Novel FACS strategy for identification of early hematopoietic progenitors including BFU-e, CFU-e and erythroid-biased MPPs

Merav Socolovsky (merav.socolovsky@umassmed.edu)
Socolovsky Laboratory

Betsabeh Khoramian Tusi
Socolovsky Laboratory

Method Article

Keywords: erythropoiesis, hematopoiesis, erythroid progenitors, CFU-e, BFU-e, MPPs, basophils, mast cells, megakaryocytes, EBMegPs, Flow cytometry

Posted Date: February 22nd, 2018

DOI: https://doi.org/10.1038/protex.2018.031

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

We used single-cell RNA-seq and fate potential assays to develop a novel FACS strategy that identifies erythroid-biased multipotent progenitors, and erythroid committed progenitors, directly in freshly isolated mouse bone marrow. It also identifies subsets enriched for progenitors of the basophil/mast cell lineage or the megakaryocytic lineage. It divides Kit+CD55+ hematopoietic progenitors in mouse bone marrow into five populations, as follows: P1, highly purified CFU-e progenitors, also called Committed Erythroid Progenitors (CEPs); P2, highly enriched BFU-e progenitors, also called Early Erythroid Progenitors (EEPs); P2 also contains some CFU-e, and uncommitted progenitors with erythroid/megakaryocytic/basophil potential (EBMegPs); P3, enriched for basophil/mast cell progenitors; P4, enriched for megakaryocytic progenitors; and P5, containing EBMegPs and erythroid/megakaryocytic/basophil-biased MPPs.

Introduction

Although CFU-e and BFU-e progenitors were defined functionally over four decades ago, their complete and pure prospective isolation from murine bone-marrow has not been possible. Our recent single-cell RNA-seq study developed a FACS strategy that achieves their isolation, as well as the isolation of a number of other early hematopoietic progenitors. In this protocol, we first enrich Kit+ cells from total mouse bone marrow, using magnetic beads. This population is then labeled with antibodies against CD55, CD150, CD105, CD41, CD49f and CD71. Kit+CD55- cells are lympho/myeloid progenitors, whereas Kit+CD55+ cells contain erythroid/megakaryocytic/basophil progenitors. We subdivide Kit+CD55+ cells into 5 subsets, P1 to P5. P5 contains uncommitted progenitors biased towards the erythroid/megakaryocytic/basophil lineages, including MPPs. P4, P3, and P1/P2 contain megakaryocytic, basophil/mast cell, and erythroid progenitors, respectively. Specifically, P2 contains largely BFU-e cells, whereas P1 contains CFU-e, and no other progenitors. Of note, P1 can be further sub-divided into earlier CFU-e, forming larger colonies, and later CFU-e, forming smaller colonies, by selecting for P1-CD71medium and P1-CD71high gates, respectively.

Reagents

Reagents Staining buffer \((1X \text{PBS; } 0.2\% \text{ BSA; } 0.08\% \text{ Glucose})\) Easy Sep buffer \((1X \text{PBS; } 2\% \text{ FBS; } 1\text{mM EDTA})\) Mouse Streptavidin RapidSpheres Isolation Kit \((\text{STEMCELL technologies, Cat No. 19860A})\) Rat Serum \((\text{STEMCELL technologies, Cat No. 13551, or equivalent})\) 0.5 M EDTA, pH 8.0 \((\text{Invitrogen by Life technologies, Cat No. 15575-038, or equivalent})\) Biotin anti-TER119 \((\text{BD Biosciences, Clone TER119, Cat No. 553672})\) Biotin anti-CD11b \((\text{BD Biosciences, clone M1/70, Cat No. 557395})\) Biotin anti-Ly-6G and Ly-6C \((\text{BD Biosciences, clone RB6-8C5, Cat No. 553125})\) Biotin anti-CD4 \((\text{BD Biosciences, clone RM4-5, Cat No. 553045})\) Biotin anti-CD8a \((\text{Ly-2})\) \((\text{BD Biosciences, clone 53-6.7, Cat No. 553029})\) Biotin anti-CD19 \((\text{BD Biosciences, clone 1D3, Cat No. 553784})\) Streptavidin, Alexa Fluor™ 488 conjugate \((\text{Invitrogen, Cat No. S11223})\) CD117- APC Cy7 \((\text{Biolegend, clone 2B8, Cat No. 105826})\) TER119-BUV395 \((\text{BD Biosciences, clone TER-119, Cat No. 563827})\) CD71- PE Cy7 \((\text{Biolegend, clone RI7217, Cat No. 113812})\)
CD55-AF647 (Biolegend, clone RIKO-3, Cat No. 131806) CD105-PE (Biolegend, clone MJ7/18, Cat No. 120408) CD150-BV650 (Biolegend, clone TC15-12F12.2, Cat No. 115931) CD41-BV605 (Biolegend, clone MWReg30, Cat No. 133921) CD49f – BV421 (Biolegend, clone GoH3, Cat No. 313624) DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) (invitrogen, Cat No. D1306)

Equipment

Dissection equipment, 70% ethanol in water spray, Mortar and Pestle, 2ml syringes, 26-gauge needles, 70 μm cell strainer, microcentrifuge, “The Big Easy” magnet (Cat No. 18001) from STEMCELL technologies (or equivalent)

Procedure

1. Preparation of cell suspensions from mouse bone marrow: • Obtain femora and tibiae from 10 mice and remove the muscles • Cut the tip of the bones and flush the shaft with 2 to 3 ml of staining buffer or medium using a 2 ml syringe with a 26-gauge needle. • Crush the bones after flushing, using mortar & pestle to obtain any remaining cells • Pass cells through 70 μm cell strainer to remove cell clumps. Moisten filter with buffer or medium before use. • Pellet cells by centrifugation at 1400 rpm for 5 min. • Resuspend the cells in staining buffer and count. (approximately 2 x 10^9 cells are obtained from 10 wild type mice.) **2. EasySep mouse Streptavidin RapidSpheres negative selection for Lin+ cells**: • Mouse Streptavidin RapidSpheres Isolation Kit (Cat No. 19860A) and “The Big Easy” magnet (Cat No. 18001) from STEMCELL technologies are used for this selection. • For Negative selection for Easy Sep sort, cells are resuspended at 2 x 10^8 cells/ml in Easy Sep buffer. • For tibia/femur of 10 mice, cells are resuspended in total volume of 10ml EasySep buffer, containing Rat Serum (1% final concentration) to block the Fc receptors, and a cocktail of lineage-specific antibodies, each at a final concentration of 0.005 mg/ml: of biotin lanti-TER119, anti-CD11b (Clone M1/70), anti-Ly-6G and Ly-6C (Clone RB6-8C5), anti-CD4 (Clone RM4-5), anti-CD8a (Ly-2) (Clone 53-6.7), anti-CD19 (Clone 1D3). Mix and incubate for 30 min on ice. • Vortex RapidSpheres and add to sample at 100µl/ml (1ml /10ml). Mix well and incubate on ice for 15 min. • Divide 10 ml total volume of sample into two 5 ml samples (Use 15 ml conical Falcon tubes). • Bring each sample to a 10 ml total volume with Easysep buffer, and place the tube in The Big Easy magnet for 10 minutes. Pour the supernatant into a new empty 15 ml Falcon tube. Repeat the magnet wash for higher purity. • Pellet lineage- depleted cells by centrifugation at 1400 rpm for 5 min.

3. Staining for populations P1 to P5: • Wash the lineage-depleted cells with cold staining buffer and pellet by centrifugation at 1400 rpm for 5 min. • Stain for 1 hour on ice in 1ml of staining buffer containing 1% Rat Serum and the following antibodies: • 0.01 mg/mL Streptavidin Alexa Fluor 488 • 0.001 mg/mL CD117- APC Cy7 • 0.002 mg/mL TER119-BUV395 • 0.0001 mg/mL CD71- PE Cy7 • 0.01 mg/mL CD55-AF647 • 0.004 mg/mL CD105-PE • 0.004 mg/mL CD150-BV650 • 0.002 mg/mL CD41-BV605 0.0005 mg/mL CD49f – BV421 • Wash cells with cold staining buffer and resuspend in 1ml staining buffer containing DAPI and 5 mM EDTA. • Use cells for FACS analysis or for Cell sorting
Troubleshooting

• Any sorting needs to be performed at low pressure/wide nozzle conditions. E.g. 100 μM/14 psi or 130 μM/12 psi on a BD FACSaria II, following the gating strategy illustrated in Figure 1 • We include single-color controls and ‘fluorescence minus one’ controls in order adjust voltages, set compensation for spectral overlap, and place gates correctly

Figures
Figure 1

FACS strategy for early erythroid/basophil/megakaryocytic hematopoietic progenitors Gating strategy illustrating derivation of populations P1 to P5. Starting with total murine bone marrow, a gate that excludes aggregates ('singlets') is first selected, followed by a viable cell gate, a Kit+Lin- gate, and a CD55+ gate. The resulting Kit+Lin-Cd55+ cells can be resolved using CD49f and CD105, into a population

P1 = CFU-e P1-CD71_{med}; large CFU-e
P1-CD71_{high}; small CFU-e

P2 = BFU-e
P3= basophil/ mast cell progenitor enriched
P4= megakaryocytic progenitor enriched
P5= Uncommitted; EBMegPs;
CD49f\(^{\text{high}}\) CD105\(^{\text{low}}\) cells, that give rise to P3/ P4/ P5, or to CD49f\(^{\text{low}}\) CD105\(^{\text{high}}\) cells, which give rise to P1/ P2. P1 can be further resolved based on CD71 expression as indicated.