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Abstract
Aluminium (Al) is a potent neurotoxic metal known to cause neurodegeneration. Al exposure generates
oxidative stress by accumulation of reactive oxygen species in the brain that is followed by the activation
of neuronal cell death. Asiatic acid (AA), the major bioactive compound of Centella asiatica (a medicinal
plant), act as multifunctional drug as well as an antioxidant. Thus, the present study aimed to investigate
the potential neuroprotective effects of AA against Al neurotoxicity. Rats were orally administered with
100 mg/kg b. wt. of aluminium chloride (AlCl3) dissolved in distilled water for 8 weeks or AA (75 mg/kg b.
wt.) in combination with Al. The results showed that AlCl3-intoxication caused significantly impaired
memory, enhanced anxiety-like behavior, increased acetyl cholinesterase (AChE) activity and higher level
of malondialdehydes (MDA) along with concomitantly decreased activities of superoxide dismutase
(SOD) and catalase (CAT) in the cortex and hippocampus regions of the brain. In addition, Al exposure
caused neuronal loss and enhanced reactive astrogliosis in both regions. However, co-administration of
AA with AlCl3 significantly attenuated behavioral alterations, improved AChE, SOD and CAT activities and
decreased MDA level. Further, the study demonstrated that AA attenuated neuronal loss and reactive
astrogliosis in rat brain. In conclusion, AA could protect rat brain from Al toxicity by inhibiting oxidative
stress, neuronal loss and reactive astrogliosis.

Introduction
Aluminium (Al) is a highly abundant neurotoxic metal that affects the human population around the
world. Besides the presence in nature, antacids, foils, cosmetics, deodorants, vaccines etc. are also the
sources of Al exposure. Hence, high abundance of Al in the environment makes human at high risk of its
exposure via air, water and food (Krewski et al. 2007). Normal Al concentration in human body is in the
range of 0.1-0.4 µg Al/ gm tissue in dry wt. (Exley and House 2011). Presence of Al beyond this limit
results in multiple pathological conditions including Alzheimer's disease, Autism, multiple sclerosis (Exley
and Clarkson 2020), Parkinson's disease and Dementia (Maya et al. 2016) and causes severe neurotoxic
effects (Exley 2014). The human population exposed to Al result in its higher concentration in different
tissues including brain (Julka and Gill 1996). Moreover, the animal studies have also demonstrated that
Al accumulates in different brain regions following its long-term exposure (Nehru and Bhalla 2006; Sethi
et al. 2008).

Accumulating body of evidence demonstrated that neurotoxic action of Al is associated with impairment
of memory and coordination, anxiety, tremor and jerking movements (Kiesswetter et al. 2007). Multiple
animal studies observed that extended contact to Al can cause neurobehavioral, pathological and
neurochemical changes in brain which in turn weaken spatial memory and learning (Sethi et al. 2009;
Junior et al. 2013; Prakash et al. 2013; Zhao et al. 2020). Acetylcholine esterase (AChE), a prominent
marker of neurotoxicity as well as a key modulator of memory and hippocampal plasticity has been
reported to be altered following Al exposure (Kaizer et al. 2005).
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Brain is considered highly vulnerable to Al toxicity, owing to the presence of non-dividing neuronal cells.
Moreover, the tissue has high content of polysaturated fatty acids that make it extremely sensitive to free
radicals produced following toxic insults (Joffre 2019). Emerging evidence from the literature suggest
that Al exposure generates reactive oxygen species (ROS) which in turn imbalance pro/anti-oxidant
systems. Production of ROS disrupts cellular antioxidant defense system and is linked with multiple
neurodegenerative disorders (Lee et al. 2021). Malondialdehyde (MDA) is an important marker of lipid
peroxidation (LPO) and depicts oxidative stress status of cells. Enhanced oxidative stress further causes
damage to cellular biomolecules such as DNA, lipids and proteins, hence, cells commence under more
oxidative stress (Singh et al. 2019). Studies have shown that Al causes LPO and protein oxidation (PO)
along with decline in antioxidant activities viz glutathione peroxidase, superoxide dismutase (SOD),
catalase (CAT) (Prakash and Kumar 2013; Nehru and Bhalla 2006).

Astrocytes play a crucial role in supporting neurons by providing glucose and neurotrophic factors and
protecting them from oxidative stress. Studies demonstrated that in response to toxic insults or disease
states, neuronal health gets affected, where astrocytes play a critical role in survival and functioning of
neurons (Sofroniew and Vinters 2010; Wang and Xu 2020). Multiple evidences from animal studies
indicated that Al toxicity causes astrogliosis and neuronal cell death (Junior et al. 2013; Laabbar et al.
2021). The evaluation of neuronal loss and reactive astrogliosis are important toxicity indicators. Hence,
maintenance and protection of astrocytes can be of therapeutic use and modulate functioning and
degeneration of neurons (Jeong et al. 2014).

Centella asiatica (C. asiatica), an important medicinal herb from the Apiaceae family, has been in use
from decades in Ayurvedic and Chinese medicines as well as a memory enhancement tonic (Puttarak et
al. 2017; Sun et al. 2020). C. asiatica has been reported to have antioxidant, antiapoptotic, mitoprotective
and neuroprotective properties (Prakash and Kumar 2013; Tabassum et al. 2013; Sun et al. 2020). Asiatic
acid (AA) is one of the most important bioactive compound responsible for its antioxidant and other
therapeutic properties (Nagoor Meeran et al. 2018; Krishnamurthy et al. 2009). AA attenuates cognitive
deficit in an animal model of monosodium glutamate-induced dementia and protects SH-SY5Y cells
against glutamate-induced apoptosis (Xu et al. 2012). In addition, AA exerts protective effect against
spinal cord injury by suppressing inflammation and oxidative stress (Jiang et al. 2016). Recent studies
investigated that AA mitigate Al-induced Alzheimer disease-associated pathologies such as behavioral
impairment, Aβ burden and activation of inflammatory, and apoptotic pathways (Rather et al. 2018,
2019).

Therefore, in this study we examined the effect of AA in spatial memory and anxiety in aluminium
chloride (AlCl3)-exposed adult male Wistar rats. Furthermore, AChE activity, oxidative stress indices (LPO,
and activities of SOD and CAT), and neurons morphology were evaluated. The neuronal density and
reactive astrogliosis were also assessed using immunostaining against neuronal nuclear protein (NeuN)
and glial fibrillary acid protein (GFAP).

Materials And Methods
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Chemicals used
Carboxymethylcellulose (CMC), AlCl3, AA, 5,5- dithiobis-2-nitrobenzoic acid (DTNB), pyrogallol,
acetylthiocholine (ATch), Tris base, thiobarbituric acid (TBA), 4′,6-diamidino-2-phenylindole (DAPI) and
cresyl violet (CV) were procured from Sigma Aldrich, St. Louis, USA. Triton x 100 and bovine serum
albumin (BSA) were obtained from G-Biosciences, St. Louis, USA. Sodium dodecyl sulphate (SDS),
Ethylene diamine tetraacetic acid (EDTA) and dibutyl phthalate polystyrene xylene (DPX) were from Sisco
Research Laboratory, Mumbai, India. Analytical grade chemicals and double distilled water were used
during the entire study.

Animals and their care
Male Wistar rats weighing 180-200 g were procured from Central Laboratory of Animal Research,
Jawaharlal Nehru University (JNU), New Delhi, provided ad libitum supply of water and food and
maintained standard hygienic conditions with a light/dark cycle of 12-h and 25-28 ℃ temperature. The
rats used in the present study were approved from the Institutional Animal Ethics Committee of JNU, New
Delhi and all the experiments were done as per the Committee for the Purpose of Control and Supervision
of Experiments on Animals guidelines.

Experimental design
Rats used for experiment were divided randomly into four groups: (1) Control: rats administered with
same volume of distilled water (DW) and CMC, 0.5% as administered to AlCl3 and AA-treated group. (2)
AlCl3-intoxicated: rats received AlCl3 dissolved in DW (100 mg/kg b. wt., orally) for 8 weeks. (3) AlCl3 +
AA-treated: rats administered with AlCl3 and AA (75 mg/kg b. wt., orally) dissolved in 0.5% CMC for 8
weeks. (4) AA-treated: rats were administered with AA alone dissolved in 0.5% CMC for 8 weeks.

Doses of AlCl3 (Prakash and Kumar 2013) and AA (Krishnamurthy et al. 2009; Rather et al. 2018) were
taken from literature. All administrations were done 5 days per week via oral gavage for 8 weeks. DW and
0.5% CMC were employed as vehicle for AlCl3 and AA respectively. Details of schematic outline of the
experimental design including studied parameters have been given in Fig. 1.

Behavioral studies

Morris water maze (MWM) test
Spatial learning and memory capabilities of rats (n=6) was examined using MWM test as the method of
Morris (1984) with few alterations. The water maze comprised of a circular tank painted-black (Diameter:
168 cm and Depth: 50 cm), having cues of various shapes. A circular (hidden) platform painted-black
(Diameter: 15 cm) was placed in the middle of a quadrant, 2.0 cm beneath the water surface, for rats to
flee from swimming. The tank perimeter was labeled with east, west, north and south. Prior to
experimentation randomly picked rats were acclimatized to the setup and tested for their swimming
capabilities. Subsequently, rats were kept once in each quadrant of the water tank, their face towards the
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tank wall for all four entry points. Rats were guided to locate the platform and let them to stay for 20
seconds, in case they failed to spot the platform in 120 seconds. MWM test was conducted for 5
consecutive days and recorded using a camera placed on the top of the tank. The test was performed just
amid 11:00 AM and 3:00 PM, to eliminate variations.

Light and dark (L&D) test
L&D test in rats (n=6) was carried out to access the anxiety-like behavior as described previously by
Ramos et al. (2003). The light/dark setup made of plexiglass (48 cm × 24 cm × 27 cm) and was
separated through a barrier into two chambers consisted of a doorway (10 cm × 10 cm). One chamber
was made dark with a lid while white chamber was illuminated by a bulb (60-W) placed above the
apparatus. On the experiment day, rats were transferred to the dark room and remained undisturbed for 2
h. Afterwards rats were centrally positioned in the lit chamber, facing opposite to the dark compartment.
Rats were permitted to freely explore the chamber for 5 min and recorded. The defecation index, number
of transitions between L&D chamber and time spent in the light chamber were calculated.

Open field test (OFT )

The OFT task was performed to validate the anxiety-like behavior of rats (n=6) in a open field arena. Rats
were examined for their exploratory behavior in this test as described by Sethi et al. (2009). Rats were
positioned in middle of the arena and locomotor activity was analysed as the number of central and
peripheral square entries. The number of squares entries done by rats within a span of 5 min were
recorded and faecal boli number was counted to calculate defecation index. Before every trial, the floor
was thoroughly cleaned with 70% ethanol.

Tissue homogenate preparation
Rats were euthanized via passing a high flow rate of CO2 (16 L/min) and decapitated. The intact brain
was isolated followed by dissecting out of cortex and hippocampus. The hippocampi of both sides (left
and right) were combined to prepare one sample. All the samples were homogenized (10% w/v) with a
tissue homogenizer using homogenizing medium (0.1 mM EDTA, 0.32 M sucrose, 10 mM Tris-HCl, pH
7.4). The resulting mixture was then spun at 5000 x g for 10 min at 4°C and then supernatant was
transferred in a fresh tube and stored for the biochemical analysis. The protein concentration of each
sample was measured by the Bradford (1976) method using BSA as standard.

AChE activity
AChE activity was estimated as per the method of Ellman et al. (1961), a reaction mixture comprised of
2.35 ml sodium phosphate buffer (0.1M, pH 7.4), 0.2 ml DTNB (10 mM), 0.2 ml triton X100 (0.013%), 0.05
ml tissue homogenate and 0.2 ml of 10 mM ATch. AChE activity was measured spectrometrically at 412
nm and results were expressed as nmol/ACh hydrolyzed/min/mg protein

LPO assay
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LPO was measured as described by Kaizer et al. (2005) with few modifications. Tissue homogenate (50
µl) was mixed with 2.5% SDS (16.66 µl), 20% acetic acid (62.5 µl) and 1.33% TBA (37.5 µl). Incubation for
1h at 95℃ was given to the reaction mixture in the water bath. Then, samples were cooled and
centrifuged for 10 min (4000 x g, 4℃). Subsequently, the absorbance of thiobarbituric acid-reactive
substances was recorded at 532 nm from the organic layer (supernatant). The results were expressed as
nmol MDA/mg protein.

Assays of antioxidant enzymes

SOD activity assay
The activity of SOD was estimated as per the method of Marklund and Marklund (1974). Briefly,
pyrogallol solution (20 mM, 1 ml) was mixed with tris-buffer (50 mM, 1 ml), followed by addition of
tissues homogenate (50 µl). Absorbance of the reaction mixture was measured at 420 nm. Enzyme
essential for 50% inhibition was considered as 1 U of SOD activity and the results were expressed as
U/mg protein.

CAT activity assay
The activity of CAT was estimated as per the method of Koroliuk et al. (1988), with slight modifications.
The assay mixture was prepared with 0.1 ml tissue homogenate and potassium phosphate buffer (50
mM, pH 7.0), consisting of 30% H2O2. Then, ammonium molybdate (32.4 mM) was added to stop the
reaction. The absorbance was measured at 405 nm and result was expressed as µmol H2O2

oxidized/min/mg protein.

Sample preparation for immunofluorescence and
histopathology
Rats were perfused transcardially with saline (0.9%) and 2% paraformaldehyde (PFA). Afterwards, brain
was post-fixed with 2% PFA overnight and later passed through 10, 20, and 30 % of sucrose solutions,
finally stored in 30% sucrose solution. Coronal sections (15 µm; IF and 30 µm; CV staining) were cut with
the help of Cryostat (Leica CM 1860, Germany) and affixed over slides coated with gelatin.

Histopathological study
Histopathological study was carried out by CV staining. Briefly, the tissue sections were stained with CV
after air-drying for few min. Afterwards, a graded series of alcohol was used to dehydrate the sections
and then cleared with xylene by dipping twice (5 min each). Lastly, slides were mounted with DPX,
coverslipped and observed with a light microscope (Motic Instruments Co. Ltd., Chengdu, China).

Immunofluorescence examination
For immunoreactivity study, sections were air-dried at room temperature for a few min followed by 3
washes of phosphate buffer saline (PBS) for 5 min each. Next, incubated for 10 min with 0.5% Triton-
X100 was given, followed by PBS washes (3 times). Nonspecific antigens were blocked by 3% normal
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goat serum. Then the sections were covered with mouse anti-GFAP (3% BSA, 1:100 dilutions, Invitrogen,
Carlsbad, USA) and mouse anti-NeuN (3% BSA, 1:100 dilutions, GenTex, Inc. CA, USA) monoclonal
antibodies and incubated overnight at 4°C. After 3 washes of PBS, sections were covered with Alexa Fluor
488-conjugated goat anti-mouse secondary antibody (Invitrogen, Carlsbad, USA; 1:200) and incubated in
dark for 2 h at room temperature, then washed with PBS thrice. Next, Slides were stained with DAPI for 10
min to visualize nucleus, followed by PBS washes (3 times). Finally, sections were mounted with
FluoromountTM Aqueous Mounting Medium and cover slipped. Sections were observed with fluorescence
microscope (Nikon Eclipse 90i, Tokyo, Japan), images were taken and analysed.

Statistical analysis
Statistical analyses for study were carried out using SigmaStat 3.5 (Systat Software Inc., San Jose, CA,
USA). Data were enunciated as mean ± SEM. Statistical analysis was performed with one-way analysis
of variance (ANOVA) by using Holm-Sidak post hoc test’.

Results

Effect of AA on behavioral studies

MWM test
MWM test was performed to examine memory impairment by monitoring average escape latency to
locate a camouflaged platform in experimental rats. Results demonstrated that AlCl3-intoxicated rats
displayed significantly extended escape latency on 2nd, 3rd, 4th, and 5th day than respective control rats.
However, the co-administration of AA along with AlCl3 significantly reduced the escape latency as
compared to AlCl3-intoxicated rats on respective days. The rats treated with AA only exhibited no
significant differences in escape latency with respect to control rats. These results suggested that
supplementation of AA rescued from spatial learning and memory deficits in the AlCl3-intoxicated rats
(Fig. 2).

L&D test
As presented in Table 1 AlCl3-intoxicated rats exhibited a significant increase in defecation index, number
of transitions and lesser time spent in light chamber as compared to the control rats, this shows the
anxiety-like behavior in AlCl3-intoxicated of rats. AA co-administration with AlCl3 significantly decreased
defecation index, number of transitions and increased time spent in the light chamber with respect to
AlCl3-intoxicated rats. The rats treated with AA alone showed no significant differences in these
parameters in comparison to control rats. These results suggest AA supplementation improves anxiety-
like behavior induced by AlCl3-intoxication.
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Table 1
Effect of AA administration on OFT and L/D tests in AlCl3-intoxicated rats.

OFT parameters Control AlCl3 AlCl3+AA AA

Centre square

entries

3.333±1.506 0.429±0.535** 3.000±1.000## 3.500±1.643

Peripheral square

entries

1.833±0.753 3.429±0.976** 2.000±0.707# 1.833±0.983

Defecation

index

2.167±1.835 5.571±1.397** 2.800±0.837# 2.167±1.835

L/D test parameters        

Time spent in light 95.000±6.812 26.667±8.824*** 60.500±7.007### 97.333±6.282

No. of transitions 8.833±1.169 3.167±1.835*** 5.667±0.816# 7.500±1.871

Defecation index 1.500±1.049 5.000±1.265*** 1.833±0.983### 1.667±1.633

Values are expressed as mean ± SEM (n=6) in each group. *p≤0.05, **p<0.01, ***p<0.001 significantly
different from control group; #p≤0.05, ##p≤0.01, ###p≤0.001 significantly different AlCl3-intoxicated
group.

OFT test
Anxiety-like behavior was further validated by OFT. Al-intoxicated rats exhibited a significantly increased
defecation index and decreased locomotor activity compared with control rats; this also shows the
anxiety-like behavior of rats after Al exposure. AA co-administration significantly declined the defecation
index and increased locomotor activity in OFT in comparison to AlCl3-intoxicated rats. While, the alone
treatment of AA caused no significant changes in these parameters in comparison to control rats. Thus,
results suggested that AA may have reversed the effects of AlCl3 exposure (Table 1).

Effect of AA on AChE activity
The results exhibited a significantly enhanced AChE activity in Al-intoxicated rats as compared to the
controls both in cortex and hippocampus. Co-administration of AA effectively declined AChE activity both
regions as compared to Al-intoxicated rats. The alone treatment of AA showed no significant difference
as compared to control rats. Thus, the result suggested that AA significantly decreased the AChE activity
in AlCl3-intoxicated rat brain (Fig. 3A).

Effect of AA on LPO
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The effect of AA on LPO in AlCl3-intoxicated rats is presented in Fig. 3B. Results showed significantly
increased LPO in AlCl3-intoxicated rats in both cortex and hippocampus in contrast to controls. Contrary
to this, AA co-administered with AlCl3 displayed a significant decline in LPO of cortex and hippocampus
regions as compared to AlCl3-intoxicated rats. The treatment of AA alone caused no significant difference
as compared to controls. Thus, it can be observed from the result that AA reduced level of LPO increased
by AlCl3 intoxication.

Effect of AA on antioxidant enzymes activities
A significant decline in the SOD activity in cortex and hippocampus was observed in Al-intoxicated rats
with respect to controls; whereas rats treated with AA along with AlCl3 exhibited a significant increase in
both cortex as well as hippocampus when compared to AlCl3-intoxicated rats (Fig. 4A). The alone
treatment of AA demonstrated no significant difference in SOD activity as compared to controls.

The CAT activity showed a significant decline in cortex and hippocampus regions of AlCl3-intoxicated rats
in comparison to controls; whereas rats treated with AA along with AlCl3 exhibited a significant increase
in cortex and hippocampus as compared to AlCl3-intoxicated rats (Fig. 4B). The alone treatment of AA
exhibited no significant difference in the CAT activity with respect to control rats. Overall, these results
suggests that AA significantly increased the activity of antioxidant enzymes in AlCl3-intoxicated rats.

Effects of AA on histopathology
As presented in Fig. 5, CV-stained microscopic images demonstrated severe degeneration of neurons, as
evident from pyknotic appearance and less intact cells in both cortex and hippocampus of AlCl3-
intoxicated rat group with respect to controls. Whereas, co-administration of AA with AlCl3 attenuated
these neuronal changes in AlCl3-intoxicated rats. However, treatment of AA alone has shown no
significant changes in both brain regions. Hence, CV staining results suggested that AA treatment
remarkably prevented neuronal damage in both regions of brain.

Effects of AA on astrocytes activation and neuronal loss
NeuN positive cells significantly decreased in the AlCl3-intoxicated rats, whereas AA co-administration
with AlCl3 resulted in higher NeuN positive cells as compared with AlCl3-intoxicated rats in the cortex and
hippocampus as evident from optical density of NeuN positive cells. The alone treatment of AA resulted
in no notable difference in the NeuN positive cells as compared to control rats (Fig. 6). These results
showed that AA treatment reversed the changes caused by AlCl3.

Al exposure has also found to increase the number of activated astrocytes and exhibited significant
increase in GFAP immunoreactivity in the cortex and hippocampus when compared to controls. AA co-
administered with AlCl3 caused a significant decrease in GFAP immunoreactive cells of the cortex and
hippocampus in contrast to the AlCl3-intoxicated rats. Treatment of AA alone caused no significant
change in the immunoreactivity of reactive astrocytes as compared to controls (Fig. 7).
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Discussion
Al is excessively occurring in the environment and human are easily exposed to it via gastrointestinal
tract, lung, skin etc. Thus, Al can readily enter into blood circulation from where its travels to brain by
crossing blood-brain-barrier (Kawahara et al. 2007). The half-life of Al is high, hence upon exposure it can
accumulates in different body organs including brain and causes neurodegeneration (Yokel 2006; Wu et
al. 2012).

Several human and animal studies indicated that Al toxicity causes behavioral alterations such as
memory and learning ability as well as exerts anxiety-associated symptoms (Kumar and Gill 2009; Sethi
et al. 2009; Krewski et al. 2007; Exley and House 2011). The MWM test analyses latency period to find a
hidden platform is a standard test for determining the consolidation of memory impairment (D’Hooge
and De Deyn 2001). Our results observed that AA ameliorated memory impairment caused by Al in rats.
These results are in agreement to the study by Rather et al. (2018) demonstrated that AA improved
memory consolidation in AlCl3-intoxicated rats. Moreover, OFT and light/dark tests are designed to
evaluate the anxiety-like behavior in rodents. We observed that AA treatment reduces anxiety-like behavior
in Al-intoxicated rats and indicated that AA have anxiolytic potential along with enhanced memory
performance in Al-induced neurotoxicity.

Acetylcholine (ACh) metabolism play pivotal role in cognitive functions such as in spatial learning
memory. The change in ACh concentration is associated with pathophysiology of multiple brain disorders
(Luchicchi et al. 2014), where altered AChE activity is known to regulate the cholinergic transmission of
brain. Al exposure has been reported to alter the AChE activity in the peripheral and central nervous
system (Maya et al. 2016). In the present study, we observed elevation in AChE activity in Al-exposed rats
whereas co-treatment of AA caused a significant decline of AChE activity in both cortex and
hippocampus. Some previous studies have also demonstrated that AA actively competes with ACh at the
esteratic site of AChE, thus inhibiting the activity of enzyme (Prakash and Kumar 2013; Rather et al.
2018). Hence, it can be speculated that suppression of AChE activity may have attenuated the Al-induced
neurobehavioral changes especially learning and memory deficits.

Several evidences indicated the role of oxidative stress on Al-induced neurotoxicity (Kumar and Gill
2009). Moreover, Al-induced oxidative stress can be effectively ameliorated by restoring the impaired
pro/antioxidant ratio (Kumar and Gill 2014). Hence, to evaluate the pro/antioxidant status of
experimental animals, estimation of LPO, and activities of SOD and CAT was done. Our results
demonstrated that administration of AA resulted in significant alterations of oxidative stress and cellular
antioxidant level. We found a significant increase of MDA content in the cortex and hippocampus of
AlCl3-intoxicated rats. Further, decline in SOD and CAT activities indicated the disruption of
pro/antioxidant balance. Treatment of AA has reduced the MDA content and enhanced SOD and CAT
activities. These results are in accordance with earlier findings demonstrating attenuation of oxidative
stress and cellular antioxidant by AA (Rather et al. 2019; Loganathan and Thayumanavan 2018; Chen et
al. 2019).
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Elevated oxidative stress can activate apoptotic cell death pathway and causes neurodegeneration (Kim
et al. 2015). Hence, we studied the effect of Al and AA treatments on brain morphology in rats. Control
rats depicted normal cellular architecture in the cortex and hippocampus of rats with well-differentiated
and healthy neurons. CV-stained sections from AlCl3-intoxicated rats showed histological disorganization
of neurons in both regions of brain. Further, the sections from AlCl3-intoxicated rats represented
decreased cell density, along with darkly stained nuclei and shrunken cytoplasm. These pathological
changes are indicative of neuronal injury and are in line with changes in the biochemical indices.
Sections obtained from rats co-treated with Al and AA exhibited remarkable improvement in cell density
of cortex as well as hippocampus regions and attenuated other architectural changes and suggested that
neurons have recovered to their characteristic shapes. Evidence from previous studies have also
demonstrated remarkable restoration of histological alterations of brain by AA in different pathological
conditions (Tabassum et al. 2013; Nagoor Meeran et al. 2018).

The effect of AA on neuronal loss was further validated by immunohistochemical examination of NeuN, a
marker of postmitotic mature neurons (Mullen et al. 1992). Al exposure was found to decrease the protein
level of NeuN and results in accordance to the previous reports (Junior et al. 2013; Laabbar et al. 2021).
Further, the study showed that AA supplementation has increased the protein level of NeuN in AlCl3-
intoxicated rats that suggested protection of neurons in the both regions (cortex and hippocampus) of
the brain. Previously, AA has also been reported to protect neurons by the alleviation of oxidative stress in
different pathological conditions (Lee et al. 2014; Jiang et al. 2016, Rather et al. 2019). AA has been
reported to prevent C2-ceramide-induced cell death of primary cortical neurons, by stimulation of
oxidative defense pathways (Zhang et al. 2012) as well as improved learning and memory by the
modulation of cholinergic and GABAergic neurotransmission (Nasir et al. 2011). The hippocampus is an
important neurogenic region in the adult brain (Aimone et al. 2011; Sahay et al. 2011). It has been
suggested that hippocampal adult neurogenesis may have enhanced by AA and may have also
contributed in learning and memory consolidation.

Astrocytes play critical role for normal functioning of neurons by serving as “second line of defense” of
the brain (Verhoog et al. 2020). Reactive astrogliosis is a process that occurs in response to pathological
conditions and toxic insults-mediated neurodegeneration, where elevated expression of GFAP, is the
hallmark of the reactive astrogliosis (Pekny and Pekna 2014). Compelling evidence suggest that Al
intoxication causes inactivation of astrocytes (Ekong et al. 2017; Laabbar et al. 2021). In this study, we
observed enhanced expression of GFAP positive cells in the cortex and hippocampus of AlCl3-intoxicated
rats, that is indicative of reactive gliosis. While, AA treatment reduced the expression of GFAP in both
brain regions, indicating that AA attenuates the process of astroglial activation that may have also
contributed in the protection of neurons. Numerous studies have demonstrated that the impairment of
astroglial functions can cause neuronal degeneration (Aremu and Meshitsuka 2005; Meshitsuka and
Aremu 2008). Hence, attenuation of reactive gliosis by AA may have contributed in the repairing
processes of neuronal loss caused by Al.
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Conclusion
In summary, our observations suggested that AA treatment mitigated AlCl3-induced neurotoxicity by
altering oxidative stress, neuronal loss and astroglial activation. Hence, AA might be beneficial against Al-
induced neurotoxicity, however, thorough research is needed to know its exact mechanism of action.
Hence, further studies are warranted to explore the link between AlCl3-mediated oxidative stress and
associated neurodegeneration to establish the neuroprotective role of AA.
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Figure 1

Schematic representation of experimental schedule performed in this study.
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Figure 2

Latency plot for platform search in AlCl3 and AA-treated rat. The latency to locate the platform is more in
AlCl3-intoxicated rats as compare to controls, while decreased in AA co-treated rats with respect to AlCl3-
intoxicated rats. Each data point represents mean ± SEM of 6 rats. *P ≤ 0.05 significantly different from
control group and #P ≤ 0.05 compared with AlCl3-intoxicated group.



Page 20/24

Figure 3

Effect of AA treatment on AChE activity and LPO in the cortex and hippocampus of rats. (a) AChE activity
and (b) LPO. Data are mean ± SEM of four rats. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001 significantly different
from control group and #P ≤ 0.05; ##P ≤ 0.01; ###P ≤ 0.001 compared with AlCl3-intoxicated group.
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Figure 4

Effect of AA treatment on antioxidant enzyme activities in the cortex and hippocampus of AlCl3-
intoxicated rats. (a) SOD and (b) CAT activity. Data are mean ± SEM of four rats. *P ≤ 0.05; **P ≤ 0.01;
***P≤0.001 significantly different from control group and #P ≤ 0.05; ##P ≤ 0.01; ###P ≤ 0.001
compared with AlCl3-intoxicated group.
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Figure 5

Representative images of CV staining showing viable (black arrow) and pyknotic cells (red arrows) in the
cortex and hippocampus of AlCl3-intoxicated and AA-treated rats.
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Figure 6

Effect of AA treatment on neuronal density in the cortex and hippocampus of the AlCl3-intoxicated rats.
A) NeuN staining in cortex and hippocampus. B) Quantitative analysis of NeuN immuno-stained cells.
Data are mean ± SEM of four rats. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001 significantly different from control
group and #P ≤ 0.05; ##P < 0.01; ###P ≤ 0.001 compared with AlCl3-intoxicated group.
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Figure 7

Effect of AA treatment on astrocytes activation in the cortex and hippocampus of AlCl3-intoxicated rat
brain. A) GFAP immunostaining in cortex and hippocampus. B) Quantitative analysis of GFAP immuno-
stained cells. Data are mean ± SEM of four rats. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001 significantly
different from control group and #P ≤ 0.05; ##P ≤ 0.01; ###P ≤ 0.001 compared with AlCl3-intoxicated
group.


