used to calculate the 4C-predicted risks.

The comorbidities used in the 4C mortality predictor were the following: chronic cardiac disease, chronic
respiratory disease (excluding asthma), chronic cardiac disease, chronic respiratory disease (excluding
asthma), chronic renal disease, mild to severe liver disease, dementia, chronic neurological disease,
connective tissue disease, diabetes, HIV or AIDS, malignancy, and clinician-de�ned obesity.38 For applying this
risk predictor to the Zimbabwe mortality/deterioration patient series, these were the comorbidities used for the
counts shown in Table S1. For some of these patients, certain variables used for the deterioration but not the
mortality risk calculation would likely have signi�cantly increased the deterioration probability values, and the
calculated deterioration risk estimate is lower than that for mortality.

The 4C mortality and deterioration risk predictors were used to calculate probabilities for each of the 92
patients for mortality and deterioration, respectively. Although the Poisson distribution function can roughly
approximate the probability of having a given number n or less total events from such a series having
different probabilities, Monte Carlo simulation gives a much more precise probability estimate.39 Monte Carlo
simulations were executed, with 10,000,000 simulations performed ten times each for the mortality and
deterioration estimations. These were performed using visual basic source code as listed in Supplementary
File S3.

Ethics Approval
The Medical Research Council of Zimbabwe granted IRB approval (#E293) for this retrospective study.
Patients consented for their medical treatment and to having their de-identi�ed data used in this study.

Results
For COVID-19 patients treated with IVM in Zimbabwe between August 8, 2020, and May 31, 2021, results are
presented for the following: A) Pre- and post-treatment SpO2 values for 34 patients for whom these values
were recorded all on room air, each patient having a pre-treatment SpO2 value of 51-93% and at least one
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post-treatment value obtained within 48 hours after �rst dose of IVM; and B) analysis of mortality and
deterioration outcomes for 92 patients having pre-treatment SpO2 values of 51-90%.

Results for pre-and post-treatment SpO2 values
Figures 1 and 2 and Table S2 show the progression of pre-treatment and post-treatment SpO2 values within
48 hours after �rst dose of IVM for the 34 patients described above, all of whom were treated with IVM,
doxycycline and zinc. All of these patients recovered. SpO2 values are shown at pre-treatment, all recorded
within one hour before the start of treatment and at 12, 24 and 48 hours after treatment. The SpO2 value
shown for a given patient at time x is that for the latest post-treatment time ≤ x. (Thus, for some patients, for
example, having a post-treatment value within 12 hours before +24 hours but none in the next 24-hour period,
the latest value at +48 hours is the same as that at +24 hours.)

Figure 1 shows, for all 34 patients, SpO2 value changes from before IVM administration to post-treatment as
percentages of full normalization to an optimal SpO2 value of 97 (95 is considered the minimum normal
SpO2 value for a healthy child or adult by the US CDC41). Red, orange and blue lines show, respectively, SpO2
values at +12, +24 and +48 hours post-treatment. The mean (±SD) SpO2 changes as this speci�ed percent of
optimal normalization were 55.1% ± 28.0% at +12 hours, 62.3% ± 26.3% at +24 hours and 64.3% ± 24.5% at
+48 hours. As shown in Figure 1, these percentages of full normalization to SpO2=97 have a roughly uniform
distribution across the full range of pre-treatment SpO2 values, from 66 to 93.

Figure 2 shows all pre-and post-treatment SpO2 values grouped into nine graphs (A-I) by the range of pre-
treatment SpO2 values and post-treatment times (after �rst IVM dose) of +12, +24 and +48 hours. As shown in
Figure 2 and identically in Table 2, those patients with lowest, mid-range and highest pre-treatment SpO2
values had mean SpO2 increases at +12 hours of 12.8, 5.4 and 2.8, respectively (all SpO2 values in
percentage units). Figure 3 shows pre-and post-treatment SpO2 values throughout the entire observation
period for each of the 34 patients. Note that these values were recorded less frequently after SpO2 had
normalized.

Table 2
Mean ± SD of changes in SpO2 from pre- to post-treatment (after
�rst IVM dose) for 34 severe COVID-19 patients treated with IVM,

doxycycline and zinc.
SpO2 (%)

Pre-treatment at +12 hours at +24 hours at +48 hours

66 - 84% +12.8 ± 6.7 +11.4 ± 6.1 +11.7 ± 5.8

85 - 89% +5.4 ± 2.6 +6.2 ± 2.8 +6.3 ± 3.0

90 - 93% +2.8 ± 2.7 +3.7 ± 2.3 +3.9 ± 1.8

Figure 4 shows successive SpO2 values for one patient who had a particularly rapid increase in these values
after his �rst dose of IVM. This patient was a 25-year-old male, treated by a CPCPZ physician at a GP clinic
without a supplemental oxygen capability. He received his �rst 12 mg IVM dose (repeated over the next four
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days) immediately after entering the clinic with respiratory distress and bilateral pneumonia indicated by
stethoscopic examination. His COVID-19 diagnosis was con�rmed by a positive result from a rapid antigen
test. As shown, his SpO2 values increased from that recorded immediately before treatment (79%) to values at
45 minutes (87%), 90 minutes (92%) and 3 hours (95%) post-treatment. He was discharged later that same
day, and his home SpO2 readings then �uctuated between 92% and 95% over the next three days. By the
fourth day after discharge, his SpO2 stabilized at 97%, his pulse dropped to 77 from prior values over 100, and
he resumed working from home.

For the 34 patients in the SpO2 tracking series, as shown in Figure 2, all but two had increases in SpO2 within
the �rst 48 hours after �rst dose of IVM. As shown in Figure 3, this overall increase in SpO2 continued
throughout the entire observation period. However, several studies of moderate and severe COVID-19 patients
under standard care that track SpO2, pulmonary abnormalities, or both establish that for most patients, SpO2
decreases in tandem with an increase in the extent of pulmonary CT abnormalities from the day of onset of
disease symptoms through the second week following.42–48 Thus, the expected change in SpO2 within 48
hours after �rst IVM dose would be < 0, and one-tailed paired t-test calculations can assess whether SpO2
values increased signi�cantly > 0 at each time period tracked.

Taking into account some missing post-treatment values (see Table S2), there are 25, 33 and 34 pairs of pre-
and post-treatment SpO2 values at +12 hours, +24 and +48 hours, respectively. Applying these paired t-test
calculations, the SpO2 increases were highly signi�cant for each time period: t=6.28, p=8.5E-07 at +12 hours;
t=8.42, p=6.36E-10 at +24 hours, and t=8.81, p=3.47E-10 at +48 hours.

Results for mortality and deterioration
The mortality/deterioration series, as noted above, consisted of 92 COVID-19 patients with pre-treatment SpO2
values between 51% and 90%. Table S1 shows individual values for these patients for age, sex, pre-treatment
SpO2 value, number of comorbidities, treatment outcome (recovered, deteriorated or died), and the respective
probabilities from the 4C mortality and deterioration risk predictors.

Of these 92 patients, 90 recovered, and two died. (The latter two patients did not have recorded SpO2 values
on room air and were not included in the 34-patient SpO2 tracking series.) To compare this result with the
mortality outcome expected for a series of 92 COVID-19 patients with matching values of age, sex, pre-
treatment SpO2 and the number of comorbidities, 4C mortality probabilities were calculated for each patient.
Monte Carlo simulations were then executed, with 10,000,000 simulations run ten times. The number of
simulated deaths in each run ranged from 7.079 to 7.081, with a mean of 7.080, and the mean of the
associated individual standard deviations = 2.494. The probability of having zero to two simulated deaths in
this series ranged in these ten runs was 0.0214 (identically for mean, minimum and maximum values).

Two patients other than the two who died �t the deterioration criteria noted above. One was transferred to a
hospital for three days because he became weak from not eating, and another was hospitalized for six days
due to a drop in oxygen saturation. Both resumed IVM treatment after returning home and subsequently
recovered. These two plus the two patient deaths yield a total of four deteriorations according to the 4C risk
model for deterioration. 4C deterioration probabilities were calculated for each of the 92 patients, and Monte
Carlo simulations were then executed for deterioration risk estimation, with 10,000,000 simulations run ten
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times. The number of simulated deteriorations in each run was 17.23 (identically for the mean, minimum and
maximum of these values), with the mean of the associated individual standard deviations = 3.54. The
probability of having zero to four simulated deteriorations in this series ranged in these ten runs from
0.0000196 to 0.0000216, with a mean of 0.0000207.

With the caveat above as to the limits of statistical analyses outside the context of an RCT, this calculation
nevertheless suggests that the occurrence of four or fewer deteriorations among these 92 severe COVID-19
patients would be highly improbable under standard care. For comparison, note that in this series of 92
patients, 21 had pre-treatment SpO2 values ≤ 78%, and among these 21 patients, only two deteriorated (the
patients who died). In sharp contrast were deterioration outcomes reported by Mukhtar et al. in a study of 72
critically ill COVID-19 patients.49 Thirty-four of those 72 patients had hospital admission SpO2 values ≤ 78%
on room air, and all of those subsequently required mechanical ventilation, whereas only 16 of 38 (42%) of
patients having intake SpO2 value > 78% required ventilation (Mohamed Hasanin, corresponding author of
this study, personal communication, August 15, 2021).

Discussion
This study is a retrospective review of clinical data collected amid the challenges of providing treatment with
limited facilities and resources to COVID-19 patients with severe disease. Under such conditions, it was not
possible to obtain blood test values for all patients, including values for lymphocyte count, LDH, D-Dimer and
CRP, which were thus not analyzed. On the other hand, the lack of availability of oxygen supplementation for
many of the patients treated resulted in the rare opportunity to track changes in SpO2 values all recorded on
room air before and after administration of IVM to 34 patients, with several of these patients having presented
with SpO2 values well below 90%.

The increase in SpO2 for these 34 patients as the percentage of fully optimal normalization to SpO2=97, as
reported above, was (mean ±SD) 55.1% ± 28.0% at +12 hours, which rose to 62.3% ± 26.3% at +24 hours and
then to 64.3% ± 24.5% at +48 hours after �rst IVM dose. All but two of these 34 patients had SpO2 values that
increased at all post-treatment times for which values were obtained. Paired t-test calculations yield
p<0.0000001 for the SpO2 increases at +12, +24 or +48 hours having occurred by chance had the IVM-based
combination therapy applied had no clinical activity against COVID-19. Because the dearth of signi�cant
spontaneous improvements in SpO2 levels and respiratory function one day after a severe COVID-19 patient’s
presentation for medical care is a well-established norm for this disease per the studies cited above, these
probability values are signi�cant and noteworthy.

The results for this SpO2 tracking series, with recoveries for all 34 patients, parallel those recently reported by
Hazan et al., for which SpO2 values all on room air for 24 RT-qPCR con�rmed COVID-19 patients were tracked
before and +24 hours after combination treatment with IVM, doxycycline and zinc.40 For the 19 severe COVID-
19 patients in that series who had pre-treatment SpO2 values of 90% and below (minimum=77%) and had +24
hour post-treatment SpO2 values (see Table S3), the mean (±SD) SpO2 values were 86.7 ± 4.5 pre-treatment
and 93.3 ± 2.6 at +24 hours after �rst IVM dose. As the percentage of normalization to SpO2=97, the mean
(±SD) relative SpO2 increase for these 19 patients was 65.2% ± 17.5%, which is close to the +24 hour relative
increase of 62.3% for the 34-patient Zimbabwe SpO2 tracking series. The one-tailed paired t-test for these
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increased SpO2 values in these 19 patients yields t=9.34, p=1.27E-08, which as for the Zimbabwe SpO2 series
is highly signi�cant.

The similar results for the SpO2 patients in the Zimbabwe SpO2 series and the 24 patients of Hazan et al.
suggest that the triple therapy of IVM, doxycycline and zinc provides e�cacy regardless of which other
adjunct agents were used, or may indicate that each study used different sets of adjuncts that further boosted
the activity of this regimen to the degree of e�cacy manifested in the clinical outcomes for each. One
limitation of this study is that except for nebulized nano-silver, used for all patients at the start of the
treatment regimen, other adjuncts were deployed on a case-by-case basis, per the patient's condition. Also,
IVM dosages were increased during the study period based on the observations that no serious AEs were
observed at higher doses, and higher doses appeared to be most effective for the patients with the most
severe symptoms. A follow-up clinical study of IVM-based combination treatment of COVID-19 would bene�t
from a more structured speci�cation and tracking of dosages and adjuncts used.

The distinct improvements in respiratory function for this study's 34-patient SpO2 tracking series, paralleling
similar results reported by Hazan et al., provide a quanti�able demonstration of rapid clinical improvement in
severe COVID-19 patients after IVM treatment. Such rapid improvements had been observed since the �rst
major clinical trial of IVM treatment of COVID-19.7 The lead investigator of that clinical trial had observed that
stabilization and then improvement in breathing function frequently occurred in 12-48 hours after IVM
treatment, even for patients who had been deteriorating rapidly and had required supplemental oxygen at up
to a 50% mixture.50

The SpO2 increases within a day after IVM treatment observed in this study and by Hazan et al. provide a
distinct indication that IVM not only yields statistically signi�cant clinical bene�ts in groups of patients as
reported in most of the 20 RCTs for IVM treatment but provides rapid, directly observable resolution of
pulmonary dysfunction as tracked by SpO2 values for COVID-19 patients. This �nding offers clues as to the
potential biological mechanism of IVM activity against SARS-CoV-2 since, for example, even an effective
freeze on viral replication or rapid repair of damaged pulmonary alveoli would be unlikely to cause such rapid
clinical improvements. One indicated biological mechanism of IVM activity, competitive binding with SARS-
CoV-2 spike protein, as reviewed,27 may, through a reversal of viral hemagglutination, act quickly to increase
pulmonary capillary �ow and in turn account for normalization of blood oxygenation. An additional plausible
mechanism of IVM activity is the activation of the cholinergic anti-in�ammatory pathway under the control of
the vagus nerve,51 which is regulated by acetylcholine and potentiated by the high-a�nity binding of IVM (a
positive allosteric modulator) to the alpha 7 cholinergic receptor a7nAChr52 expressed on bronchial, vascular
as well as to cytokine-producing cells (i.e., TNF, IL1 and IL6 secreting macrophages, lymphocytes and mast
cells).53

For the SpO2 tracking series, the pattern of rapid increases in SpO2 after start of IVM treatment as occurred
for all but two of these 34 patients resulted in recoveries for all of them. This same pattern of highly
successful outcomes extended to the 92-patient mortality/deterioration series, with recoveries of all but two
patients. As noted above, although statistical signi�cance cannot be determined through the 4C mortality and
deterioration calculations, these odds calculations suggest that the probabilities for achieving the mortality
and deterioration results obtained in this study were, respectively, low and extremely low under standard care.
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No serious adverse effects (AEs) from IVM treatment were observed in any patient, although transient AEs
such as blurred vision characteristic of higher-dose IVM administration were observed in some patients given
doses as high as 100 mg. While comparative results using higher vs lower doses were not systematically
tracked, the practice of increasing IVM doses for patients not initially responding to treatment worked out well
and supports the indication that higher doses provide greater e�cacy.

Conclusions
Pre-and post-treatment SpO2 values were recorded all on room air for 34 severe COVID-19 patients who were
treated with the combination therapy of IVM, doxycycline and zinc plus other adjuncts. This application of
multiple drugs against COVID-19 was based on Zimbabwe’s experience with prior infectious diseases, for
which early, aggressive use of multiple drugs has been a core treatment principle. For these 34 patients, all but
two had increases in SpO2 from pre- to post-treatment, at every time interval of +12, +24 and +48 hours after
�rst IVM dose for which values were recorded. The mean increase in SpO2 value as a percentage of full
normalization to SpO2=97 was 55.1% at +12 hours and 62.3% at +24 hours after �rst IVM dose. These results
closely parallel the mean SpO2 normalization of 65.2% as calculated from SpO2 values reported by Hazan et
al. for 19 RT-qPCR con�rmed COVID-19 patients having pre-treatment SpO2 ≤ 90, with all SpO2 values on
room air.

The marked, rapid normalizations of blood oxygenation, p<0.0000001 for the 34-patient SpO2 tracking series
in each time period analyzed (paired t-test), stand in sharp contrast to the well-established typical decline in
SpO2 during at least the �rst week after onset of moderate or severe COVID-19 symptoms and establish a
cause-and-effect clinical bene�t for IVM-based combination treatment of this disease. Furthermore, for the
larger set of 92 severe COVID-19 patients treated with IVM and other adjunct agents, all having pre-treatment
SpO2 values of 90 and below, all but two recovered, and only two of those recovering patients experienced
deterioration before recovery. These two deaths and four deteriorations (including the two deaths) are much
less than the expected seven deaths and 17 deteriorations predicted using the well-regarded 4C COVID-19 risk
assessment model.

For the patients of this Zimbabwe study and the Hazan critical series, treatment at home or in clinics with
basic facilities freed up hospital resources for other patients, and the treatment approach modeled in these
studies could signi�cantly relieve the pressure on overwhelmed health facilities. IVM is widely available
worldwide, inexpensive, and one of the safest drugs in modern medicine, with its safety in “improving the
health and wellbeing of millions” noted explicitly by the Nobel Committee in awarding its 2015 prize for the
discovery of IVM.54 These study results, therefore, support the extended deployment of IVM for COVID-19
treatment, complementary to immunizations for prevention.
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Figure 1

Changes in pre- to post-treatment SpO2 values, all on room air, for 34 severe COVID-19 patients treated with
ivermectin (IVM), doxycycline and zinc, as percentages of optimal normalization to SpO2=97. Red, orange and
blue lines represent, respectively, changes in SpO2 values at +12, +24 and +48 hours after �rst dose of IVM. X
values were increased slightly (<1.5) as needed to accommodate clusters of values. For pre-and post-
treatment SpO2 values S0 and S1, the y axis is the percent of optimal normalization to SpO2=97, that is: 100*
(S1-S0)/(97-S0), capped at 100%. Mean (±SD) SpO2 changes (y values) were 55.1% ± 28.0% at +12 hours,
62.3% ± 26.3% at +24 hours and 64.3% ± 24.5% at +48 hours. These results closely parallel changes in SpO2,
all on room air, reported by Hazan et al. for 19 RT-qPCR con�rmed COVID-19 patients having pre-treatment
SpO2 ≤ 90.40 At 24 hours after treatment with IVM, doxycycline and zinc, the mean SpO2 increase as a
percentage of normalization to SpO2=97 was 65.2%, as calculated from the SpO2 values reported, close to the
62.3% at +24 hours for this 34-patient series. All patients in both of these IVM-treated cohorts recovered.
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Figure 2

Pre- and post-treatment SpO2 values, all on room air, for 34 severe COVID-19 patients treated with IVM,
doxycycline and zinc. Graphs A-I are in horizontal groupings by the range of pre-treatment SpO2 value and in
vertical groupings by elapsed time after �rst dose of IVM. (The lowest SpO2 value in the stipulated range of
51-93% was 66%.) For these elapsed times of x=12, 24, and 48 hours, the SpO2 value shown for a given
patient is at the latest post-treatment time ≤ x. All pre-treatment SpO2 values are from within one hour before
the start of treatment.
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Figure 3

SpO2 values, all on room air, tracked for 34 severe COVID-19 patients treated with IVM, doxycycline and zinc.

Figure 4

Changes in SpO2 over 3 hours for a COVID-19 patient after administration of IVM. SpO2 values are shown (all
on room air), with pulse rates (bpm) below those, at pre-treatment (A) and for 45 minutes (B), 90 minutes (C),
and 3 hours (D) after �rst dose of IVM. This patient was diagnosed with COVID-19 by a positive result from a
rapid antigen test and treated with combination therapy including IVM, doxycycline and zinc plus other oral
and nebulized adjunct agents from among those itemized above.
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