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Abstract
Background: Alternative splicing events (ASEs), a critical post-transcriptional 
regulatory mechanism, expands gene expression patterns, resulting in 
increased protein diversity and more than 95% of human genes experience AS 
and encode splice variants in the regular physiological processes. While the role 
of AS in the thyroid cancer as yet missing, therefore, it was necessary to carry 
out this study to provide more information about the combination of splicing 
and clinical parameters, as well as potential mechanism of the survival-related 
splicing events in thyroid cancer. 
Materials and methods: Here, we draw all-around AS profiles of thyroid 
cancer by analyzing RNA-seq data. We also constructed prognostic models via 
combining splicing signatures and clinicopathological parameters. Splicing 
network was constructed as a way to offer functional insight into the full 
practical knowledge of AS in the initiation and development of thyroid cancer. 
Results: There were 10446 genes, and 45150 AS events in 506 TC patients, 
which indicates that ASEs are universal in TC. Moreover, 1819 AS signatures 
were identified to be significantly related to OS of TC patients and among the 
seven types of ASES, ES was the most common, followed by AP and AT. Kaplan-
Meier survival curves results suggested that seven types of ASEs were related 
to bad prognosis in TC patients (P<0.05). In TC, AA (AUC: 0.937), AD (AUC: 
0.965), AT (AUC: 0.964), ES (AUC: 0.999), ME (AUC: 0.999), RI (AUC: 0.837) all 
demonstrated an AUC over 0.6, of which ES and ME best predict the incidence 
of TC. We found that age and risk score (All) were risk factors for TC patients. 
As for ASEs is regulated by SFs, we study if the TC-ASEs were regulated by 
various SFs and the results demonstrated that the expression of 90 SFs was 
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related to 469 ASEs OS in the TC cohort. Conclusions: In sum, the findings in 
the current study may provide a basis for spliceosomes in TC, and the methods 
used in this study could provide novel perspectives in other fields of tumor 
study to help shed light on future oncology research.

Keywords: Alternative splicing events, thyroid gland cancer, Bioinformatical 
analysis, RNA sequencing.

Background
Thyroid cancer (TC) is the most well-known endocrine neoplasia as well as a 
common malignant tumor in the head and neck, with an incidence rate 
accounting for 1% of all the malignant tumors1-2. In recent decades, the 
remarkable increase in TC morbidity has aroused substantial public concern. 
Meanwhile, high-incidence patients often develop distant metastasis and lymph 
node metastasis, which in turn result in high mortality3. Pathologically, thyroid 
cancer can be divided into four pathological type which includes papillary 
thyroid carcinoma (PTC), anaplastic thyroid carcinoma (ATC), follicular thyroid 
carcinoma (FTC) and medullary thyroid carcinoma (MTC)4. PTC is the widely 
recognized pathological types accounts for approximately 90% of thyroid 
cancer5. Most of PTC patients with over 80% of 35-year survival or 40-year 
survival after effective treatment6. However, the patients who are not sensitive 
to radioiodine therapy or accompanied with cervical lymph node metastasis at 
the time of diagnosis suffer from poor prognosis, with lower than 10% of 10-
year survival7. Therefore, it is important to assess for biomarkers to 
characterize TC recurrence and metastasis for useful prognostic monitoring. It 
has become widely accepted that gene regulation dysfunction is a critical factor 
in the initiation and progression of tumors.
  Alternative splicing events (ASEs), a critical post-transcriptional regulatory 
mechanism, expands gene expression patterns, resulting in increased protein 
diversity and more than 95% of human genes experience AS and encode splice 
variants in the regular physiological processes8. AS is widely involved in 
biological processes such as cell differentiation, proliferation, and apoptosis, 
studies exhibited that unnormal alternative splicing events play an important 
role in cancer metastasis, progression, immunotherapy, therapeutic resistance, 
and may provide opportunities for novel cancer therapeutics9-13. Alternative 
processing of mRNA may offer the potential of a broadened target space for 
cancer immunotherapy12. AS included seven fundamental splicing patterns14-

15, includes alternate acceptor sites (AA), alternate promoter (AP), alternate 
donor sites (AD), alternate terminator (AT), mutually exclusive exons (ME), exon 
skipping (ES), and retained intron (RI). More and more studies reported that 
aberrant AS is everywhere event in development and progression of cancer 
such as gastrointestinal adenocarcinomas, urogenital malignancies16-19. Xie et 
al20 constructed a novel combined prognostic model of ASEs and 
clinicopathological parameters in esophageal carcinoma. Wang et al21 analysis 
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ASEs through whole genome methods and develop a prognostic model of 
endometrial cancer. Chen et al22 indicated that a prognostic index based on 
ASEs is prognostic for overall survival in hepatocellular carcinoma. While the role 
of AS in the thyroid cancer as yet missing, therefore, it was necessary to carry 
out this study to provide more information about the combination of splicing 
and clinical parameters, as well as potential mechanism of the survival-related 
splicing events in TC. Here, we draw all-around AS profiles of thyroid cancer by 
analyzing RNA-seq data. We also constructed prognostic models via combining 
splicing signatures and clinicopathological parameters. Splicing network was 
constructed as a way to offer functional insight into the full practical knowledge 
of AS in the initiation and development of thyroid cancer. This study will help 
us knowing the regulatory mechanisms of AS events in TC and may facilitate 
the therapeutic of clinical practice.

Materials and Methods

Download raw data
The targeted records of RNA sequencing (RNA-seq) data in TC patients was get 
from The Cancer Genome Atlas (TCGA), a web-based resource, provides a user-
friendly interface for detailed views of alternative mRNA splicing based on the 
TCGA database and Percent Spliced In (PSI) degrees from 0 to 1, which will be 
used to quantify ASEs. In our study, data of 58 normal and 495 thyroid cancer 
tissues as well as clinicopathological data was acquired to explore the changes 
of ASEs connection to the carcinogenesis and prognosis of TC. PSI values of 
ASEs in TC samples were gotten from TCGA SpliceSeq23, a resource for explore 
of tumor-normal and cross-tumor alterations in mRNA splicing patterns of TCGA 
RNASeq information.

Identification of survival-associated splicing events and clinical 
parameters
Related clinical data of TC patients were also downloaded and only patients 
with an overall survival (OS) of 90 days or longer were enrolled in our study. 
Basis its median number, each parameter has been isolated low-risk (<median 
number) groups and high-risk (≥ median number). Cox regression was used to 
analyze the relationship between AS events and OS and found prognostic value 
of demographic and clinicopathological parameters of TC. A prognosis risk 
score was confirmed based on the linear mix of AS PSI multiplied by a 
corresponding regression coefficient (β) speaking the degree of the correlation 
and the value was calculated based on a univariate Cox proportional hazards 
regression model24. Kaplan–Meier survival analysis was used to analyze the 
survival significance between the study and control groups. A time-dependent 
receiver operating characteristic (ROC) curve was carried out to evaluate the 
predictive correctness of prognostic signatures in patients with TC. The top 20 
in each type of splicing and seven combined events were selected.
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Construction of gene network and correlation analysis
As for AS is regulated via splicing factors (SFs), we investigated if the ASEs were 
regulated by way of a subset of SFs. We investigated the links between TC-
associated SFs and the PSI values for ASEs utilizing the Spearman correlation 
method. The connection network between SFs and ASEs was constructed in 
Cytoscape (version 3.7.1).

Statistical Analysis
All statistical analyses have been finished using R 3.5.3 and the aggregates and 
intersections between seven types of AS were showed using the UpSetR 
package25. We used hazard ratios (HRs) and 95% confidence intervals (CIs) 
were to evaluate relative risk of TC patients with seven PSI values of ASEs and 
of different risk groups. Univariate and multivariate Cox regressions were then 
conducted to identify survival-associated SFs. Two-tailed P<0.05 was viewed 
statistically significant.

Results

Overview of ASEs in TCGA-TC.
Each ASEs were allocated a completely unique annotation that was a mixture 
of the gene name, ID number and the AS type in the SpliceSeq database (AS 
ID). Such as, in the annotation term “FNTA-83754-AD”, the gene name is FNTA, 
AS ID is 83754 and the splicing pattern is AD. We must note that one gene can 
experience different types ASEs; thus, we used UpSet image to match the 
genes with ASEs which can tell us quantitative results of different interactive 
sets. In general, there were 45150 ASEs from 10446 genes in 506 TC patients 
and the median value of ASEs for every gene was 4.322. Among the seven kinds 
of ASEs, ES was the majority common, followed by AP and AT. Among the ASEs, 
4481 genes in the 8594 AT events, 2449 genes in the 3189 AD events, 4793 
genes in the 9126 AP events, 2799 genes in the 3684 AA events, 7485 genes 
in the 17536 ES events, 2035 genes in the 2786 RI events, 2449 genes in the 
3189 AD events and 217 genes in the 232 ME events (Figure 1(a)). 

Survival related ASEs in TCGA-TC
Consequently, 1819 ASEs signatures were identified to be significantly related 
to OS of TC patients (P<0.05). The vol plot survival related to ASEs was shown 
in Figure 2H. The survival associated ASEs among the seven types of AS were 
shown by UpSet plot, the results demonstrate that ES was the most common, 
followed by AP and AT (Figure 1B). The top 20 significant survival associated 
ASEs of each types were provide in Figure 2A-2G. In order to determine the 
prognostic value of AS, and to identified AS that significantly associated with 
survival (P<0.05), which we chosen for further functional analysis and 
development of a capability risk signature with the LASSO Cox regression 
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algorithm25-26 (Figures 3). 

Prognostic Predictors of ASEs in TCGA-TC
The cohorts were then divided into high- and low-risk groups using the median 
risk score value as a cut-off. All the seven prognostic models built with different 
types of ASEs and the results showed significant to predict the prognostic of TC 
patients (Figures 4). We next study whether AS patterns could serve as an 
early predictor of incidence of TC by ROC curve. In TC, AA (AUC: 0.937), AD 
(AUC: 0.965), AT (AUC: 0.964), ES (AUC: 0.999), ME (AUC: 0.999), RI (AUC: 0.837) 
all showed an AUC over 0.6, of which ES and ME best predict the incidence of 
TC and the integrated predictor model of TC demonstrated an AUC of 0.882. 
Overall, aberrant active AFs was a specific event in TC as most models exhibited 
a relatively high specificity value. Detailed prognostic signature information of 
TC groups is visualized in Figure 5, which indicated that the mortality rate was 
higher for TC patients in the high-risk group and related to the lower OS. We 
next used Cox regression analysis to assess prognostic value of the all AS and 
other clinicopathological parameters including gender, age and tumor stage. 
The hazard ratios (HRs) for AS-ALL in the univariate and multivariate Cox 
regression analyses were 2.798 (95% CI: 2.286–3.424) and 2.603 (95% CI: 
2.108–3.215), respectively (Figure 6A– 6B).

Correlation between TC-ASEs and SFs expression
Univariate Cox regression analysis result shown that the expression of 90 SFs 
was related to OS in the TC cohort. Correlation plots were then generated using 
Cytoscape. These results indicated that the expression of 90 survival-
associated SFs (triangular nodes) was related to 469 TC-ASEs. Of the 469 OS-
ASEs, 260 were associated with poor OS (green ovals) and 209 that were 
related to favorable OS (red ovals). The majority of the ASEs related to favorable 
OS were negatively correlated with SFs expression (blue lines), whereas the 
majority of the ASEs related to poor OS were positively correlated with SFs 
expression (red lines). The 10 most significant connections between genes and 
SFs by P value were HSPB1, ZC3H11A, NOSIP, SNRPB, SNRPF, WDR83, ZNF346, 
THOC6, FAM50A and CLK1 (Figure 7). In addition, we found that SF NOSIP was 
positively related to PSI value of CABIN1-61386-AP and negatively of HAS3-
37253-AT. In addition, SF ZNF346 demonstrated different connection between 
different ASEs types of the same gene PCNA (P<0.001). The results indicated 
that different SFs played different roles in different ASEs. The plug-in Molecular 
Complex Detection (MCODE) of Cytoscape was applied to detect densely 
connected regions in the networks. The result show that UBL5 and PTCD2-
72456-AT were identified as hub gene or AS event with degrees ≥10.

Discussion
AS is a critical biological process for producing protein variety. Aberrant ASEs 
in cancers are nearly linked to cancer initiation and progression. A gene can 
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experience various types of ASEs and can be regulated by sorts of SFs, 
therefore complicating explore of the regulatory networks between ASEs and 
AFs. We recognized ASEs and regulatory SFs in TC through the analysis of TCGA 
program to get comprehensive knowledge into varies RNA splicing patterns. 
Consequently, 1819 AS signatures were identified to be significantly related to 
OS of TC patients. Of the 469 OS-ASEs, 209 that were linked to favorable OS 
and 260 with poor OS.
   The aberrant regulation of AS in various tumors has been the source of a 
great deal of research recently. Kozlovski et al27 present evidence that 
supporting the idea that AS serves as a molecular switch in many types of 
cancer that alters metabolism to drive tumorigenesis such as the regulation of 
the metabolic mTOR pathway and glycolytic pathway/TCA cycle. Additionally, 
AS may significantly alter the coding region of drug targets, leading to 
increased drug resistance in some cancer therapies28, such as BCR-ABL splice 
variant, imatinib resistance, BCL2-Like 11 (BIM or BCL2L11) splice variant and 
TKI resistance, BRCA splice variants leading to PARP inhibitor or cytotoxic drug 
resistance and TP53 splice variants and cisplatin resistance29. Over the last few 
years, an increasing number of AS events have been implicated in the 
progression of many types of cancers. SRSF1 (also known as SF2/ASF) was the 
first SF to be identified as a proto-oncogene in human tumors. Previous studies 
reported that SRSF1 is up-regulated in varies types of human tumors, including 
colon, thyroid, breast, kidney, small intestine and lung cancers30-31. Piqué et al32 

reported that the splicing RNA-binding protein CELF2 is targeted by promoter 
hypermethylation-linked transcriptional silencing in the breast cancer. Duan et 
al32 suggested the aberrant splicing variants in renal cell cancer. AS was also 
found to regulate some apoptotic genes. The BCL2L1 pre-mRNA related to 
greater tumor cell survival in various cancer types, including human lymphoma, 
breast cancer, prostate cancer and human hepatocellular carcinoma34-35. AS 
even found in AIDS, study found AS of HIV-1 mRNAs increases viral coding 
potential and controls the levels and timing of gene expression36. While the role 
of AS in the thyroid cancer as yet missing, therefore, it was necessary to carry 
out this study to provide more information about the combination of splicing 
and clinical parameters, as well as potential mechanism of the survival-related 
ASEs in TC.
   In our study, we downloaded seven types of AS from the TCGA SpliceSeq 
database. There were 10446 genes, and 45150 AS events in 506 TC patients, 
which indicates that ASEs are universal in TC. Moreover, 1819 AS signatures 
were identified to be significantly related to OS of TC patients and among the 
seven types of ASES, ES was the most common, followed by AP and AT. We also 
demonstrated top 20 significant survival related ASEs of the seven types. In 
order to evaluate the diagnostic significance of aberrant ASEs in the prognosis 
of TC, we constructed prognostic models based on risk score and ASEs types 
(AA, AP, AD, AT, ES, ME, RI and ALL). We then plotted Kaplan-Meier survival 
curves of risk score and the risk scores of each types of ASEs. The results 



7

suggested that seven types of ASEs were related to bad prognosis in TC 
patients (P<0.05). We subsequently explored if AS patterns could use as an 
early predictor of incidence of TC by ROC curve. In TC, AA (AUC: 0.937), AD 
(AUC: 0.965), AT (AUC: 0.964), ES (AUC: 0.999), ME (AUC: 0.999), RI (AUC: 0.837) 
all demonstrated an AUC over 0.6, of which ES and ME best predict the 
incidence of TC. The integrated predictor model of TC showed an AUC of 0.882. 
Cox regression was used to explore the impacts of clinicopathological 
parameters and risk score on the prognosis of TC patients. We found that age 
and risk score (All) were risk factors for TC patients. As for ASEs is regulated by 
SFs, we study if the TC-ASEs were regulated by various SFs and the results 
demonstrated that the expression of 90 SFs was related to 469 ASEs OS in the 
TC cohort. The 10 most significant related between genes and SFs by P value 
were HSPB1, ZC3H11A, NOSIP, SNRPB, SNRPF, WDR83, ZNF346, THOC6, 
FAM50A and CLK1. In addition, UBL5 and PTCD2-72456-AT were identified as 
hub gene or AS event with degrees ≥10. Studies reported that UBL5 plays an 
evolutionary conserved role in pre-mRNA splicing, the integrity of which is 
important for the fidelity of chromosome segregation37. Xu et al38 found that 
the PTCD2 protein is involved in processing RNA transcripts involving 
cytochrome b derived from mitochondrial DNA. These findings provide detailed 
information about the mechanisms by which ASEs function in TC development 
and progression.

Conclusions
Although our study has limitations (e.g. lack of therapeutic strategies, sample 
size, TC subtype research and lack of validation studies), our study indicate that 
ASEs are frequent in TC and are related to patient prognosis. These ASEs may 
be part of a prognostic signature in TC. In sum, the findings in the current study 
may provide a basis for spliceosomes in TC, and the methods used in this study 
could provide novel perspectives in other fields of tumor study to help shed 
light on future oncology research.
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Figure legends:
Figure 1. a. Upset plots for the intersection of seven types of ASEs. The dark 
bar on the right of each drawing represents the amount of each type of ASEs. 
The dark dots in the matrix at bottom part of each drawing represent the 
intersections of AS events, while the dark bar on the top represents the gene 
number involving in AS. B, A subset of overlapping survival associated ASEs 
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among the seven types of AS in TC were illustrated by UpSet plot diagram.

Figure 2. Bubble plots for subgroup analyses of survival associated ASEs in TC 
cohort. (A–G) Forest plots of HRs for top 20 survival associated AA, AD, AP, AT, 
ES, ME and RI events in TC, respectively. (H) The vol plot survival associated AS 
events.

Figure 3. Cross validation with the LASSO Cox regression algorithm associated 
ASEs in TC cohort. (A–H) Cross validation plots of seven AS events AA, AD, AP, 
AT, ES, ME, RI and ALL events in TC.

Figure 4. Kaplan-Meier curves of prognostic predictors in TC cohort. (A–G) 
Kaplan-Meier plot depicting the survival probability over time for prognostic 
predictor of seven types of AS events with high (red) and low (blue) risk group, 
respectively. (H) Kaplan-Meier plot depicting the survival probability over time 
for the final prognostic predictor with high (red) and low (blue) risk group.

Figure 5: Construction of eight ASEs models for TC. (a–h) Risk scores for AA, AD, 
AP, AT, ES, ME, RI and ALL models in TC, respectively. Each individual plot (Top) 
represents the distribution of survival time and survival status of high- and low-
risk groups. (middle) represents the distribution of patients in the high- and low-
risk groups, (bottom) represents the PSI value heat map of the alternative 
splicing genes in the constructed model.

Figure 6. Cox regression analysis of OS-associated clinical features ALL ASEs. 
(A) Univariate analysis; (B) Multivariate analysis. (Gender, F vs M; Stage, I vs II, 
III, IV; T, T1 vs T2, T3, T4; M, M0 vs M1, Mx; N, N0 vs N1)

Figure 7. Correlation analysis between splicing factor expression and TC-ASEs. 
Triangles represent the splicing factors and oval nodes represent the TC-ASEs. 
Red ovals represent the TC-ASEs that displayed a positive correlation with OS 
while the green ovals represent OS-ASEs that exhibited a negative correlation 
with OS. The blue and red lines indicate negative and positive correlations, 
respectively.


