Detachment-parallel recharge explains high discharge fluxes at the TAG hydrothermal field

Zhikui Guo¹,², Lars Rüpke¹,* Sven Petersen¹, Christopher R German³, Benoit Ildefonse⁴, Jörg Hasenclever⁵, Jörg Bialas¹, and Chunhui Tao²,6,*

¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
²Key Laboratory of Submarine Geosciences, SOA, Second Institute of Oceanography, MNR, Hangzhou, China
³Woods Hole Oceanographic Institution, Woods Hole, MA, USA
⁴Géosciences Montpellier, University of Montpellier and CNRS, Montpellier, France
⁵Institute of Geophysics, CEN, Hamburg University, Germany
⁶School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
*lruepke@geomar.de, taochunhuimail@163.com

S1. Supplementary Figures

Supplementary Fig. 1: Geometry and pressure initial condition of the novel 3D models. The shallow tectonics as (a) cylindrical shape pipe and (b) slot.
Supplementary Fig. 2: Animation of stream tracers of hydrothermal circulation flow highlighted for (a) recharge flow and (b) discharge flow. These figures are snapshots of the animations, the complete animations can be found at Figshare (doi:10.6084/m9.figshare.16622053).

Supplementary Fig. 3: Velocity field distribution in the whole modeling domain. Arrows are scaled by magnitude of fluid velocity ($\log_{10}(|\vec{U}|)^{-1}$) and oriented by velocity direction. The velocity arrows are are uniformly sampled from the cells and classified into two kinds. The blue arrows represent recharge flow which is extracted by condition of $U_y < 0$ (negative vertical velocity). The arrows of discharge or up-flow ($U_y < 0$) are color-scaled by fluid temperature. Note that, for visualization reason, the arrows of discharge velocity are shortened approximately 1.35 times with respect to the recharge flow arrows.
Supplementary Fig. 4: Close up of mass flux distribution on (a) seafloor and (b) horizontal slice at depth of 4km below sea level.

Supplementary Fig. 5: Summary of 3D model (pipe geometry) results at quasi-steady state. Temperature field on seafloor, vent temperature T_{vent}, integrated total discharge mass flow rate Q_{dis} and heat output E_{dis}, conductive heat input E_{cond}.
Supplementary Fig. 6: Summary of 3D model (slot geometry) results at quasi-steady state. Temperature field on seafloor, vent temperature \(T_{vent} \), integrated total discharge mass flow rate \(Q_{dis} \) and heat output \(E_{dis} \), conductive heat input \(E_{cond} \).

Supplementary Fig. 7: Temperature results of 2D models with presumed heat source on detachment. In this group of 2D models, the heat source temperature is 600 °C, width of detachment (\(w_{df} \)) and pipe (\(w_{pipe} \)) are 50 m and 100 m, respectively. Columns from left to right show results of models with different permeability of detachment fault (\(k_{df} \)) ranging from \(5 \times 10^{-15} \text{ m}^2 \) to \(5 \times 10^{-13} \text{ m}^2 \). Likewise, rows of subplots show results of models with different permeability of pipe (\(k_{pipe} \)) ranging from \(5 \times 10^{-15} \text{ m}^2 \) to \(5 \times 10^{-13} \text{ m}^2 \).
Supplementary Fig. 8: Summary of 2D model results. Rows of subplots from top to bottom show total conductive heat input (E_{cond}), total discharge heat output (E_{dis}), total discharge mass flow rate (Q_{dis}) and vent temperature, respectively. Columns of subplots from left to right show results of models with different width of detachment and pipe, the parameters are shown at the top side. As an example, the temperature field corresponding to the first column are shown in Supplementary Fig. 8: Summary of 2D model results. Note that model with some combination of parameters can not form an expected focused venting along pipe, for example $w_{\text{df}} = 30\text{m}, w_{\text{pipe}} = 50\text{m}$ (first column) and $k_{\text{pipe}} = 5 \times 10^{-14}\text{m}^2, k_{\text{df}} = 5 \times 10^{-13}\text{m}^2$. Result points of these kind of models are not shown in this figure.

S2. Supplementary Tables

References

Table 1: List of parameters used in the equations and model result figures.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Temperature</td>
<td>-</td>
<td>°C</td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
<td>-</td>
<td>Pa</td>
</tr>
<tr>
<td>\vec{U}</td>
<td>Fluid velocity</td>
<td>-</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration vector</td>
<td>9.8</td>
<td>m s$^{-2}$</td>
</tr>
<tr>
<td>k</td>
<td>Crustal permeability1,2</td>
<td>$10^{-16} - 10^{-11}$</td>
<td>m2</td>
</tr>
<tr>
<td>k_{pipe}</td>
<td>Permeability of pipe shape of the permeable tectonic zone</td>
<td>-</td>
<td>m2</td>
</tr>
<tr>
<td>k_{slot}</td>
<td>Permeability of slot shape of the permeable tectonic zone</td>
<td>-</td>
<td>m2</td>
</tr>
<tr>
<td>k_{df}</td>
<td>Permeability of detachment fault zone</td>
<td>-</td>
<td>m2</td>
</tr>
<tr>
<td>w_{df}</td>
<td>Thickness of detachment fault zone3,4</td>
<td>50 (30-200)</td>
<td>m2</td>
</tr>
<tr>
<td>w_{pipe}</td>
<td>Diameter of pipe</td>
<td>100</td>
<td>m2</td>
</tr>
<tr>
<td>T_{vent}</td>
<td>Maximum vent temperature</td>
<td>-</td>
<td>°C</td>
</tr>
<tr>
<td>Q_{dis}</td>
<td>Integrated total discharge mass flow rate</td>
<td>-</td>
<td>kg s$^{-1}$</td>
</tr>
<tr>
<td>Q_{re}</td>
<td>Integrated total recharge mass flow rate</td>
<td>-</td>
<td>kg s$^{-1}$</td>
</tr>
<tr>
<td>E_{dis}</td>
<td>Integrated total discharge heat output</td>
<td>-</td>
<td>MW</td>
</tr>
<tr>
<td>E_{cond}</td>
<td>Integrated total conductive heat power</td>
<td>-</td>
<td>MW</td>
</tr>
</tbody>
</table>

Fluid properties: calculated from IAPWS-IF975,6

- ρ_f Density | - | kg m$^{-3}$ |
- μ_f Dynamic viscosity | - | Pa s |
- C_{pf} Specific heat | - | J kg$^{-1}$ K$^{-1}$ |
- H_f Specific enthalpy | - | J kg$^{-1}$ |
- H_0 Specific enthalpy of cold water | 50,000 | J kg$^{-1}$ |
- α_f Thermal expansivity | - | K$^{-1}$ |
- β_f Compressibility | - | Pa$^{-1}$ |

Rock properties: from reference7,8

- ε Porosity | 10 | % |
- ρ_r Density | 2700 | kg m$^{-3}$ |
- C_{pr} Specific heat | 880 | J kg$^{-1}$ K$^{-1}$ |
- λ_r Thermal conductivity | 2 | W m$^{-1}$ K$^{-1}$ |

Parameters for numerical modeling

- S_{face} Surface vector of cell face | $||\vec{S}_{face}||$ | m2 |
- S_{patch} Surface vector of cell face on conductive boundary patch | $||\vec{S}_{patch}||$ | m2 |

Parameters used to estimate the volume of magma9

- L_H Latent heat | 6.8×10^5 | J kg$^{-1}$ |
- C_{pm} Specific heat | 1200 | J kg$^{-1}$ K$^{-1}$ |
- ρ_m Density | 2800 | kg m$^{-3}$ |

6The diameter of the pipe in the 3D model is set to 100 m which is measuring from high-resolution bathymetry of TAG mound.